Generative quantum learning of joint probability distribution functions

Modeling joint probability distributions is an important task in a wide variety of fields. One popular technique for this employs a family of multivariate distributions with uniform marginals called copulas. While the theory of modeling joint distributions via copulas is well understood, it gets pra...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Physical review research Ročník 4; číslo 4; s. 043092
Hlavní autori: Zhu, Elton Yechao, Johri, Sonika, Bacon, Dave, Esencan, Mert, Kim, Jungsang, Muir, Mark, Murgai, Nikhil, Nguyen, Jason, Pisenti, Neal, Schouela, Adam, Sosnova, Ksenia, Wright, Ken
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: American Physical Society 01.11.2022
ISSN:2643-1564, 2643-1564
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Modeling joint probability distributions is an important task in a wide variety of fields. One popular technique for this employs a family of multivariate distributions with uniform marginals called copulas. While the theory of modeling joint distributions via copulas is well understood, it gets practically challenging to accurately model real data with many variables. In this paper, we show that any copula can be naturally mapped to a multipartite maximally entangled state. Thus, the task of learning joint probability distributions becomes the task of learning maximally entangled states. We prove that a variational ansatz we christen as a “qopula” based on this insight leads to an exponential advantage over classical methods of learning some joint distributions. As an application, we train a quantum generative adversarial network (QGAN) and a quantum circuit Born machine (QCBM) using this variational ansatz to generate samples from joint distributions of two variables in historical data from the stock market. We demonstrate our generative learning algorithms on trapped ion quantum computers from IonQ for up to eight qubits. Our experimental results show interesting findings such as the resilience against noise, outperformance against equivalent classical models and 20–1000 times less iterations required to converge as compared to equivalent classical models.
AbstractList Modeling joint probability distributions is an important task in a wide variety of fields. One popular technique for this employs a family of multivariate distributions with uniform marginals called copulas. While the theory of modeling joint distributions via copulas is well understood, it gets practically challenging to accurately model real data with many variables. In this paper, we show that any copula can be naturally mapped to a multipartite maximally entangled state. Thus, the task of learning joint probability distributions becomes the task of learning maximally entangled states. We prove that a variational ansatz we christen as a “qopula” based on this insight leads to an exponential advantage over classical methods of learning some joint distributions. As an application, we train a quantum generative adversarial network (QGAN) and a quantum circuit Born machine (QCBM) using this variational ansatz to generate samples from joint distributions of two variables in historical data from the stock market. We demonstrate our generative learning algorithms on trapped ion quantum computers from IonQ for up to eight qubits. Our experimental results show interesting findings such as the resilience against noise, outperformance against equivalent classical models and 20–1000 times less iterations required to converge as compared to equivalent classical models.
