Collaborative recommender systems: Combining effectiveness and efficiency

Recommender systems base their operation on past user ratings over a collection of items, for instance, books, CDs, etc. Collaborative filtering (CF) is a successful recommendation technique that confronts the “information overload” problem. Memory-based algorithms recommend according to the prefere...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 34; no. 4; pp. 2995 - 3013
Main Authors: Symeonidis, Panagiotis, Nanopoulos, Alexandros, Papadopoulos, Apostolos N., Manolopoulos, Yannis
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.05.2008
Subjects:
ISSN:0957-4174, 1873-6793
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recommender systems base their operation on past user ratings over a collection of items, for instance, books, CDs, etc. Collaborative filtering (CF) is a successful recommendation technique that confronts the “information overload” problem. Memory-based algorithms recommend according to the preferences of nearest neighbors, and model-based algorithms recommend by first developing a model of user ratings. In this paper, we bring to surface factors that affect CF process in order to identify existing false beliefs. In terms of accuracy, by being able to view the “big picture”, we propose new approaches that substantially improve the performance of CF algorithms. For instance, we obtain more than 40% increase in precision in comparison to widely-used CF algorithms. In terms of efficiency, we propose a model-based approach based on latent semantic indexing (LSI), that reduces execution times at least 50% than the classic CF algorithms.
AbstractList Recommender systems base their operation on past user ratings over a collection of items, for instance, books, CDs, etc. Collaborative filtering (CF) is a successful recommendation technique that confronts the 'information overload' problem. Memory-based algorithms recommend according to the preferences of nearest neighbors, and model-based algorithms recommend by first developing a model of user ratings. In this paper, we bring to surface factors that affect CF process in order to identify existing false beliefs. In terms of accuracy, by being able to view the 'big picture', we propose new approaches that substantially improve the performance of CF algorithms. For instance, we obtain more than 40% increase in precision in comparison to widely-used CF algorithms. In terms of efficiency, we propose a model-based approach based on latent semantic indexing (LSI), that reduces execution times at least 50% than the classic CF algorithms.
Author Papadopoulos, Apostolos N.
Symeonidis, Panagiotis
Nanopoulos, Alexandros
Manolopoulos, Yannis
Author_xml – sequence: 1
  givenname: Panagiotis
  surname: Symeonidis
  fullname: Symeonidis, Panagiotis
  email: symeon@csd.auth.gr
– sequence: 2
  givenname: Alexandros
  surname: Nanopoulos
  fullname: Nanopoulos, Alexandros
  email: ananopou@csd.auth.gr
– sequence: 3
  givenname: Apostolos N.
  surname: Papadopoulos
  fullname: Papadopoulos, Apostolos N.
  email: papadopo@csd.auth.gr
– sequence: 4
  givenname: Yannis
  surname: Manolopoulos
  fullname: Manolopoulos, Yannis
  email: manolopo@csd.auth.gr
BookMark eNp9kD1PwzAURS1UJErhDzBlYkuw49hOEAuK-KhUiQVmy3GekavGLnZa1H-PQ5kYOj3p6p4rvXOJZs47QOiG4IJgwu_WBcRvVZQYiwKzAhN6huakFjTnoqEzNMcNE3lFRHWBLmNcY0xE6s7RsvWbjep8UKPdQxZA-2EA10PI4iGOMMT7rPVDZ511nxkYA3oqOogxU66fEqstOH24QudGbSJc_90F-nh-em9f89Xby7J9XOWaCjbmVOsGiOJdU1FWpr0Sc20UMSnXmBNW1Z2hwggtFMVlqUAx2hvT09JwVdV0gW6Pu9vgv3YQRznYqCF94cDvoqSk4bxmVSqWx6IOPsYARm6DHVQ4SILlZE2u5WRNTtYkZjJZS1D9D9J2TG68G4Oym9PowxGF9P3eQpDx1wz0NmkdZe_tKfwHkPeMpQ