ArticleNumber 043092
Author Nguyen, Jason
Schouela, Adam
Wright, Ken
Zhu, Elton Yechao
Johri, Sonika
Bacon, Dave
Sosnova, Ksenia
Esencan, Mert
Kim, Jungsang
Muir, Mark
Pisenti, Neal
Murgai, Nikhil
Author_xml – sequence: 1
  givenname: Elton Yechao
  orcidid: 0000-0002-4497-2093
  surname: Zhu
  fullname: Zhu, Elton Yechao
– sequence: 2
  givenname: Sonika
  surname: Johri
  fullname: Johri, Sonika
– sequence: 3
  givenname: Dave
  surname: Bacon
  fullname: Bacon, Dave
– sequence: 4
  givenname: Mert
  surname: Esencan
  fullname: Esencan, Mert
– sequence: 5
  givenname: Jungsang
  surname: Kim
  fullname: Kim, Jungsang
– sequence: 6
  givenname: Mark
  orcidid: 0000-0003-2952-9525
  surname: Muir
  fullname: Muir, Mark
– sequence: 7
  givenname: Nikhil
  surname: Murgai
  fullname: Murgai, Nikhil
– sequence: 8
  givenname: Jason
  surname: Nguyen
  fullname: Nguyen, Jason
– sequence: 9
  givenname: Neal
  surname: Pisenti
  fullname: Pisenti, Neal
– sequence: 10
  givenname: Adam
  surname: Schouela
  fullname: Schouela, Adam
– sequence: 11
  givenname: Ksenia
  surname: Sosnova
  fullname: Sosnova, Ksenia
– sequence: 12
  givenname: Ken
  surname: Wright
  fullname: Wright, Ken
BookMark eNqFkMFqAjEQhkOxUGt9h30BbbKb7GYvhSKtFYQWac9hNjvRyJrYJAq-fbW2ULz0ND8D883Md0t6zjskJGN0zBgt7t9Wh7jA_QIjQtCrMR9TXtA6vyL9vOTFiImS9_7kGzKMcU0pzQVjXIo-mU7RYYBk95h97sCl3SbrjjBn3TLzJlt761K2Db6BxnY2HbLWxhRss0vWu8zsnD6FeEeuDXQRhz91QD6en94nL6P563Q2eZyPdFGJNOJFw4ThHFhDNbQ5A102JTQUUEiNtWYahBbSCCE51jmXFUpuNMtLwZrWFAMyO3NbD2u1DXYD4aA8WPXd8GGpICSrO1SCC0kRKslpzeVxSdFilVPN0TCoWXtkPZxZOvgYAxqlbYLTOymA7RSj6mRZXVhWXJ0tHwHyAvB70L-jXxEbjD8
CitedBy_id crossref_primary_10_1007_s42484_023_00117_0
crossref_primary_10_1007_s42484_024_00165_0
crossref_primary_10_1103_PhysRevResearch_7_013177
crossref_primary_10_1016_j_sysarc_2025_103431
crossref_primary_10_3390_app13106308
crossref_primary_10_22331_q_2025_05_28_1755
crossref_primary_10_1007_s13218_024_00864_7
crossref_primary_10_1038_s41534_024_00805_0
crossref_primary_10_1038_s41534_025_01078_x
crossref_primary_10_1103_PhysRevResearch_6_033291
crossref_primary_10_1145_3682071
crossref_primary_10_1038_s41534_023_00730_8
Cites_doi 10.26421/QIC19.13-14-3
10.1097/HP.0b013e3182799307
10.1137/S0097539795293172
10.3390/e20080583
10.1016/j.insmatheco.2005.01.008
10.1103/PhysRevLett.113.130503
10.1103/PhysRevLett.126.190505
10.1007/978-1-4612-2854-7
10.1088/1367-2630/aa5e47
10.23919/ACC.1987.4789489
10.1103/PhysRevLett.121.040502
10.1007/978-3-319-29659-3
10.1103/PhysRevA.99.032331
10.1038/s41467-018-07090-4
10.1111/j.1540-6261.1952.tb01525.x
10.1103/PhysRevApplied.16.024051
10.1103/PhysRevX.12.031010
10.1103/PhysRevLett.103.150502
10.1103/PhysRevLett.83.1874
10.1109/9.119632
10.1016/j.aml.2013.04.005
10.1038/s41567-021-01287-z
10.1038/s41586-019-1666-5
10.1109/TIP.2017.2685345
10.1126/sciadv.aaw9918
10.1038/s41567-019-0648-8
10.1109/TPAMI.2020.2970919
10.1098/rspa.2010.0301
10.1038/s41467-021-21728-w
10.1007/978-1-4614-7138-7
10.1038/s41534-019-0157-8
10.17578/17-1/2-2
10.1126/sciadv.aav2761
10.1038/s41467-019-13534-2
10.1038/s41534-021-00456-5
10.1017/CBO9780511804090
10.1038/s41534-020-00288-9
10.1007/s00477-014-0946-8
10.1103/PhysRevX.12.021037
10.1103/PhysRevA.98.012324
10.1088/1742-6596/698/1/012003
10.3141/2262-20
10.1103/PhysRevA.98.062324
10.1038/s41534-019-0223-2
10.1016/j.jbankfin.2010.07.021
10.1038/s41567-018-0124-x
10.1103/PhysRevLett.109.050505
10.1093/mnras/202.3.615
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1103/PhysRevResearch.4.043092
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2643-1564
ExternalDocumentID oai_doaj_org_article_54580ea78409486ab3de720c4ef1a91d
10_1103_PhysRevResearch_4_043092
GroupedDBID 3MX
AAFWJ
AAYXX
AECSF
AFGMR
AFPKN
AGDNE
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ROL
ID FETCH-LOGICAL-c375t-43b15f44a1b0cad21ac6b6ab0ae58ce9c1ca5c58f5584e92487e84fc12651bdf3
IEDL.DBID DOA
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000884810400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2643-1564
IngestDate Fri Oct 03 12:52:29 EDT 2025
Sat Nov 29 03:21:05 EST 2025
Tue Nov 18 21:11:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-43b15f44a1b0cad21ac6b6ab0ae58ce9c1ca5c58f5584e92487e84fc12651bdf3
ORCID 0000-0002-4497-2093
0000-0003-2952-9525
OpenAccessLink https://doaj.org/article/54580ea78409486ab3de720c4ef1a91d
ParticipantIDs doaj_primary_oai_doaj_org_article_54580ea78409486ab3de720c4ef1a91d
crossref_citationtrail_10_1103_PhysRevResearch_4_043092
crossref_primary_10_1103_PhysRevResearch_4_043092
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Physical review research
PublicationYear 2022
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevResearch.4.043092Cc60R1
PhysRevResearch.4.043092Cc28R1
PhysRevResearch.4.043092Cc26R1
PhysRevResearch.4.043092Cc7R3
PhysRevResearch.4.043092Cc9R1
C. C. Aggarwal (PhysRevResearch.4.043092Cc4R1) 2016
PhysRevResearch.4.043092Cc7R1
PhysRevResearch.4.043092Cc7R2
PhysRevResearch.4.043092Cc43R1
PhysRevResearch.4.043092Cc43R2
PhysRevResearch.4.043092Cc45R1
PhysRevResearch.4.043092Cc45R2
PhysRevResearch.4.043092Cc24R1
PhysRevResearch.4.043092Cc62R1
PhysRevResearch.4.043092Cc22R1
PhysRevResearch.4.043092Cc41R1
A. Paszke (PhysRevResearch.4.043092Cc47R1) 2019
PhysRevResearch.4.043092Cc6R1
D. P. Kingma (PhysRevResearch.4.043092Cc14R1)
PhysRevResearch.4.043092Cc2R1
H. Joe (PhysRevResearch.4.043092Cc12R1) 1997
PhysRevResearch.4.043092Cc36R1
PhysRevResearch.4.043092Cc59R1
PhysRevResearch.4.043092Cc59R2
PhysRevResearch.4.043092Cc30R1
PhysRevResearch.4.043092Cc57R1
PhysRevResearch.4.043092Cc34R1
PhysRevResearch.4.043092Cc11R1
S. Zacks (PhysRevResearch.4.043092Cc3R1) 1992
PhysRevResearch.4.043092Cc27R1
PhysRevResearch.4.043092Cc25R1
PhysRevResearch.4.043092Cc48R1
S. Arora (PhysRevResearch.4.043092Cc50R1) 2009
PhysRevResearch.4.043092Cc29R1
PhysRevResearch.4.043092Cc44R1
G. James (PhysRevResearch.4.043092Cc1R1) 2013
PhysRevResearch.4.043092Cc46R1
PhysRevResearch.4.043092Cc23R1
PhysRevResearch.4.043092Cc40R1
PhysRevResearch.4.043092Cc61R1
PhysRevResearch.4.043092Cc21R1
PhysRevResearch.4.043092Cc42R1
PhysRevResearch.4.043092Cc63R1
H. v. Storch (PhysRevResearch.4.043092Cc5R1) 1999
PhysRevResearch.4.043092Cc39R1
PhysRevResearch.4.043092Cc37R1
PhysRevResearch.4.043092Cc58R1
N. Tagasovska (PhysRevResearch.4.043092Cc38R2) 2019
PhysRevResearch.4.043092Cc31R1
PhysRevResearch.4.043092Cc54R1
PhysRevResearch.4.043092Cc10R1
PhysRevResearch.4.043092Cc33R1
PhysRevResearch.4.043092Cc52R1
References_xml – ident: PhysRevResearch.4.043092Cc58R1
  doi: 10.26421/QIC19.13-14-3
– ident: PhysRevResearch.4.043092Cc6R1
  doi: 10.1097/HP.0b013e3182799307
– ident: PhysRevResearch.4.043092Cc33R1
  doi: 10.1137/S0097539795293172
– ident: PhysRevResearch.4.043092Cc23R1
  doi: 10.3390/e20080583
– volume-title: Advances in Neural Information Processing Systems 32
  year: 2019
  ident: PhysRevResearch.4.043092Cc47R1
– ident: PhysRevResearch.4.043092Cc9R1
  doi: 10.1016/j.insmatheco.2005.01.008
– ident: PhysRevResearch.4.043092Cc59R2
  doi: 10.1103/PhysRevLett.113.130503
– ident: PhysRevResearch.4.043092Cc61R1
  doi: 10.1103/PhysRevLett.126.190505
– volume-title: Introduction to Reliability Analysis: Probability Models and Statistical Methods
  year: 1992
  ident: PhysRevResearch.4.043092Cc3R1
  doi: 10.1007/978-1-4612-2854-7
– ident: PhysRevResearch.4.043092Cc39R1
  doi: 10.1088/1367-2630/aa5e47
– ident: PhysRevResearch.4.043092Cc43R1
  doi: 10.23919/ACC.1987.4789489
– ident: PhysRevResearch.4.043092Cc26R1
  doi: 10.1103/PhysRevLett.121.040502
– volume-title: Recommender Systems: The Textbook
  year: 2016
  ident: PhysRevResearch.4.043092Cc4R1
  doi: 10.1007/978-3-319-29659-3
– ident: PhysRevResearch.4.043092Cc42R1
  doi: 10.1103/PhysRevA.99.032331
– ident: PhysRevResearch.4.043092Cc45R1
  doi: 10.1038/s41467-018-07090-4
– volume-title: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings
  ident: PhysRevResearch.4.043092Cc14R1
– ident: PhysRevResearch.4.043092Cc2R1
  doi: 10.1111/j.1540-6261.1952.tb01525.x
– ident: PhysRevResearch.4.043092Cc30R1
  doi: 10.1103/PhysRevApplied.16.024051
– ident: PhysRevResearch.4.043092Cc31R1
  doi: 10.1103/PhysRevX.12.031010
– ident: PhysRevResearch.4.043092Cc34R1
  doi: 10.1103/PhysRevLett.103.150502
– ident: PhysRevResearch.4.043092Cc54R1
  doi: 10.1103/PhysRevLett.83.1874
– ident: PhysRevResearch.4.043092Cc43R2
  doi: 10.1109/9.119632
– ident: PhysRevResearch.4.043092Cc37R1
  doi: 10.1016/j.aml.2013.04.005
– ident: PhysRevResearch.4.043092Cc62R1
  doi: 10.1038/s41567-021-01287-z
– ident: PhysRevResearch.4.043092Cc22R1
  doi: 10.1038/s41586-019-1666-5
– ident: PhysRevResearch.4.043092Cc11R1
  doi: 10.1109/TIP.2017.2685345
– ident: PhysRevResearch.4.043092Cc27R1
  doi: 10.1126/sciadv.aaw9918
– ident: PhysRevResearch.4.043092Cc60R1
  doi: 10.1038/s41567-019-0648-8
– volume-title: Advances in Neural Information Processing Systems
  year: 2019
  ident: PhysRevResearch.4.043092Cc38R2
– ident: PhysRevResearch.4.043092Cc57R1
  doi: 10.1109/TPAMI.2020.2970919
– ident: PhysRevResearch.4.043092Cc48R1
  doi: 10.1098/rspa.2010.0301
– ident: PhysRevResearch.4.043092Cc45R2
  doi: 10.1038/s41467-021-21728-w
– volume-title: An Introduction to Statistical Learning: With Applications in R
  year: 2013
  ident: PhysRevResearch.4.043092Cc1R1
  doi: 10.1007/978-1-4614-7138-7
– ident: PhysRevResearch.4.043092Cc24R1
  doi: 10.1038/s41534-019-0157-8
– ident: PhysRevResearch.4.043092Cc7R2
  doi: 10.17578/17-1/2-2
– ident: PhysRevResearch.4.043092Cc29R1
  doi: 10.1126/sciadv.aav2761
– ident: PhysRevResearch.4.043092Cc41R1
  doi: 10.1038/s41467-019-13534-2
– ident: PhysRevResearch.4.043092Cc44R1
  doi: 10.1038/s41534-021-00456-5
– volume-title: Computational Complexity: A Modern Approach
  year: 2009
  ident: PhysRevResearch.4.043092Cc50R1
  doi: 10.1017/CBO9780511804090
– ident: PhysRevResearch.4.043092Cc52R1
  doi: 10.1038/s41534-020-00288-9
– ident: PhysRevResearch.4.043092Cc7R3
  doi: 10.1007/s00477-014-0946-8
– ident: PhysRevResearch.4.043092Cc63R1
  doi: 10.1103/PhysRevX.12.021037
– ident: PhysRevResearch.4.043092Cc25R1
  doi: 10.1103/PhysRevA.98.012324
– volume-title: Statistical Analysis in Climate Research
  year: 1999
  ident: PhysRevResearch.4.043092Cc5R1
– ident: PhysRevResearch.4.043092Cc40R1
  doi: 10.1088/1742-6596/698/1/012003
– ident: PhysRevResearch.4.043092Cc10R1
  doi: 10.3141/2262-20
– ident: PhysRevResearch.4.043092Cc36R1
  doi: 10.1103/PhysRevA.98.062324
– ident: PhysRevResearch.4.043092Cc28R1
  doi: 10.1038/s41534-019-0223-2
– ident: PhysRevResearch.4.043092Cc7R1
  doi: 10.1016/j.jbankfin.2010.07.021
– volume-title: Multivariate Models and Multivariate Dependence Concepts
  year: 1997
  ident: PhysRevResearch.4.043092Cc12R1
– ident: PhysRevResearch.4.043092Cc21R1
  doi: 10.1038/s41567-018-0124-x
– ident: PhysRevResearch.4.043092Cc59R1
  doi: 10.1103/PhysRevLett.109.050505
– ident: PhysRevResearch.4.043092Cc46R1
  doi: 10.1093/mnras/202.3.615
SSID ssj0002511485
Score 2.4586062
Snippet Modeling joint probability distributions is an important task in a wide variety of fields. One popular technique for this employs a family of multivariate...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 043092
Title Generative quantum learning of joint probability distribution functions
URI https://doaj.org/article/54580ea78409486ab3de720c4ef1a91d
Volume 4
WOSCitedRecordID wos000884810400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2643-1564
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511485
  issn: 2643-1564
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2643-1564
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511485
  issn: 2643-1564
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQBRIL4inKSx5Y08bxMyOgFgaoEALULbLPNiqCFtq0Egu_nThJq8ICA0uGKBdF39l3PuXu-xA6NUoarhxEiSY6Ypb6SDORRJ7akC0YVHPcj9ey11P9fnq7JPUVesIqeuAKuHb4sRM7LctCRAltqHUyiYE5T3RKbIi-sUyXiqkQg8PBmSk-b92JaTs0VN652byfrcVage0qTb7loyXa_jK_dDfRRn0wxGfVB22hFTfcRmtlgyZMdtBlxQ8dghN-nxZwTF9xrfjwhEceP48GwxwHeZiKePsD20CJW6tZ4ZC-yhW2ix66nfuLq6gWQYiASp5HjBrCPWOamBi0TYgGYQoYYu24ApcCAc2BK8-Lo4QrqiklnWIeSCI4MdbTPdQYjoZuH2ErtHBKMytSzwQkWkrKwRQmoGixb5tIzqHIoGYID0IVL1lZKcQ0-wFixrIKxCYiC8u3iiXjDzbnAe3F84HnurxReD-rvZ_95v2D_3jJIVpPwlBDOWF4hBr5eOqO0SrM8sFkfFIurOJ689n5AukH14c
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+quantum+learning+of+joint+probability+distribution+functions&rft.jtitle=Physical+review+research&rft.au=Elton+Yechao+Zhu&rft.au=Sonika+Johri&rft.au=Dave+Bacon&rft.au=Mert+Esencan&rft.date=2022-11-01&rft.pub=American+Physical+Society&rft.eissn=2643-1564&rft.volume=4&rft.issue=4&rft.spage=043092&rft_id=info:doi/10.1103%2FPhysRevResearch.4.043092&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_54580ea78409486ab3de720c4ef1a91d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-1564&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-1564&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-1564&client=summon