CitedBy_id crossref_primary_10_1016_j_eswa_2011_09_094
crossref_primary_10_1007_s10479_016_2367_1
crossref_primary_10_1080_0952813X_2021_1882000
crossref_primary_10_1016_j_eswa_2021_115028
crossref_primary_10_1016_j_asoc_2012_11_046
crossref_primary_10_1016_j_eswa_2009_04_038
crossref_primary_10_3390_app9091928
crossref_primary_10_1108_K_10_2014_0212
crossref_primary_10_1016_j_eswa_2014_01_035
crossref_primary_10_1016_j_ins_2011_08_026
crossref_primary_10_1016_j_eswa_2009_03_046
crossref_primary_10_1002_dac_4058
crossref_primary_10_1016_j_knosys_2011_06_005
crossref_primary_10_1007_s12046_021_01763_5
crossref_primary_10_2196_43316
crossref_primary_10_1016_j_ins_2012_06_027
crossref_primary_10_1016_j_ipm_2013_02_004
crossref_primary_10_1016_j_eswa_2012_02_038
crossref_primary_10_1016_j_physa_2015_05_008
crossref_primary_10_1007_s10115_020_01455_2
crossref_primary_10_1016_j_ins_2010_07_024
crossref_primary_10_1016_j_ins_2011_11_037
crossref_primary_10_1016_j_ins_2014_04_033
crossref_primary_10_1016_j_eswa_2019_112858
crossref_primary_10_1002_cpe_3798
crossref_primary_10_1016_j_ipm_2012_12_002
crossref_primary_10_2753_JEC1086_4415180103
ContentType Journal Article
Copyright 2007 Elsevier Ltd
Copyright_xml – notice: 2007 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2007.05.013
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 3013
ExternalDocumentID 10_1016_j_eswa_2007_05_013
S0957417407001959
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c375t-3cc9e1a6b94352ffe206cfa1fcc9c061548bf37f7c7a3022aea53dffd32f6a483
ISICitedReferencesCount 53
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000253521900078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sat Sep 27 22:21:18 EDT 2025
Sat Nov 29 02:18:50 EST 2025
Tue Nov 18 21:47:17 EST 2025
Fri Feb 23 02:30:22 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Collaborative filtering
Nearest neighbors
Recommender system
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c375t-3cc9e1a6b94352ffe206cfa1fcc9c061548bf37f7c7a3022aea53dffd32f6a483
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0957417407001959
PQID 31966854
PQPubID 23500
PageCount 19
ParticipantIDs proquest_miscellaneous_31966854
crossref_primary_10_1016_j_eswa_2007_05_013
crossref_citationtrail_10_1016_j_eswa_2007_05_013
elsevier_sciencedirect_doi_10_1016_j_eswa_2007_05_013
PublicationCentury 2000
PublicationDate 2008-05-00
PublicationDateYYYYMMDD 2008-05-01
PublicationDate_xml – month: 05
  year: 2008
  text: 2008-05-00
PublicationDecade 2000
PublicationTitle Expert systems with applications
PublicationYear 2008
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Karypis, G. (2001). Evaluation of item-based top-n recommendation algorithms. In
McJones, P., & DeTreville, J. (1997). Each to each programmer’s reference manual.
Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. In
Huang, Chen, Zeng (bib11) 2004; 22
Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000). Analysis of recommendation algorithms for e-commerce. In
(pp. 158–167).
(pp. 285–295).
(pp. 230–237).
Mobasher, B., Dai, H., Luo, T., & Nakagawa, M. (2001). Improving the effectiveness of collaborative filtering on anonymous web usage data. In
Berry, Dumais, O’Brien (bib1) 1994; 37
Breese, J., Heckerman, D. & Kadie, C. (1998). Empirical analysis of predictive algorithms for collaborative filtering. In
(pp. 53–60).
Xue, G., Lin, C., & Yang, Q., et al. (2005). Scalable collaborative filtering using cluster-based smoothing. In
(pp. 329–336).
Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). Grouplens: an open architecture for collaborative filtering on netnews. In
(pp. 43–52).
Herlocker, J., Konstan, J., Borchers, A., & Riedl, J. (1999). An algorithmic framework for performing collaborative filtering. In
Sarwar, B., Karypis, G., Konstan, J., & Riedl J. (2000). Application of dimensionality reduction in recommender system – a case study. In
(pp. 114–121).
Furnas, G., Deerwester, S. & Dumais, S., et al. (1988). Information retrieval using a singular value decomposition model of latent semantic structure. In
Herlocker, Konstan, Terveen, Riedl (bib9) 2004; 22
Hofmann (bib10) 2004; 22
1997-023.
.
O’Mahony, Hurley, Kushmerick, Silvestre (bib16) 2004; 4
Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2002). Incremental singular value decomposition algorithms for higly scalable recommender systems. In
(pp. 465–480).
Goldberg, Nichols, Brian, Terry (bib5) 1992; 35
Goldberg, Roeder, Gupta, Perkins (bib6) 2001; 4
Deshpande, Karypis (bib3) 2004; 22
(pp. 247–254).
McLauglin, R. & Herlocher, J. (2004). A collaborative filtering algorithm and evaluation metric that accurately model the user experience. In
Herlocker, Konstan, Riedl (bib8) 2002; 5
(pp. 175–186).
References_xml – reference: Furnas, G., Deerwester, S. & Dumais, S., et al. (1988). Information retrieval using a singular value decomposition model of latent semantic structure. In
– reference: Mobasher, B., Dai, H., Luo, T., & Nakagawa, M. (2001). Improving the effectiveness of collaborative filtering on anonymous web usage data. In
– reference: (pp. 285–295).
– volume: 35
  start-page: 61
  year: 1992
  end-page: 70
  ident: bib5
  article-title: Using collaborative filtering to weave an information tapestry
  publication-title: ACM Communications
– reference: Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. In
– volume: 4
  start-page: 133
  year: 2001
  end-page: 151
  ident: bib6
  article-title: Eigentaste: a constant time collaborative filtering algorithm
  publication-title: Information Retrieval
– reference: McJones, P., & DeTreville, J. (1997). Each to each programmer’s reference manual.
– reference: Breese, J., Heckerman, D. & Kadie, C. (1998). Empirical analysis of predictive algorithms for collaborative filtering. In
– reference: Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000). Analysis of recommendation algorithms for e-commerce. In
– reference: , 1997-023.
– volume: 37
  start-page: 573
  year: 1994
  end-page: 595
  ident: bib1
  article-title: Using linear algebra for intelligent information retrieval
  publication-title: SIAM Review
– reference: (pp. 43–52).
– volume: 22
  start-page: 143
  year: 2004
  end-page: 177
  ident: bib3
  article-title: Item-based top-n recommendation algorithms
  publication-title: ACM Transactions on Information Systems
– reference: McLauglin, R. & Herlocher, J. (2004). A collaborative filtering algorithm and evaluation metric that accurately model the user experience. In
– reference: Karypis, G. (2001). Evaluation of item-based top-n recommendation algorithms. In
– reference: (pp. 465–480).
– volume: 5
  start-page: 287
  year: 2002
  end-page: 310
  ident: bib8
  article-title: An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms
  publication-title: Information Retrieval
– volume: 22
  start-page: 116
  year: 2004
  end-page: 142
  ident: bib11
  article-title: Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering
  publication-title: ACM Transactions on Information Systems
– reference: (pp. 175–186).
– reference: Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2002). Incremental singular value decomposition algorithms for higly scalable recommender systems. In
– reference: (pp. 53–60).
– reference: (pp. 230–237).
– reference: (pp. 114–121).
– reference: (pp. 329–336).
– reference: Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). Grouplens: an open architecture for collaborative filtering on netnews. In
– reference: (pp. 247–254).
– reference: Xue, G., Lin, C., & Yang, Q., et al. (2005). Scalable collaborative filtering using cluster-based smoothing. In:
– reference: (pp. 158–167).
– reference: Herlocker, J., Konstan, J., Borchers, A., & Riedl, J. (1999). An algorithmic framework for performing collaborative filtering. In:
– volume: 22
  start-page: 89
  year: 2004
  end-page: 115
  ident: bib10
  article-title: Latent semantic models for collaborative filtering
  publication-title: ACM Transactions on Information Systems
– reference: Sarwar, B., Karypis, G., Konstan, J., & Riedl J. (2000). Application of dimensionality reduction in recommender system – a case study. In
– volume: 4
  start-page: 344
  year: 2004
  end-page: 377
  ident: bib16
  article-title: Collaborative recommendation: a robustness analysis
  publication-title: ACM Transactions on Internet Technology
– reference: .
– volume: 22
  start-page: 5
  year: 2004
  end-page: 53
  ident: bib9
  article-title: Evaluating collaborative filtering recommender systems
  publication-title: ACM Transactions on Information Systems
SSID ssj0017007
Score 2.2053719
Snippet Recommender systems base their operation on past user ratings over a collection of items, for instance, books, CDs, etc. Collaborative filtering (CF) is a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2995
SubjectTerms Collaborative filtering
Nearest neighbors
Recommender system
Title Collaborative recommender systems: Combining effectiveness and efficiency
URI https://dx.doi.org/10.1016/j.eswa.2007.05.013
https://www.proquest.com/docview/31966854
Volume 34
WOSCitedRecordID wos000253521900078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMX3qjl6QPigoxir-1dc6uqVBSFwCFF4bRa70NKldqmTUL5KfxbZuxdO6mgwIGL5ax3bWtnMjOe10fISx6pRBZFFDKeZ2GiuAm5TIsQyC2ltlKyBiXi85hNJnw2yz8NBj98Lcx6wcqSX17m9X8lNYwBsbF09h_I3d0UBuAciA5HIDsc_4rwhz1l14iJAs84a_DiXNfmJgcOxEDRQEO4hA4v89CNbpquEliSueW2x57IS38PVxO3Ef3uXDXfzwzICT13CAAIg1Qt5911EOdVXa0WbXqfq68BVd3HsmqpN2fU2PoDfvRBow8SgwH9lC-Iu7Ttv-B9tmDniGRhErVYPV4mOwfnfNPh0ArYvMXkdMoaxBP9pSJofRKnb8zFN-kaVWJ_VtqrPR_qn3wURyfjsZiOZtNX9dcQAckwcO_QWW6Q3ZilOcj83YPj0ex9F6Jiw7YW37--q8hqkwevPvZ3Vs8V_d8YNdO75Lb7GgkOWi66RwamvE_ueKSPwAn-B-R4i6mCDaYKHEO8DTqWCrZYKgDyBj1LPSQnR6Pp4bvQgXCEirJ0GVKlchPJrMjBsI5hfTzMlJWRhXGF9nDCC0uZZYpJCgahNDKl2lpNY5vJhNNHZKesSrNHAoPuKxozi9UjmmtOM_i40EUWaaq5tfsk8psklOtQj0ApC-FTEU8FbixCpzIxTAVs7D553a2p2_4s185O_d4LZ2G2lqMAvrl23QtPKAHiF2NqsjTV6kKgBst4mjz-44wn5FbP_k_JzvJ8ZZ6Rm2oNf8Hz5467fgJhua5u
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+recommender+systems%3A+Combining+effectiveness+and+efficiency&rft.jtitle=Expert+systems+with+applications&rft.au=Symeonidis%2C+Panagiotis&rft.au=Nanopoulos%2C+Alexandros&rft.au=Papadopoulos%2C+Apostolos+N&rft.au=Manolopoulos%2C+Yannis&rft.date=2008-05-01&rft.issn=0957-4174&rft.volume=34&rft.issue=4&rft.spage=2995&rft.epage=3013&rft_id=info:doi/10.1016%2Fj.eswa.2007.05.013&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon