The road to fully programmable protein catalysis

The ability to design efficient enzymes from scratch would have a profound effect on chemistry, biotechnology and medicine. Rapid progress in protein engineering over the past decade makes us optimistic that this ambition is within reach. The development of artificial enzymes containing metal cofact...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) Vol. 606; no. 7912; pp. 49 - 58
Main Authors: Lovelock, Sarah L., Crawshaw, Rebecca, Basler, Sophie, Levy, Colin, Baker, David, Hilvert, Donald, Green, Anthony P.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 02.06.2022
Nature Publishing Group
Subjects:
ISSN:0028-0836, 1476-4687, 1476-4687
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The ability to design efficient enzymes from scratch would have a profound effect on chemistry, biotechnology and medicine. Rapid progress in protein engineering over the past decade makes us optimistic that this ambition is within reach. The development of artificial enzymes containing metal cofactors and noncanonical organocatalytic groups shows how protein structure can be optimized to harness the reactivity of nonproteinogenic elements. In parallel, computational methods have been used to design protein catalysts for diverse reactions on the basis of fundamental principles of transition state stabilization. Although the activities of designed catalysts have been quite low, extensive laboratory evolution has been used to generate efficient enzymes. Structural analysis of these systems has revealed the high degree of precision that will be needed to design catalysts with greater activity. To this end, emerging protein design methods, including deep learning, hold particular promise for improving model accuracy. Here we take stock of key developments in the field and highlight new opportunities for innovation that should allow us to transition beyond the current state of the art and enable the robust design of biocatalysts to address societal needs. Recent progress in computational enzyme design, active site engineering and directed evolution are reviewed, highlighting methodological innovations needed to deliver improved designer biocatalysts.
AbstractList The ability to design efficient enzymes from scratch would have a profound effect on chemistry, biotechnology and medicine. Rapid progress in protein engineering over the past decade makes us optimistic that this ambition is within reach. The development of artificial enzymes containing metal cofactors and noncanonical organocatalytic groups shows how protein structure can be optimized to harness the reactivity of nonproteinogenic elements. In parallel, computational methods have been used to design protein catalysts for diverse reactions on the basis of fundamental principles of transition state stabilization. Although the activities of designed catalysts have been quite low, extensive laboratory evolution has been used to generate efficient enzymes. Structural analysis of these systems has revealed the high degree of precision that will be needed to design catalysts with greater activity. To this end, emerging protein design methods, including deep learning, hold particular promise for improving model accuracy. Here we take stock of key developments in the field and highlight new opportunities for innovation that should allow us to transition beyond the current state of the art and enable the robust design of biocatalysts to address societal needs. Recent progress in computational enzyme design, active site engineering and directed evolution are reviewed, highlighting methodological innovations needed to deliver improved designer biocatalysts.
The ability to design efficient enzymes from scratch would have a profound effect on chemistry, biotechnology and medicine. Rapid progress in protein engineering over the past decade makes us optimistic that this ambition is within reach. The development of artificial enzymes containing metal cofactors and noncanonical organocatalytic groups shows how protein structure can be optimized to harness the reactivity of nonproteinogenic elements. In parallel, computational methods have been used to design protein catalysts for diverse reactions on the basis of fundamental principles of transition state stabilization. Although the activities of designed catalysts have been quite low, extensive laboratory evolution has been used to generate efficient enzymes. Structural analysis of these systems has revealed the high degree of precision that will be needed to design catalysts with greater activity. To this end, emerging protein design methods, including deep learning, hold particular promise for improving model accuracy. Here we take stock of key developments in the field and highlight new opportunities for innovation that should allow us to transition beyond the current state of the art and enable the robust design of biocatalysts to address societal needs.The ability to design efficient enzymes from scratch would have a profound effect on chemistry, biotechnology and medicine. Rapid progress in protein engineering over the past decade makes us optimistic that this ambition is within reach. The development of artificial enzymes containing metal cofactors and noncanonical organocatalytic groups shows how protein structure can be optimized to harness the reactivity of nonproteinogenic elements. In parallel, computational methods have been used to design protein catalysts for diverse reactions on the basis of fundamental principles of transition state stabilization. Although the activities of designed catalysts have been quite low, extensive laboratory evolution has been used to generate efficient enzymes. Structural analysis of these systems has revealed the high degree of precision that will be needed to design catalysts with greater activity. To this end, emerging protein design methods, including deep learning, hold particular promise for improving model accuracy. Here we take stock of key developments in the field and highlight new opportunities for innovation that should allow us to transition beyond the current state of the art and enable the robust design of biocatalysts to address societal needs.
The ability to design efficient enzymes from scratch would have a profound effect on chemistry, biotechnology and medicine. Rapid progress in protein engineering over the past decade makes us optimistic that this ambition is within reach. The development of artificial enzymes containing metal cofactors and noncanonical organocatalytic groups shows how protein structure can be optimized to harness the reactivity of nonproteinogenic elements. In parallel, computational methods have been used to design protein catalysts for diverse reactions on the basis of fundamental principles of transition state stabilization. Although the activities of designed catalysts have been quite low, extensive laboratory evolution has been used to generate efficient enzymes. Structural analysis of these systems has revealed the high degree of precision that will be needed to design catalysts with greater activity. To this end, emerging protein design methods, including deep learning, hold particular promise for improving model accuracy. Here we take stock of key developments in the field and highlight new opportunities for innovation that should allow us to transition beyond the current state of the art and enable the robust design of biocatalysts to address societal needs.
Author Lovelock, Sarah L.
Baker, David
Basler, Sophie
Green, Anthony P.
Crawshaw, Rebecca
Hilvert, Donald
Levy, Colin
Author_xml – sequence: 1
  givenname: Sarah L.
  orcidid: 0000-0002-4584-3189
  surname: Lovelock
  fullname: Lovelock, Sarah L.
  organization: Manchester Institute of Biotechnology, School of Chemistry, University of Manchester
– sequence: 2
  givenname: Rebecca
  surname: Crawshaw
  fullname: Crawshaw, Rebecca
  organization: Manchester Institute of Biotechnology, School of Chemistry, University of Manchester
– sequence: 3
  givenname: Sophie
  orcidid: 0000-0002-4594-2670
  surname: Basler
  fullname: Basler, Sophie
  organization: Laboratory of Organic Chemistry, ETH Zürich
– sequence: 4
  givenname: Colin
  surname: Levy
  fullname: Levy, Colin
  organization: Manchester Institute of Biotechnology, School of Chemistry, University of Manchester
– sequence: 5
  givenname: David
  orcidid: 0000-0001-7896-6217
  surname: Baker
  fullname: Baker, David
  email: dabaker@uw.edu
  organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington, Howard Hughes Medical Institute, University of Washington
– sequence: 6
  givenname: Donald
  orcidid: 0000-0002-3941-621X
  surname: Hilvert
  fullname: Hilvert, Donald
  email: donald.hilvert@org.chem.ethz.ch
  organization: Laboratory of Organic Chemistry, ETH Zürich
– sequence: 7
  givenname: Anthony P.
  orcidid: 0000-0003-0454-1798
  surname: Green
  fullname: Green, Anthony P.
  email: anthony.green@manchester.ac.uk
  organization: Manchester Institute of Biotechnology, School of Chemistry, University of Manchester
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35650353$$D View this record in MEDLINE/PubMed
BookMark eNp9kDtrwzAUhUVJaR7tH-hQDF26uL3WlSx5LKEvCHRJZyHLcurgRyrZQ_Lr68QJhQydxIXvOxydKRnVTW0JuY3gMQKUT55FXMYhUBoCYzwOdxdkEjERhyyWYkQmAFSGIDEek6n3awDgkWBXZIw85oAcJwSW3zZwjc6Ctgnyriy3wcY1K6erSqel3R-tLerA6FaXW1_4a3KZ69Lbm-M7I1-vL8v5e7j4fPuYPy9Cg4K3IaZMoOU2xViApDxjeYSZyA1PMgaMMs2tkKgpcmrQ0tyYlEGCOc-0kDnijDwMuX2Dn876VlWFN7YsdW2bzisaCyr6_0S8R-_P0HXTubpvd6CShCawD7w7Ul1a2UxtXFFpt1WnLXpADoBxjffO5soUrW6Lpm6dLkoVgdrProbZVT-7Osyudr1Kz9RT-r8SDpLv4Xpl3V_tf6xfB4CTKQ
CitedBy_id crossref_primary_10_1038_s41929_023_01072_6
crossref_primary_10_1038_s41586_022_05335_3
crossref_primary_10_1016_j_chempr_2024_06_010
crossref_primary_10_1002_ange_202421686
crossref_primary_10_1021_jacs_3c02742
crossref_primary_10_3390_ijms23168934
crossref_primary_10_1038_s41467_023_36971_6
crossref_primary_10_1093_protein_gzac015
crossref_primary_10_1002_anie_202505976
crossref_primary_10_1038_s41557_023_01287_x
crossref_primary_10_1002_anie_202404880
crossref_primary_10_1093_protein_gzac013
crossref_primary_10_3390_eng5010006
crossref_primary_10_1039_D5SC01055A
crossref_primary_10_1039_D5GC03406J
crossref_primary_10_1002_chem_202202343
crossref_primary_10_1016_j_biotechadv_2024_108366
crossref_primary_10_1038_s41578_025_00828_9
crossref_primary_10_1002_ange_202301660
crossref_primary_10_1002_ange_202212158
crossref_primary_10_1002_ange_202212555
crossref_primary_10_1038_s41589_024_01707_0
crossref_primary_10_1002_ange_202309305
crossref_primary_10_1002_biot_202300162
crossref_primary_10_1002_pro_4640
crossref_primary_10_1093_molbev_msad126
crossref_primary_10_1016_j_copbio_2022_102829
crossref_primary_10_1016_j_cogsc_2025_101010
crossref_primary_10_1016_j_csbj_2023_03_045
crossref_primary_10_1038_s41586_022_05342_4
crossref_primary_10_1039_D4SC07521H
crossref_primary_10_1002_chem_202501422
crossref_primary_10_1002_pro_4405
crossref_primary_10_1016_j_cell_2025_06_014
crossref_primary_10_1016_j_ijbiomac_2024_134014
crossref_primary_10_1038_s41467_025_59176_5
crossref_primary_10_1002_cbic_202200566
crossref_primary_10_1016_j_cels_2023_10_009
crossref_primary_10_1038_s41467_024_46308_6
crossref_primary_10_1016_j_bbagen_2023_130329
crossref_primary_10_1002_ange_202404312
crossref_primary_10_1016_j_biortech_2025_133231
crossref_primary_10_1016_j_jprot_2025_105524
crossref_primary_10_1021_acs_chemrev_4c00471
crossref_primary_10_1128_aem_01963_22
crossref_primary_10_1007_s00253_023_12702_1
crossref_primary_10_1038_s41467_024_53048_0
crossref_primary_10_1002_ange_202215935
crossref_primary_10_1002_mlf2_70009
crossref_primary_10_1002_anie_202309305
crossref_primary_10_1126_science_ado5068
crossref_primary_10_1371_journal_pone_0332409
crossref_primary_10_1021_jacs_3c06169
crossref_primary_10_7554_eLife_102788_3
crossref_primary_10_1038_s41587_024_02461_3
crossref_primary_10_1039_D3SC02982D
crossref_primary_10_3390_molecules28186683
crossref_primary_10_1002_anie_202505797
crossref_primary_10_1126_science_adu2454
crossref_primary_10_1016_j_sbi_2025_103124
crossref_primary_10_1038_s41589_024_01793_0
crossref_primary_10_1051_bioconf_202412701006
crossref_primary_10_1103_PhysRevResearch_7_023299
crossref_primary_10_1093_bib_bbae381
crossref_primary_10_1007_s00211_023_01371_x
crossref_primary_10_3390_biom14060701
crossref_primary_10_3762_bjoc_21_30
crossref_primary_10_1016_j_jhazmat_2024_135414
crossref_primary_10_1039_D3EY00239J
crossref_primary_10_1002_adfm_202315509
crossref_primary_10_1093_nsr_nwad331
crossref_primary_10_1021_acscatal_5c01146
crossref_primary_10_1016_j_coelec_2024_101541
crossref_primary_10_1073_pnas_2414748122
crossref_primary_10_1016_j_biortech_2025_133224
crossref_primary_10_1002_cbic_202500075
crossref_primary_10_3390_ijms24108581
crossref_primary_10_1002_cbic_202500076
crossref_primary_10_1016_j_cej_2022_140276
crossref_primary_10_1002_ijch_202400006
crossref_primary_10_1016_j_mcat_2024_113874
crossref_primary_10_1126_science_adh8615
crossref_primary_10_1002_adma_202308837
crossref_primary_10_1016_j_inoche_2025_115413
crossref_primary_10_1002_ange_202505797
crossref_primary_10_1021_jacs_4c03795
crossref_primary_10_1186_s40643_023_00723_7
crossref_primary_10_1016_j_biotechadv_2025_108603
crossref_primary_10_1021_acscatal_5c01646
crossref_primary_10_1021_acscentsci_5c00949
crossref_primary_10_1038_s41592_024_02504_2
crossref_primary_10_1007_s11005_023_01665_z
crossref_primary_10_1016_j_ijbiomac_2024_129294
crossref_primary_10_1016_j_biotechadv_2024_108399
crossref_primary_10_1038_s44222_024_00225_x
crossref_primary_10_1002_anie_202413073
crossref_primary_10_1002_chem_202301180
crossref_primary_10_1038_s41467_024_46574_4
crossref_primary_10_1039_D2SC04479J
crossref_primary_10_1002_ange_202311159
crossref_primary_10_1093_femsre_fuaf011
crossref_primary_10_1038_s41586_024_07391_3
crossref_primary_10_1021_jacs_3c02423
crossref_primary_10_1073_pnas_2308286120
crossref_primary_10_1038_s41586_025_08611_0
crossref_primary_10_1021_jacs_4c09428
crossref_primary_10_1016_j_copbio_2022_102759
crossref_primary_10_1016_j_coelec_2024_101565
crossref_primary_10_1002_anie_202404312
crossref_primary_10_1002_anie_202419262
crossref_primary_10_1021_jacs_4c16521
crossref_primary_10_1016_j_sbi_2025_103018
crossref_primary_10_1021_jacs_5c09407
crossref_primary_10_1016_j_progpolymsci_2023_101737
crossref_primary_10_1021_acs_jafc_5c05979
crossref_primary_10_1002_pro_70132
crossref_primary_10_1002_anie_202419022
crossref_primary_10_1111_febs_17146
crossref_primary_10_1016_j_trac_2024_117971
crossref_primary_10_1002_ange_202505976
crossref_primary_10_1126_science_ade9434
crossref_primary_10_1002_ange_202413073
crossref_primary_10_1016_j_ijbiomac_2023_127787
crossref_primary_10_1016_j_bpj_2024_04_030
crossref_primary_10_59717_j_xinn_med_2023_100012
crossref_primary_10_1002_ange_202404880
crossref_primary_10_7554_eLife_102788
crossref_primary_10_1021_jacs_4c16633
crossref_primary_10_1002_anie_202301660
crossref_primary_10_1016_j_cels_2025_101372
crossref_primary_10_1038_s41467_022_35468_y
crossref_primary_10_1038_s44160_023_00417_0
crossref_primary_10_1109_ACCESS_2025_3560387
crossref_primary_10_1021_jacs_5c05656
crossref_primary_10_1016_j_ijbiomac_2024_135810
crossref_primary_10_1021_jacs_5c02388
crossref_primary_10_1016_j_mocell_2025_100191
crossref_primary_10_1016_j_sbi_2023_102671
crossref_primary_10_1002_cctc_202400598
crossref_primary_10_1021_acs_orglett_5c03309
crossref_primary_10_3389_fmolb_2022_908285
crossref_primary_10_1016_j_synbio_2025_04_014
crossref_primary_10_1002_anie_202215935
crossref_primary_10_1002_chem_202404519
crossref_primary_10_1016_j_jhazmat_2023_131295
crossref_primary_10_1039_D4CS00561A
crossref_primary_10_1016_j_checat_2025_101394
crossref_primary_10_1002_wcms_70003
crossref_primary_10_1080_07388551_2023_2236787
crossref_primary_10_35534_sbe_2023_10013
crossref_primary_10_1002_adma_202307499
crossref_primary_10_1063_1674_0068_cjcp2312146
crossref_primary_10_3390_molecules28134990
crossref_primary_10_1021_acscentsci_5c00590
crossref_primary_10_1016_j_cbpa_2024_102508
crossref_primary_10_1021_jacs_4c03879
crossref_primary_10_1002_ijch_202300078
crossref_primary_10_1016_j_checat_2023_100559
crossref_primary_10_1039_D5QO00423C
crossref_primary_10_1021_jacs_4c03914
crossref_primary_10_1038_s41467_024_47671_0
crossref_primary_10_1038_s41589_025_01944_x
crossref_primary_10_1002_anie_202421686
crossref_primary_10_1002_cctc_202401952
crossref_primary_10_1038_s41467_024_46123_z
crossref_primary_10_1002_anie_202311159
crossref_primary_10_1016_j_cell_2023_12_028
crossref_primary_10_1038_s41467_024_50005_9
crossref_primary_10_1002_cbic_202401010
crossref_primary_10_1002_anie_202212555
crossref_primary_10_1016_j_checat_2025_101442
crossref_primary_10_1002_anie_202212158
crossref_primary_10_22201_fq_18708404e_2025_3_90539
crossref_primary_10_1016_j_chempr_2023_03_006
crossref_primary_10_1002_cbic_202300754
crossref_primary_10_3390_molecules29235518
crossref_primary_10_1016_j_copbio_2023_103004
crossref_primary_10_1016_j_jclepro_2022_134429
crossref_primary_10_1038_s41929_025_01390_x
crossref_primary_10_1039_D5CP90116B
crossref_primary_10_1002_ange_202419262
crossref_primary_10_1038_s41586_024_08399_5
crossref_primary_10_1038_s41586_025_09136_2
crossref_primary_10_1002_ange_202419022
crossref_primary_10_1007_s12274_022_5104_x
crossref_primary_10_1016_j_biotechadv_2023_108294
crossref_primary_10_3390_metabo13101097
Cites_doi 10.1038/nchembio.2503
10.1126/science.abj8754
10.1073/pnas.1915054117
10.1002/pro.3757
10.1146/annurev-biochem-062917-012034
10.1038/nature19946
10.1021/ja208015j
10.1126/science.aay8484
10.1038/nchem.2555
10.1038/nchem.1454
10.1021/jacs.6b07029
10.1073/pnas.1010381107
10.1016/j.cell.2018.10.021
10.1038/s41586-018-0509-0
10.1002/pro.2128
10.1126/science.1188934
10.1038/nature12623
10.1016/j.cbpa.2020.01.006
10.1038/s41586-021-03819-2
10.1038/nature06879
10.1021/acscatal.9b04321
10.1126/science.aaw1143
10.1146/annurev.biochem.69.1.751
10.1126/science.abd3623
10.1021/acscatal.9b05129
10.1038/nbt.2109
10.1021/cr068388p
10.1021/jacs.8b07189
10.1126/science.abc0881
10.1038/s41586-019-1923-7
10.1002/anie.201813499
10.1021/ja3037367
10.1038/nature09929
10.1038/nchem.2596
10.1038/nchem.2643
10.1021/acscatal.9b02272
10.1021/cr068373r
10.1016/S0167-7799(03)00194-X
10.1002/pro.462
10.1038/s41467-021-21511-x
10.1038/s41586-018-0808-5
10.1038/nature11117
10.1073/pnas.1118082108
10.1038/s41557-018-0082-z
10.1039/b514972j
10.1021/jacs.6b06843
10.1002/anie.201204077
10.1126/science.1062722
10.1021/ja076043y
10.1126/science.1226132
10.1146/annurev-biochem-072611-101825
10.1371/journal.pcbi.1005786
10.1002/anie.201708408
10.1126/science.aat8474
10.1021/bi201881p
10.1038/nchembio.1498
10.1021/jacs.5b07812
10.1038/nature24031
10.1126/science.aau3744
10.1002/pro.2059
10.1038/nchembio.1276
10.1038/s41557-020-00633-7
10.1038/s41557-021-00763-6
10.1038/nchembio.203
10.1038/nature08620
10.1073/pnas.1914808117
10.1038/s41467-020-18619-x
10.1038/s41586-019-1262-8
10.1016/j.cbpa.2011.03.006
10.1126/science.aba3304
10.1016/j.copbio.2004.06.001
10.1038/s41929-019-0341-4
10.1073/pnas.0910781107
10.1038/s41929-019-0340-5
10.1038/s41557-020-00628-4
10.1016/j.copbio.2017.12.008
10.1126/science.1152692
10.1073/pnas.251555398
10.1038/s41570-018-0055-1
10.1126/science.1190239
10.1038/nature19114
10.1002/anie.201707637
10.1126/science.10049109
10.1021/jacsau.1c00145
10.1038/s41586-021-04184-w
10.1126/science.aar4239
10.1021/cb3006227
10.1021/acscatal.1c02786
10.1038/s41929-018-0105-6
10.1073/pnas.1401073111
10.1021/acscatal.9b01464
10.1021/ja075261o
10.1002/pro.481
10.1038/nchembio.2474
10.1021/cr068370e
10.1021/jacs.8b07157
10.1038/nchembio.257
10.1021/ar970004h
10.1038/nchem.1201
10.1021/acs.accounts.8b00674
10.1038/s41557-021-00833-9
10.1002/anie.201901491
10.1021/ja205927u
10.1126/science.3787261
10.1021/cr0684016
10.1146/annurev.biochem.052308.105824
10.1126/science.8211138
10.1126/science.1142696
10.1073/pnas.1901979116
10.1126/science.270.5243.1797
10.1101/2020.11.29.402743
10.1101/2021.11.10.468128
ContentType Journal Article
Copyright Springer Nature Limited 2022
2022. Springer Nature Limited.
Copyright Nature Publishing Group Jun 2, 2022
Copyright_xml – notice: Springer Nature Limited 2022
– notice: 2022. Springer Nature Limited.
– notice: Copyright Nature Publishing Group Jun 2, 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
DOI 10.1038/s41586-022-04456-z
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Agricultural Science Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PATMY
  name: Environmental Science Database
  url: http://search.proquest.com/environmentalscience
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
Engineering
EISSN 1476-4687
EndPage 58
ExternalDocumentID 35650353
10_1038_s41586_022_04456_z
Genre Journal Article
Review
GrantInformation_xml – fundername: European Research Council
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/M027023/1
– fundername: Medical Research Council
  grantid: MR/T041722/1
– fundername: Howard Hughes Medical Institute
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AARCD
AASDW
AAYEP
ABDQB
ABFSG
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUFD
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACSTC
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AEZWR
AFANA
AFBBN
AFFHD
AFFNX
AFHIU
AFKRA
AFKWF
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGSOS
AGSTI
AHMBA
AHSBF
AHWEU
AIDUJ
AIXLP
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ALPWD
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATHPR
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
EX3
EXGXG
F5P
FAC
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TUS
TWZ
U5U
UKHRP
UKR
UMD
UQL
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YFH
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
ZCA
~02
~7V
~88
~KM
AAYXX
CITATION
.-4
.GJ
.HR
00M
08P
1CY
1VW
354
3EH
3O-
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAVBQ
AAYZH
ABAWZ
ABDBF
ABDPE
ABEFU
ABNNU
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADGHP
ADNMO
ADRHT
ADXHL
ADYSU
ADZCM
AETEA
AFFDN
AFHKK
AGCDD
AGGDT
AGNAY
AGQPQ
AIDAL
AIYXT
AJUXI
ALIPV
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
CGR
CUY
CVF
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
ECM
EIF
EJD
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
ESX
FA8
I-F
ITC
J5H
L-9
LGEZI
LOTEE
MVM
N4W
NADUK
NEJ
NFIDA
NPM
NXXTH
ODYON
OHT
P-O
PEA
PM3
PV9
QS-
R4F
RHI
SKT
SV3
TH9
TUD
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZY4
~8M
~G0
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
88A
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
ID FETCH-LOGICAL-c375t-3b473e5eb3670825d4f13d7fc59d40424a5e783a2352c3e2fccb4093f5da78f33
IEDL.DBID 7RV
ISICitedReferencesCount 231
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000804867100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0028-0836
1476-4687
IngestDate Sun Nov 09 10:47:20 EST 2025
Tue Oct 07 07:22:00 EDT 2025
Mon Jul 21 06:03:45 EDT 2025
Tue Nov 18 22:01:32 EST 2025
Sat Nov 29 03:49:03 EST 2025
Mon Nov 10 01:23:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7912
Language English
License 2022. Springer Nature Limited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-3b473e5eb3670825d4f13d7fc59d40424a5e783a2352c3e2fccb4093f5da78f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4594-2670
0000-0001-7896-6217
0000-0003-0454-1798
0000-0002-4584-3189
0000-0002-3941-621X
PMID 35650353
PQID 2672992903
PQPubID 40569
PageCount 10
ParticipantIDs proquest_miscellaneous_2672705115
proquest_journals_2672992903
pubmed_primary_35650353
crossref_citationtrail_10_1038_s41586_022_04456_z
crossref_primary_10_1038_s41586_022_04456_z
springer_journals_10_1038_s41586_022_04456_z
PublicationCentury 2000
PublicationDate 2022-06-02
PublicationDateYYYYMMDD 2022-06-02
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Dou (CR90) 2018; 561
Smith, Hecht (CR34) 2011; 15
Chino (CR37) 2017; 56
Moroz (CR59) 2015; 137
Burton, Thomson, Dawson, Brady, Woolfson (CR60) 2016; 8
Wu, Boxer (CR49) 2016; 138
Basler (CR44) 2021; 13
Kiss, Celebi-Olcum, Moretti, Baker, Houk (CR21) 2013; 52
Turner (CR5) 2009; 5
Huffman (CR2) 2019; 366
Hill, Raleigh, Lombardi, DeGrado (CR31) 2000; 33
Bjelic (CR82) 2013; 8
Wagner, Lerner, Barbas (CR64) 1995; 270
Devine (CR4) 2018; 2
Siegel (CR72) 2010; 329
Chen, Huang, Kan, Zhang, Arnold (CR18) 2018; 360
Mirts, Petrik, Hosseinzadeh, Nilges, Lu (CR30) 2018; 361
Fernandez-Gacio, Uguen, Fastrez (CR10) 2003; 21
Wu, Kan, Lewis, Wittmann, Arnold (CR100) 2019; 116
Mayer, Dulson, Reddem, Thunnissen, Roelfes (CR62) 2019; 58
Crawshaw (CR76) 2022; 14
Senior (CR92) 2020; 577
Richter (CR57) 2012; 134
Ma (CR98) 2021; 11
Studer (CR43) 2018; 362
Lombardi, Pirro, Maglio, Chino, DeGrado (CR38) 2019; 52
Davey, Damry, Goto, Chica (CR87) 2017; 13
Mukherjee, Yang, Hoffmann, List (CR107) 2007; 107
Davey, Chica (CR112) 2012; 21
Qu, Li, Acevedo-Rocha, Sun, Reetz (CR9) 2020; 59
Russ (CR102) 2020; 369
Wentworth (CR66) 2001; 293
Erkkila, Majander, Pihko (CR106) 2007; 107
Yeung (CR29) 2009; 462
Der, Edwards, Kuhlman (CR42) 2012; 51
Bolon, Mayo (CR56) 2001; 98
Koder, Dutton (CR32) 2006; 25
Li, Liu, Wang, Mehta, Schultz (CR52) 2018; 140
Althoff (CR79) 2012; 21
Debon (CR13) 2019; 2
Tramontano, Janda, Lerner (CR63) 1986; 234
Bornscheuer (CR6) 2012; 485
Hyster, Knorr, Ward, Rovis (CR27) 2012; 338
Otten (CR77) 2020; 370
Zhang (CR17) 2018; 565
Reig (CR39) 2012; 4
Jeschek (CR24) 2016; 537
Faiella (CR33) 2009; 5
Bunzel (CR85) 2021; 13
Frushicheva, Cao, Chu, Warshel (CR84) 2010; 107
Faraldos (CR48) 2011; 133
Jumper (CR95) 2021; 596
Hsieh, Yonkovich, Kochersperger, Schultz (CR67) 1993; 260
Rajagopalan (CR58) 2014; 10
Mazurenko, Prokop, Damborsky (CR97) 2020; 10
Becker, Schmoldt, Adams, Wilhelm, Kolmar (CR11) 2004; 15
Liu, Schultz (CR46) 2010; 79
Stenner, Steventon, Seddon, Anderson (CR36) 2020; 117
Huang, Boyken, Baker (CR89) 2016; 537
Hiranuma (CR93) 2021; 12
Rebelein, Ward (CR26) 2018; 53
Gouverneur (CR65) 1993; 262
Hilvert (CR22) 2013; 82
Hayashi (CR104) 2018; 1
Green, Hayashi, Mittl, Hilvert (CR53) 2016; 138
Eiben (CR81) 2012; 30
Biegasiewicz (CR19) 2019; 364
Seyedsayamdost, Xie, Chan, Schultz, Stubbe (CR47) 2007; 129
Privett (CR70) 2012; 109
Wei (CR91) 2020; 117
Ortmayer (CR50) 2020; 10
Jiang (CR71) 2008; 319
Rothlisberger (CR69) 2008; 453
Bedbrook, Yang, Rice, Gradinaru, Arnold (CR99) 2017; 13
Schober (CR3) 2019; 2
Ravikumar, Arzumanyan, Obadi, Javanpour, Liu (CR16) 2018; 175
Hilvert (CR68) 2000; 69
Bryson (CR15) 2017; 13
Zhao (CR25) 2018; 140
Blomberg (CR73) 2013; 503
Ortmayer (CR51) 2021; 1
Giger (CR80) 2013; 9
Pan (CR88) 2021; 369
Zhao, Burke, Green (CR54) 2020; 55
Broom (CR78) 2020; 11
Preiswerk (CR74) 2014; 111
Doyle, Jacobsen (CR108) 2007; 107
Salgado, Faraone-Mennella, Tezcan (CR40) 2007; 129
Burke (CR55) 2019; 570
Wurz (CR109) 2007; 107
Zastrow, Peacock, Stuckey, Pecoraro (CR35) 2011; 4
Weitzner, Kipnis, Daniel, Hilvert, Baker (CR86) 2019; 28
Baek (CR94) 2021; 373
Esvelt, Carlson, Liu (CR14) 2011; 472
Zeymer, Hilvert (CR7) 2018; 87
Der (CR41) 2012; 134
Anishchenko (CR96) 2021; 600
Arnold (CR8) 2018; 57
Savile (CR1) 2010; 329
Obexer (CR75) 2017; 9
CR103
Chin (CR45) 2017; 550
CR101
Ji, Park, Gu, Clark, Hartwig (CR20) 2021; 13
Kiss, Rothlisberger, Baker, Houk (CR83) 2010; 19
Agresti (CR12) 2010; 107
Carminati, Fasan (CR105) 2019; 9
Drienovska, Mayer, Dulson, Roelfes (CR61) 2018; 10
Baker (CR23) 2010; 19
Bhagi-Damodaran (CR28) 2017; 9
St-Jacques, Eyahpaise, Chica (CR111) 2019; 9
Beeson, Mastracchio, Hong, Ashton, Macmillan (CR110) 2007; 316
A Lombardi (4456_CR38) 2019; 52
M Schober (4456_CR3) 2019; 2
X Pan (4456_CR88) 2021; 369
A Debon (4456_CR13) 2019; 2
JC Li (4456_CR52) 2018; 140
BD Weitzner (4456_CR86) 2019; 28
S Rajagopalan (4456_CR58) 2014; 10
N Yeung (4456_CR29) 2009; 462
EN Salgado (4456_CR40) 2007; 129
I Drienovska (4456_CR61) 2018; 10
D Baker (4456_CR23) 2010; 19
JA Davey (4456_CR112) 2012; 21
M Baek (4456_CR94) 2021; 373
JG Rebelein (4456_CR26) 2018; 53
DN Bolon (4456_CR56) 2001; 98
UT Bornscheuer (4456_CR6) 2012; 485
DI Bryson (4456_CR15) 2017; 13
D Rothlisberger (4456_CR69) 2008; 453
AP Green (4456_CR53) 2016; 138
KM Esvelt (4456_CR14) 2011; 472
AD St-Jacques (4456_CR111) 2019; 9
S Mukherjee (4456_CR107) 2007; 107
A Ravikumar (4456_CR16) 2018; 175
L Giger (4456_CR80) 2013; 9
N Preiswerk (4456_CR74) 2014; 111
R Crawshaw (4456_CR76) 2022; 14
D Hilvert (4456_CR22) 2013; 82
S Mazurenko (4456_CR97) 2020; 10
K Chen (4456_CR18) 2018; 360
J Dou (4456_CR90) 2018; 561
J Zhao (4456_CR25) 2018; 140
J Zhao (4456_CR54) 2020; 55
CC Liu (4456_CR46) 2010; 79
MA Huffman (4456_CR2) 2019; 366
MP Frushicheva (4456_CR84) 2010; 107
S Studer (4456_CR43) 2018; 362
LC Hsieh (4456_CR67) 1993; 260
CB Eiben (4456_CR81) 2012; 30
I Anishchenko (4456_CR96) 2021; 600
F Richter (4456_CR57) 2012; 134
EA Althoff (4456_CR79) 2012; 21
L Jiang (4456_CR71) 2008; 319
C Mayer (4456_CR62) 2019; 58
M Jeschek (4456_CR24) 2016; 537
M Chino (4456_CR37) 2017; 56
A Erkkila (4456_CR106) 2007; 107
RK Zhang (4456_CR17) 2018; 565
AJ Burton (4456_CR60) 2016; 8
HA Bunzel (4456_CR85) 2021; 13
AW Senior (4456_CR92) 2020; 577
4456_CR103
4456_CR101
G Kiss (4456_CR83) 2010; 19
A Fernandez-Gacio (4456_CR10) 2003; 21
C Zeymer (4456_CR7) 2018; 87
YS Moroz (4456_CR59) 2015; 137
A Broom (4456_CR78) 2020; 11
TD Beeson (4456_CR110) 2007; 316
A Bhagi-Damodaran (4456_CR28) 2017; 9
T Hayashi (4456_CR104) 2018; 1
CN Bedbrook (4456_CR99) 2017; 13
BA Smith (4456_CR34) 2011; 15
MR Seyedsayamdost (4456_CR47) 2007; 129
JA Reig (4456_CR39) 2012; 4
JA Faraldos (4456_CR48) 2011; 133
KF Biegasiewicz (4456_CR19) 2019; 364
HK Privett (4456_CR70) 2012; 109
R Stenner (4456_CR36) 2020; 117
JW Chin (4456_CR45) 2017; 550
J Jumper (4456_CR95) 2021; 596
TK Hyster (4456_CR27) 2012; 338
CK Savile (4456_CR1) 2010; 329
AJ Burke (4456_CR55) 2019; 570
M Ortmayer (4456_CR51) 2021; 1
EJ Ma (4456_CR98) 2021; 11
D Hilvert (4456_CR68) 2000; 69
JB Siegel (4456_CR72) 2010; 329
R Obexer (4456_CR75) 2017; 9
NJ Turner (4456_CR5) 2009; 5
M Ortmayer (4456_CR50) 2020; 10
PS Huang (4456_CR89) 2016; 537
P Ji (4456_CR20) 2021; 13
Y Wu (4456_CR49) 2016; 138
RB Hill (4456_CR31) 2000; 33
S Basler (4456_CR44) 2021; 13
G Qu (4456_CR9) 2020; 59
FH Arnold (4456_CR8) 2018; 57
JJ Agresti (4456_CR12) 2010; 107
ML Zastrow (4456_CR35) 2011; 4
J Wagner (4456_CR64) 1995; 270
EN Mirts (4456_CR30) 2018; 361
N Hiranuma (4456_CR93) 2021; 12
BS Der (4456_CR41) 2012; 134
BS Der (4456_CR42) 2012; 51
AG Doyle (4456_CR108) 2007; 107
S Becker (4456_CR11) 2004; 15
G Kiss (4456_CR21) 2013; 52
A Tramontano (4456_CR63) 1986; 234
S Bjelic (4456_CR82) 2013; 8
RL Koder (4456_CR32) 2006; 25
DM Carminati (4456_CR105) 2019; 9
P Wentworth Jr. (4456_CR66) 2001; 293
R Blomberg (4456_CR73) 2013; 503
M Faiella (4456_CR33) 2009; 5
JA Davey (4456_CR87) 2017; 13
WP Russ (4456_CR102) 2020; 369
PN Devine (4456_CR4) 2018; 2
VE Gouverneur (4456_CR65) 1993; 262
KY Wei (4456_CR91) 2020; 117
R Otten (4456_CR77) 2020; 370
RP Wurz (4456_CR109) 2007; 107
Z Wu (4456_CR100) 2019; 116
References_xml – volume: 13
  start-page: 1280
  year: 2017
  end-page: 1285
  ident: CR87
  article-title: Rational design of proteins that exchange on functional timescales
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2503
– volume: 373
  start-page: 871
  year: 2021
  end-page: 876
  ident: CR94
  article-title: Accurate prediction of protein structures and interactions using a three-track neural network
  publication-title: Science
  doi: 10.1126/science.abj8754
– volume: 117
  start-page: 1419
  year: 2020
  end-page: 1428
  ident: CR36
  article-title: A de novo peroxidase is also a promiscuous yet stereoselective carbene transferase
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1915054117
– volume: 28
  start-page: 2036
  year: 2019
  end-page: 2041
  ident: CR86
  article-title: A computational method for design of connected catalytic networks in proteins
  publication-title: Protein Sci.
  doi: 10.1002/pro.3757
– volume: 87
  start-page: 131
  year: 2018
  end-page: 157
  ident: CR7
  article-title: Directed evolution of protein catalysts
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-062917-012034
– volume: 537
  start-page: 320
  year: 2016
  end-page: 327
  ident: CR89
  article-title: The coming of age of de novo protein design
  publication-title: Nature
  doi: 10.1038/nature19946
– volume: 134
  start-page: 375
  year: 2012
  end-page: 385
  ident: CR41
  article-title: Metal-mediated affinity and orientation specificity in a computationally designed protein homodimer
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja208015j
– volume: 366
  start-page: 1255
  year: 2019
  end-page: 1259
  ident: CR2
  article-title: Design of an in vitro biocatalytic cascade for the manufacture of islatravir
  publication-title: Science
  doi: 10.1126/science.aay8484
– volume: 8
  start-page: 837
  year: 2016
  end-page: 844
  ident: CR60
  article-title: Installing hydrolytic activity into a completely de novo protein framework
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2555
– volume: 4
  start-page: 900
  year: 2012
  end-page: 906
  ident: CR39
  article-title: Alteration of the oxygen-dependent reactivity of de novo Due Ferri proteins
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1454
– volume: 138
  start-page: 11344
  year: 2016
  end-page: 11352
  ident: CR53
  article-title: A chemically programmed proximal ligand enhances the catalytic properties of a heme enzyme
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b07029
– volume: 107
  start-page: 16869
  year: 2010
  end-page: 16874
  ident: CR84
  article-title: Exploring challenges in rational enzyme design by simulating the catalysis in artificial Kemp eliminase
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1010381107
– volume: 175
  start-page: 1946
  year: 2018
  end-page: 1957
  ident: CR16
  article-title: Scalable, continuous evolution of genes at mutation rates above genomic error thresholds
  publication-title: Cell
  doi: 10.1016/j.cell.2018.10.021
– volume: 561
  start-page: 485
  year: 2018
  end-page: 491
  ident: CR90
  article-title: De novo design of a fluorescence-activating β-barrel
  publication-title: Nature
  doi: 10.1038/s41586-018-0509-0
– volume: 21
  start-page: 1241
  year: 2012
  end-page: 1252
  ident: CR112
  article-title: Multistate approaches in computational protein design
  publication-title: Protein Sci.
  doi: 10.1002/pro.2128
– ident: CR101
– volume: 329
  start-page: 305
  year: 2010
  end-page: 309
  ident: CR1
  article-title: Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture
  publication-title: Science
  doi: 10.1126/science.1188934
– volume: 503
  start-page: 418
  year: 2013
  end-page: 421
  ident: CR73
  article-title: Precision is essential for efficient catalysis in an evolved Kemp eliminase
  publication-title: Nature
  doi: 10.1038/nature12623
– volume: 55
  start-page: 136
  year: 2020
  end-page: 144
  ident: CR54
  article-title: Enzymes with noncanonical amino acids
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2020.01.006
– volume: 596
  start-page: 583
  year: 2021
  end-page: 589
  ident: CR95
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
– volume: 453
  start-page: 190
  year: 2008
  end-page: 195
  ident: CR69
  article-title: Kemp elimination catalysts by computational enzyme design
  publication-title: Nature
  doi: 10.1038/nature06879
– volume: 10
  start-page: 1210
  year: 2020
  end-page: 1223
  ident: CR97
  article-title: Machine learning in enzyme engineering
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b04321
– volume: 364
  start-page: 1166
  year: 2019
  end-page: 1169
  ident: CR19
  article-title: Photoexcitation of flavoenzymes enables a stereoselective radical cyclization
  publication-title: Science
  doi: 10.1126/science.aaw1143
– volume: 69
  start-page: 751
  year: 2000
  end-page: 793
  ident: CR68
  article-title: Critical analysis of antibody catalysis
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.69.1.751
– volume: 370
  start-page: 1442
  year: 2020
  end-page: 1446
  ident: CR77
  article-title: How directed evolution reshapes the energy landscape in an enzyme to boost catalysis
  publication-title: Science
  doi: 10.1126/science.abd3623
– volume: 10
  start-page: 2735
  year: 2020
  end-page: 2746
  ident: CR50
  article-title: Rewiring the ‘push–pull’ catalytic machinery of a heme enzyme using an expanded genetic code
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b05129
– volume: 30
  start-page: 190
  year: 2012
  end-page: 192
  ident: CR81
  article-title: Increased Diels–Alderase activity through backbone remodeling guided by Foldit players
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2109
– volume: 107
  start-page: 5416
  year: 2007
  end-page: 5470
  ident: CR106
  article-title: Iminium catalysis
  publication-title: Chem. Rev.
  doi: 10.1021/cr068388p
– volume: 140
  start-page: 13171
  year: 2018
  end-page: 13175
  ident: CR25
  article-title: Genetic engineering of an artificial metalloenzyme for transfer hydrogenation of a self-immolative substrate in ’s periplasm
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07189
– volume: 369
  start-page: 1132
  year: 2021
  end-page: 1136
  ident: CR88
  article-title: Expanding the space of protein geometries by computational design of de novo fold families
  publication-title: Science
  doi: 10.1126/science.abc0881
– volume: 577
  start-page: 706
  year: 2020
  end-page: 710
  ident: CR92
  article-title: Improved protein structure prediction using potentials from deep learning
  publication-title: Nature
  doi: 10.1038/s41586-019-1923-7
– volume: 58
  start-page: 2083
  year: 2019
  end-page: 2087
  ident: CR62
  article-title: Directed evolution of a designer enzyme featuring an unnatural catalytic amino acid
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201813499
– volume: 134
  start-page: 16197
  year: 2012
  end-page: 16206
  ident: CR57
  article-title: Computational design of catalytic dyads and oxyanion holes for ester hydrolysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3037367
– volume: 472
  start-page: 499
  year: 2011
  end-page: 503
  ident: CR14
  article-title: A system for the continuous directed evolution of biomolecules
  publication-title: Nature
  doi: 10.1038/nature09929
– volume: 9
  start-page: 50
  year: 2017
  end-page: 56
  ident: CR75
  article-title: Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2596
– volume: 9
  start-page: 257
  year: 2017
  end-page: 263
  ident: CR28
  article-title: Why copper is preferred over iron for oxygen activation and reduction in haem-copper oxidases
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2643
– volume: 9
  start-page: 9683
  year: 2019
  end-page: 9687
  ident: CR105
  article-title: Stereoselective cyclopropanation of electron-deficient olefins with a cofactor redesigned carbene transferase featuring radical reactivity
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b02272
– volume: 107
  start-page: 5713
  year: 2007
  end-page: 5743
  ident: CR108
  article-title: Small-molecule H-bond donors in asymmetric catalysis
  publication-title: Chem. Rev.
  doi: 10.1021/cr068373r
– volume: 21
  start-page: 408
  year: 2003
  end-page: 414
  ident: CR10
  article-title: Phage display as a tool for the directed evolution of enzymes
  publication-title: Trends Biotechnol.
  doi: 10.1016/S0167-7799(03)00194-X
– volume: 19
  start-page: 1760
  year: 2010
  end-page: 1773
  ident: CR83
  article-title: Evaluation and ranking of enzyme designs
  publication-title: Protein Sci.
  doi: 10.1002/pro.462
– volume: 12
  year: 2021
  ident: CR93
  article-title: Improved protein structure refinement guided by deep learning based accuracy estimation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21511-x
– volume: 565
  start-page: 67
  year: 2018
  end-page: 72
  ident: CR17
  article-title: Enzymatic assembly of carbon–carbon bonds via iron-catalysed C–H functionalization
  publication-title: Nature
  doi: 10.1038/s41586-018-0808-5
– volume: 485
  start-page: 185
  year: 2012
  end-page: 194
  ident: CR6
  article-title: Engineering the third wave of biocatalysis
  publication-title: Nature
  doi: 10.1038/nature11117
– volume: 109
  start-page: 3790
  year: 2012
  end-page: 3795
  ident: CR70
  article-title: Iterative approach to computational enzyme design
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1118082108
– volume: 10
  start-page: 946
  year: 2018
  end-page: 952
  ident: CR61
  article-title: A designer enzyme for hydrazone and oxime formation featuring an unnatural catalytic aniline residue
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0082-z
– volume: 25
  start-page: 3045
  year: 2006
  end-page: 3051
  ident: CR32
  article-title: Intelligent design: the de novo engineering of proteins with specified functions
  publication-title: Dalton Trans.
  doi: 10.1039/b514972j
– volume: 138
  start-page: 11890
  year: 2016
  end-page: 11895
  ident: CR49
  article-title: A critical test of the electrostatic contribution to catalysis with noncanonical amino acids in ketosteroid isomerase
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b06843
– ident: CR103
– volume: 52
  start-page: 5700
  year: 2013
  end-page: 5725
  ident: CR21
  article-title: Computational enzyme design
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201204077
– volume: 293
  start-page: 1806
  year: 2001
  end-page: 1811
  ident: CR66
  article-title: Antibody catalysis of the oxidation of water
  publication-title: Science
  doi: 10.1126/science.1062722
– volume: 129
  start-page: 15060
  year: 2007
  end-page: 15071
  ident: CR47
  article-title: Site-specific insertion of 3-aminotyrosine into subunit α2 of E. coli ribonucleotide reductase: direct evidence for involvement of Y730 and Y731 in radical propagation
  publication-title: J. Am. Chem. Soc
  doi: 10.1021/ja076043y
– volume: 338
  start-page: 500
  year: 2012
  end-page: 503
  ident: CR27
  article-title: Biotinylated Rh(III) complexes in engineered streptavidin for accelerated asymmetric C–H activation
  publication-title: Science
  doi: 10.1126/science.1226132
– volume: 82
  start-page: 447
  year: 2013
  end-page: 470
  ident: CR22
  article-title: Design of protein catalysts
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-072611-101825
– volume: 13
  start-page: e1005786
  year: 2017
  ident: CR99
  article-title: Machine learning to design integral membrane channelrhodopsins for efficient eukaryotic expression and plasma membrane localization
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005786
– volume: 57
  start-page: 4143
  year: 2018
  end-page: 4148
  ident: CR8
  article-title: Directed evolution: bringing new chemistry to life
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201708408
– volume: 361
  start-page: 1098
  year: 2018
  end-page: 1101
  ident: CR30
  article-title: A designed heme-[4Fe–4S] metalloenzyme catalyzes sulfite reduction like the native enzyme
  publication-title: Science
  doi: 10.1126/science.aat8474
– volume: 51
  start-page: 3933
  year: 2012
  end-page: 3940
  ident: CR42
  article-title: Catalysis by a de novo zinc-mediated protein interface: implications for natural enzyme evolution and rational enzyme engineering
  publication-title: Biochemistry
  doi: 10.1021/bi201881p
– volume: 10
  start-page: 386
  year: 2014
  end-page: 391
  ident: CR58
  article-title: Design of activated serine-containing catalytic triads with atomic-level accuracy
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1498
– volume: 137
  start-page: 14905
  year: 2015
  end-page: 14911
  ident: CR59
  article-title: New tricks for old proteins: single mutations in a nonenzymatic protein give rise to various enzymatic activities
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b07812
– volume: 550
  start-page: 53
  year: 2017
  end-page: 60
  ident: CR45
  article-title: Expanding and reprogramming the genetic code
  publication-title: Nature
  doi: 10.1038/nature24031
– volume: 362
  start-page: 1285
  year: 2018
  end-page: 1288
  ident: CR43
  article-title: Evolution of a highly active and enantiospecific metalloenzyme from short peptides
  publication-title: Science
  doi: 10.1126/science.aau3744
– volume: 21
  start-page: 717
  year: 2012
  end-page: 726
  ident: CR79
  article-title: Robust design and optimization of retroaldol enzymes
  publication-title: Protein Sci.
  doi: 10.1002/pro.2059
– volume: 9
  start-page: 494
  year: 2013
  end-page: 498
  ident: CR80
  article-title: Evolution of a designed retro-aldolase leads to complete active site remodeling
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1276
– volume: 13
  start-page: 312
  year: 2021
  end-page: 318
  ident: CR20
  article-title: Abiotic reduction of ketones with silanes catalysed by carbonic anhydrase through an enzymatic zinc hydride
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-00633-7
– volume: 13
  start-page: 1017
  year: 2021
  end-page: 1022
  ident: CR85
  article-title: Evolution of dynamical networks enhances catalysis in a designer enzyme
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-021-00763-6
– volume: 5
  start-page: 567
  year: 2009
  end-page: 573
  ident: CR5
  article-title: Directed evolution drives the next generation of biocatalysts
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.203
– volume: 462
  start-page: 1079
  year: 2009
  end-page: 1082
  ident: CR29
  article-title: Rational design of a structural and functional nitric oxide reductase
  publication-title: Nature
  doi: 10.1038/nature08620
– volume: 117
  start-page: 7208
  year: 2020
  end-page: 7215
  ident: CR91
  article-title: Computational design of closely related proteins that adopt two well-defined but structurally divergent folds
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1914808117
– volume: 11
  year: 2020
  ident: CR78
  article-title: Ensemble-based enzyme design can recapitulate the effects of laboratory directed evolution in silico
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18619-x
– volume: 570
  start-page: 219
  year: 2019
  end-page: 223
  ident: CR55
  article-title: Design and evolution of an enzyme with a non-canonical organocatalytic mechanism
  publication-title: Nature
  doi: 10.1038/s41586-019-1262-8
– volume: 15
  start-page: 421
  year: 2011
  end-page: 426
  ident: CR34
  article-title: Novel proteins: from fold to function
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2011.03.006
– volume: 369
  start-page: 440
  year: 2020
  end-page: 445
  ident: CR102
  article-title: An evolution-based model for designing chorismate mutase enzymes
  publication-title: Science
  doi: 10.1126/science.aba3304
– volume: 15
  start-page: 323
  year: 2004
  end-page: 329
  ident: CR11
  article-title: Ultra-high-throughput screening based on cell-surface display and fluorescence-activated cell sorting for the identification of novel biocatalysts
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2004.06.001
– volume: 2
  start-page: 909
  year: 2019
  end-page: 915
  ident: CR3
  article-title: Chiral synthesis of LSD1 inhibitor GSK2879552 enabled by directed evolution of an imine reductase
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0341-4
– volume: 107
  start-page: 4004
  year: 2010
  end-page: 4009
  ident: CR12
  article-title: Ultrahigh-throughput screening in drop-based microfluidics for directed evolution
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0910781107
– volume: 2
  start-page: 740
  year: 2019
  end-page: 747
  ident: CR13
  article-title: Ultrahigh-throughput screening enables efficient single-round oxidase remodelling
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0340-5
– volume: 13
  start-page: 231
  year: 2021
  end-page: 235
  ident: CR44
  article-title: Efficient Lewis acid catalysis of an abiological reaction in a de novo protein scaffold
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-00628-4
– volume: 53
  start-page: 106
  year: 2018
  end-page: 114
  ident: CR26
  article-title: In vivo catalyzed new-to-nature reactions
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2017.12.008
– volume: 319
  start-page: 1387
  year: 2008
  end-page: 1391
  ident: CR71
  article-title: De novo computational design of retro-aldol enzymes
  publication-title: Science
  doi: 10.1126/science.1152692
– volume: 98
  start-page: 14274
  year: 2001
  end-page: 14279
  ident: CR56
  article-title: Enzyme-like proteins by computational design
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.251555398
– volume: 2
  start-page: 409
  year: 2018
  end-page: 421
  ident: CR4
  article-title: Extending the application of biocatalysis to meet the challenges of drug development
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0055-1
– volume: 329
  start-page: 309
  year: 2010
  end-page: 313
  ident: CR72
  article-title: Computational design of an enzyme catalyst for a stereoselective bimolecular Diels–Alder reaction
  publication-title: Science
  doi: 10.1126/science.1190239
– volume: 537
  start-page: 661
  year: 2016
  end-page: 665
  ident: CR24
  article-title: Directed evolution of artificial metalloenzymes for in vivo metathesis
  publication-title: Nature
  doi: 10.1038/nature19114
– volume: 56
  start-page: 15580
  year: 2017
  end-page: 15583
  ident: CR37
  article-title: A de novo heterodimeric Due Ferri protein minimizes the release of reactive intermediates in dioxygen-dependent oxidation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201707637
– volume: 260
  start-page: 337
  year: 1993
  end-page: 339
  ident: CR67
  article-title: Controlling chemical reactivity with antibodies
  publication-title: Science
  doi: 10.1126/science.10049109
– volume: 1
  start-page: 913
  year: 2021
  end-page: 918
  ident: CR51
  article-title: A noncanonical tryptophan analogue reveals an active site hydrogen bond controlling ferryl reactivity in a heme peroxidase
  publication-title: JACS Au
  doi: 10.1021/jacsau.1c00145
– volume: 600
  start-page: 547
  year: 2021
  end-page: 552
  ident: CR96
  article-title: De novo protein design by deep network hallucination
  publication-title: Nature
  doi: 10.1038/s41586-021-04184-w
– volume: 360
  start-page: 71
  year: 2018
  end-page: 75
  ident: CR18
  article-title: Enzymatic construction of highly strained carbocycles
  publication-title: Science
  doi: 10.1126/science.aar4239
– volume: 8
  start-page: 749
  year: 2013
  end-page: 757
  ident: CR82
  article-title: Computational design of enone-binding proteins with catalytic activity for the Morita–Baylis–Hillman reaction
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb3006227
– volume: 11
  start-page: 12433
  year: 2021
  end-page: 12445
  ident: CR98
  article-title: Machine-directed evolution of an imine reductase for activity and stereoselectivity
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c02786
– volume: 1
  start-page: 578
  year: 2018
  end-page: 584
  ident: CR104
  article-title: Capture and characterization of a reactive haem–carbenoid complex in an artificial metalloenzyme
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0105-6
– volume: 111
  start-page: 8013
  year: 2014
  end-page: 8018
  ident: CR74
  article-title: Impact of scaffold rigidity on the design and evolution of an artificial Diels–Alderase
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1401073111
– volume: 9
  start-page: 5480
  year: 2019
  end-page: 5485
  ident: CR111
  article-title: Computational design of multisubstrate enzyme specificity
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b01464
– volume: 129
  start-page: 13374
  year: 2007
  end-page: 13375
  ident: CR40
  article-title: Controlling protein–protein interactions through metal coordination: assembly of a 16-helix bundle protein
  publication-title: J. Am. Chem. Soc
  doi: 10.1021/ja075261o
– volume: 19
  start-page: 1817
  year: 2010
  end-page: 1819
  ident: CR23
  article-title: An exciting but challenging road ahead for computational enzyme design
  publication-title: Protein Sci.
  doi: 10.1002/pro.481
– volume: 13
  start-page: 1253
  year: 2017
  end-page: 1260
  ident: CR15
  article-title: Continuous directed evolution of aminoacyl-tRNA synthetases
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2474
– volume: 107
  start-page: 5570
  year: 2007
  end-page: 5595
  ident: CR109
  article-title: Chiral dialkylaminopyridine catalysts in asymmetric synthesis
  publication-title: Chem. Rev.
  doi: 10.1021/cr068370e
– volume: 140
  start-page: 15997
  year: 2018
  end-page: 16000
  ident: CR52
  article-title: Enhancing protein stability with genetically encoded noncanonical amino acids
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07157
– volume: 5
  start-page: 882
  year: 2009
  end-page: 884
  ident: CR33
  article-title: An artificial di-iron oxo-protein with phenol oxidase activity
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.257
– volume: 33
  start-page: 745
  year: 2000
  end-page: 754
  ident: CR31
  article-title: De novo design of helical bundles as models for understanding protein folding and function
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar970004h
– volume: 4
  start-page: 118
  year: 2011
  end-page: 123
  ident: CR35
  article-title: Hydrolytic catalysis and structural stabilization in a designed metalloprotein
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1201
– volume: 52
  start-page: 1148
  year: 2019
  end-page: 1159
  ident: CR38
  article-title: De novo design of four-helix bundle metalloproteins: one scaffold, diverse reactivities
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00674
– volume: 14
  start-page: 313
  year: 2022
  end-page: 320
  ident: CR76
  article-title: Engineering an efficient and enantioselective enzyme for the Morita–Baylis–Hillman reaction
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-021-00833-9
– volume: 59
  start-page: 13204
  year: 2020
  end-page: 13231
  ident: CR9
  article-title: The crucial role of methodology development in directed evolution of selective enzymes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201901491
– volume: 133
  start-page: 13906
  year: 2011
  end-page: 13909
  ident: CR48
  article-title: Probing eudesmane cation−π interactions in catalysis by aristolochene synthase with non-canonical amino acids
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja205927u
– volume: 234
  start-page: 1566
  year: 1986
  end-page: 1570
  ident: CR63
  article-title: Catalytic antibodies
  publication-title: Science
  doi: 10.1126/science.3787261
– volume: 107
  start-page: 5471
  year: 2007
  end-page: 5569
  ident: CR107
  article-title: Asymmetric enamine catalysis
  publication-title: Chem. Rev.
  doi: 10.1021/cr0684016
– volume: 79
  start-page: 413
  year: 2010
  end-page: 444
  ident: CR46
  article-title: Adding new chemistries to the genetic code
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.052308.105824
– volume: 262
  start-page: 204
  year: 1993
  end-page: 208
  ident: CR65
  article-title: Control of the exo and endo pathways of the Diels–Alder reaction by antibody catalysis
  publication-title: Science
  doi: 10.1126/science.8211138
– volume: 316
  start-page: 582
  year: 2007
  end-page: 585
  ident: CR110
  article-title: Enantioselective organocatalysis using SOMO activation
  publication-title: Science
  doi: 10.1126/science.1142696
– volume: 116
  start-page: 8852
  year: 2019
  end-page: 8858
  ident: CR100
  article-title: Machine learning-assisted directed protein evolution with combinatorial libraries
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1901979116
– volume: 270
  start-page: 1797
  year: 1995
  end-page: 1800
  ident: CR64
  article-title: Efficient aldolase catalytic antibodies that use the enamine mechanism of natural enzymes
  publication-title: Science
  doi: 10.1126/science.270.5243.1797
– volume: 116
  start-page: 8852
  year: 2019
  ident: 4456_CR100
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1901979116
– volume: 2
  start-page: 909
  year: 2019
  ident: 4456_CR3
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0341-4
– volume: 56
  start-page: 15580
  year: 2017
  ident: 4456_CR37
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201707637
– volume: 21
  start-page: 1241
  year: 2012
  ident: 4456_CR112
  publication-title: Protein Sci.
  doi: 10.1002/pro.2128
– volume: 107
  start-page: 5713
  year: 2007
  ident: 4456_CR108
  publication-title: Chem. Rev.
  doi: 10.1021/cr068373r
– volume: 362
  start-page: 1285
  year: 2018
  ident: 4456_CR43
  publication-title: Science
  doi: 10.1126/science.aau3744
– volume: 117
  start-page: 7208
  year: 2020
  ident: 4456_CR91
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1914808117
– volume: 485
  start-page: 185
  year: 2012
  ident: 4456_CR6
  publication-title: Nature
  doi: 10.1038/nature11117
– volume: 140
  start-page: 15997
  year: 2018
  ident: 4456_CR52
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07157
– volume: 319
  start-page: 1387
  year: 2008
  ident: 4456_CR71
  publication-title: Science
  doi: 10.1126/science.1152692
– volume: 19
  start-page: 1817
  year: 2010
  ident: 4456_CR23
  publication-title: Protein Sci.
  doi: 10.1002/pro.481
– volume: 10
  start-page: 2735
  year: 2020
  ident: 4456_CR50
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b05129
– volume: 8
  start-page: 837
  year: 2016
  ident: 4456_CR60
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2555
– volume: 4
  start-page: 118
  year: 2011
  ident: 4456_CR35
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1201
– volume: 69
  start-page: 751
  year: 2000
  ident: 4456_CR68
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.69.1.751
– volume: 234
  start-page: 1566
  year: 1986
  ident: 4456_CR63
  publication-title: Science
  doi: 10.1126/science.3787261
– volume: 10
  start-page: 386
  year: 2014
  ident: 4456_CR58
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1498
– volume: 537
  start-page: 320
  year: 2016
  ident: 4456_CR89
  publication-title: Nature
  doi: 10.1038/nature19946
– volume: 107
  start-page: 5416
  year: 2007
  ident: 4456_CR106
  publication-title: Chem. Rev.
  doi: 10.1021/cr068388p
– volume: 462
  start-page: 1079
  year: 2009
  ident: 4456_CR29
  publication-title: Nature
  doi: 10.1038/nature08620
– volume: 338
  start-page: 500
  year: 2012
  ident: 4456_CR27
  publication-title: Science
  doi: 10.1126/science.1226132
– volume: 133
  start-page: 13906
  year: 2011
  ident: 4456_CR48
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja205927u
– volume: 600
  start-page: 547
  year: 2021
  ident: 4456_CR96
  publication-title: Nature
  doi: 10.1038/s41586-021-04184-w
– volume: 117
  start-page: 1419
  year: 2020
  ident: 4456_CR36
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1915054117
– volume: 87
  start-page: 131
  year: 2018
  ident: 4456_CR7
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-062917-012034
– volume: 2
  start-page: 409
  year: 2018
  ident: 4456_CR4
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0055-1
– volume: 316
  start-page: 582
  year: 2007
  ident: 4456_CR110
  publication-title: Science
  doi: 10.1126/science.1142696
– volume: 107
  start-page: 5570
  year: 2007
  ident: 4456_CR109
  publication-title: Chem. Rev.
  doi: 10.1021/cr068370e
– volume: 9
  start-page: 5480
  year: 2019
  ident: 4456_CR111
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b01464
– volume: 10
  start-page: 1210
  year: 2020
  ident: 4456_CR97
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b04321
– volume: 596
  start-page: 583
  year: 2021
  ident: 4456_CR95
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
– volume: 28
  start-page: 2036
  year: 2019
  ident: 4456_CR86
  publication-title: Protein Sci.
  doi: 10.1002/pro.3757
– volume: 561
  start-page: 485
  year: 2018
  ident: 4456_CR90
  publication-title: Nature
  doi: 10.1038/s41586-018-0509-0
– volume: 329
  start-page: 305
  year: 2010
  ident: 4456_CR1
  publication-title: Science
  doi: 10.1126/science.1188934
– volume: 13
  start-page: 1017
  year: 2021
  ident: 4456_CR85
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-021-00763-6
– volume: 361
  start-page: 1098
  year: 2018
  ident: 4456_CR30
  publication-title: Science
  doi: 10.1126/science.aat8474
– volume: 14
  start-page: 313
  year: 2022
  ident: 4456_CR76
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-021-00833-9
– volume: 107
  start-page: 5471
  year: 2007
  ident: 4456_CR107
  publication-title: Chem. Rev.
  doi: 10.1021/cr0684016
– volume: 503
  start-page: 418
  year: 2013
  ident: 4456_CR73
  publication-title: Nature
  doi: 10.1038/nature12623
– volume: 9
  start-page: 9683
  year: 2019
  ident: 4456_CR105
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b02272
– volume: 129
  start-page: 15060
  year: 2007
  ident: 4456_CR47
  publication-title: J. Am. Chem. Soc
  doi: 10.1021/ja076043y
– volume: 51
  start-page: 3933
  year: 2012
  ident: 4456_CR42
  publication-title: Biochemistry
  doi: 10.1021/bi201881p
– volume: 138
  start-page: 11890
  year: 2016
  ident: 4456_CR49
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b06843
– volume: 21
  start-page: 408
  year: 2003
  ident: 4456_CR10
  publication-title: Trends Biotechnol.
  doi: 10.1016/S0167-7799(03)00194-X
– volume: 107
  start-page: 4004
  year: 2010
  ident: 4456_CR12
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0910781107
– volume: 262
  start-page: 204
  year: 1993
  ident: 4456_CR65
  publication-title: Science
  doi: 10.1126/science.8211138
– volume: 82
  start-page: 447
  year: 2013
  ident: 4456_CR22
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-072611-101825
– volume: 13
  start-page: 312
  year: 2021
  ident: 4456_CR20
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-00633-7
– volume: 55
  start-page: 136
  year: 2020
  ident: 4456_CR54
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2020.01.006
– volume: 366
  start-page: 1255
  year: 2019
  ident: 4456_CR2
  publication-title: Science
  doi: 10.1126/science.aay8484
– volume: 570
  start-page: 219
  year: 2019
  ident: 4456_CR55
  publication-title: Nature
  doi: 10.1038/s41586-019-1262-8
– volume: 134
  start-page: 375
  year: 2012
  ident: 4456_CR41
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja208015j
– volume: 260
  start-page: 337
  year: 1993
  ident: 4456_CR67
  publication-title: Science
  doi: 10.1126/science.10049109
– volume: 364
  start-page: 1166
  year: 2019
  ident: 4456_CR19
  publication-title: Science
  doi: 10.1126/science.aaw1143
– volume: 9
  start-page: 257
  year: 2017
  ident: 4456_CR28
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2643
– volume: 13
  start-page: e1005786
  year: 2017
  ident: 4456_CR99
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005786
– volume: 15
  start-page: 421
  year: 2011
  ident: 4456_CR34
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2011.03.006
– volume: 11
  year: 2020
  ident: 4456_CR78
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18619-x
– volume: 2
  start-page: 740
  year: 2019
  ident: 4456_CR13
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0340-5
– volume: 293
  start-page: 1806
  year: 2001
  ident: 4456_CR66
  publication-title: Science
  doi: 10.1126/science.1062722
– volume: 107
  start-page: 16869
  year: 2010
  ident: 4456_CR84
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1010381107
– volume: 175
  start-page: 1946
  year: 2018
  ident: 4456_CR16
  publication-title: Cell
  doi: 10.1016/j.cell.2018.10.021
– volume: 5
  start-page: 567
  year: 2009
  ident: 4456_CR5
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.203
– volume: 53
  start-page: 106
  year: 2018
  ident: 4456_CR26
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2017.12.008
– volume: 1
  start-page: 913
  year: 2021
  ident: 4456_CR51
  publication-title: JACS Au
  doi: 10.1021/jacsau.1c00145
– volume: 369
  start-page: 1132
  year: 2021
  ident: 4456_CR88
  publication-title: Science
  doi: 10.1126/science.abc0881
– volume: 270
  start-page: 1797
  year: 1995
  ident: 4456_CR64
  publication-title: Science
  doi: 10.1126/science.270.5243.1797
– volume: 134
  start-page: 16197
  year: 2012
  ident: 4456_CR57
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3037367
– volume: 15
  start-page: 323
  year: 2004
  ident: 4456_CR11
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2004.06.001
– volume: 129
  start-page: 13374
  year: 2007
  ident: 4456_CR40
  publication-title: J. Am. Chem. Soc
  doi: 10.1021/ja075261o
– volume: 21
  start-page: 717
  year: 2012
  ident: 4456_CR79
  publication-title: Protein Sci.
  doi: 10.1002/pro.2059
– volume: 9
  start-page: 50
  year: 2017
  ident: 4456_CR75
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2596
– volume: 9
  start-page: 494
  year: 2013
  ident: 4456_CR80
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1276
– ident: 4456_CR101
  doi: 10.1101/2020.11.29.402743
– volume: 369
  start-page: 440
  year: 2020
  ident: 4456_CR102
  publication-title: Science
  doi: 10.1126/science.aba3304
– volume: 565
  start-page: 67
  year: 2018
  ident: 4456_CR17
  publication-title: Nature
  doi: 10.1038/s41586-018-0808-5
– volume: 59
  start-page: 13204
  year: 2020
  ident: 4456_CR9
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201901491
– volume: 10
  start-page: 946
  year: 2018
  ident: 4456_CR61
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0082-z
– volume: 329
  start-page: 309
  year: 2010
  ident: 4456_CR72
  publication-title: Science
  doi: 10.1126/science.1190239
– volume: 4
  start-page: 900
  year: 2012
  ident: 4456_CR39
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1454
– volume: 537
  start-page: 661
  year: 2016
  ident: 4456_CR24
  publication-title: Nature
  doi: 10.1038/nature19114
– volume: 33
  start-page: 745
  year: 2000
  ident: 4456_CR31
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar970004h
– volume: 472
  start-page: 499
  year: 2011
  ident: 4456_CR14
  publication-title: Nature
  doi: 10.1038/nature09929
– volume: 8
  start-page: 749
  year: 2013
  ident: 4456_CR82
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb3006227
– volume: 13
  start-page: 1280
  year: 2017
  ident: 4456_CR87
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2503
– volume: 11
  start-page: 12433
  year: 2021
  ident: 4456_CR98
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c02786
– volume: 111
  start-page: 8013
  year: 2014
  ident: 4456_CR74
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1401073111
– ident: 4456_CR103
  doi: 10.1101/2021.11.10.468128
– volume: 140
  start-page: 13171
  year: 2018
  ident: 4456_CR25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07189
– volume: 109
  start-page: 3790
  year: 2012
  ident: 4456_CR70
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1118082108
– volume: 12
  year: 2021
  ident: 4456_CR93
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21511-x
– volume: 453
  start-page: 190
  year: 2008
  ident: 4456_CR69
  publication-title: Nature
  doi: 10.1038/nature06879
– volume: 577
  start-page: 706
  year: 2020
  ident: 4456_CR92
  publication-title: Nature
  doi: 10.1038/s41586-019-1923-7
– volume: 57
  start-page: 4143
  year: 2018
  ident: 4456_CR8
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201708408
– volume: 30
  start-page: 190
  year: 2012
  ident: 4456_CR81
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2109
– volume: 1
  start-page: 578
  year: 2018
  ident: 4456_CR104
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0105-6
– volume: 58
  start-page: 2083
  year: 2019
  ident: 4456_CR62
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201813499
– volume: 98
  start-page: 14274
  year: 2001
  ident: 4456_CR56
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.251555398
– volume: 5
  start-page: 882
  year: 2009
  ident: 4456_CR33
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.257
– volume: 373
  start-page: 871
  year: 2021
  ident: 4456_CR94
  publication-title: Science
  doi: 10.1126/science.abj8754
– volume: 52
  start-page: 1148
  year: 2019
  ident: 4456_CR38
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00674
– volume: 550
  start-page: 53
  year: 2017
  ident: 4456_CR45
  publication-title: Nature
  doi: 10.1038/nature24031
– volume: 360
  start-page: 71
  year: 2018
  ident: 4456_CR18
  publication-title: Science
  doi: 10.1126/science.aar4239
– volume: 79
  start-page: 413
  year: 2010
  ident: 4456_CR46
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.052308.105824
– volume: 138
  start-page: 11344
  year: 2016
  ident: 4456_CR53
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b07029
– volume: 13
  start-page: 1253
  year: 2017
  ident: 4456_CR15
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2474
– volume: 52
  start-page: 5700
  year: 2013
  ident: 4456_CR21
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201204077
– volume: 137
  start-page: 14905
  year: 2015
  ident: 4456_CR59
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b07812
– volume: 19
  start-page: 1760
  year: 2010
  ident: 4456_CR83
  publication-title: Protein Sci.
  doi: 10.1002/pro.462
– volume: 370
  start-page: 1442
  year: 2020
  ident: 4456_CR77
  publication-title: Science
  doi: 10.1126/science.abd3623
– volume: 25
  start-page: 3045
  year: 2006
  ident: 4456_CR32
  publication-title: Dalton Trans.
  doi: 10.1039/b514972j
– volume: 13
  start-page: 231
  year: 2021
  ident: 4456_CR44
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-00628-4
SSID ssj0005174
Score 2.7137444
SecondaryResourceType review_article
Snippet The ability to design efficient enzymes from scratch would have a profound effect on chemistry, biotechnology and medicine. Rapid progress in protein...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 49
SubjectTerms 119/118
631/92/606
639/638/77/603
Binding sites
Biocatalysis
Biocatalysts
Biotechnology
Biotechnology - methods
Biotechnology - trends
Catalysis
Catalysts
Cofactors
Computer applications
Deep learning
Design
Engineering
Enzymes
Humanities and Social Sciences
Laboratories
Ligands
multidisciplinary
Protein engineering
Protein Engineering - methods
Protein Engineering - trends
Protein structure
Proteins
Proteins - chemistry
Proteins - metabolism
Review Article
Robust design
Science
Science (multidisciplinary)
Structural analysis
Zinc
Title The road to fully programmable protein catalysis
URI https://link.springer.com/article/10.1038/s41586-022-04456-z
https://www.ncbi.nlm.nih.gov/pubmed/35650353
https://www.proquest.com/docview/2672992903
https://www.proquest.com/docview/2672705115
Volume 606
WOSCitedRecordID wos000804867100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAQT
  databaseName: Nature
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: RNT
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.nature.com
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: P5Z
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M0K
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M7P
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: PCBAR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M7S
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: PATMY
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7X7
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: KB.
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7RV
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: BENPR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2M
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 8C1
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2O
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2P
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9RAEB60VdAHtWfV01pW8EHRbZNMNrt9EltahNLzqD84fAnJbgIFTerlWmj_emc2e3dqsS--fBCymyyZ2czszuw3AC8xc7UqnZNMCiuZr0QWSaqlKndcig4x06UvNqFHIzOZ7IzDhlsX0irn_0T_o3at5T3y7SQjN5BseYTvTn9KrhrF0dVQQuMmrMbsG5M-6-OvyxSPv1iYw6GZCM12R4bLcPptIqOUhigv_zRMV7zNK5FSb4AO7v_v0B_AveB6ive9rqzBjaoZwN3fCAkHcNsnhNpuAGth0nfiVWCmfv0QIlIqMW0LJ2at4I37CxHyu37wCSzhSR9OGuH3hJjqZB2-HOx_3vsgQ8kFaVGrmcQy1VgpWmFnmhePLq1jdLq2ikTHUdJCVdpgkZDfZrFKamtLWiFirVyhTY34CFaatqmegDBkfWtbRDYrqjQztnSR1a52OlUcji2HEM-_d24DHzmXxfie-7g4mryXUU4yyr2M8sshvFn0Oe3ZOK5tvTGXRx5mZpcvhTGEF4vbNKc4UFI0VXvWt9GkPbEawuNe_IvXIXnAESrq_XauD8uH_3ssT68fyzO4k3hdZJXcgJXZ9Kx6Drfs-eykm256rWacaI-G0OzFm7C6uz8aH9PV4e4W4VF0yJgcefzoccyoe_xEOFbffgEEIgYi
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dT9UwFD8hqBEfUK4fXEWtiSYabdjtWdfyYIxBCQS88QET3urWdgkJbnB30cAf5d_IabddUCJvPPi8dut6vntOfwfgJWaulIVzPIDC8oBXwnORKi6LNZeiQ8xUEZtNqPFY7-2tfZ2D3_1dmFBW2evEqKhdbcMZ-arIyA0kW57gh8MjHrpGhexq30KjZYttf_KLQrbm_dYnou8rITY-765v8q6rALeo5JRjkSr0koLITIX4yKXlCJ0qraTVhURgLr3SmAtyTSx6UVpbUBCEpXS50mU4ACWVfyNFgUGK9PqFkpK_UJ-7SzoJ6tWGDKUO5b6CJyltCT_90xBe8m4vZWajwdu4-79t1T1Y7Fxr9rGVhSWY89UA7lwAXBzArVjwapsBLHVKrWGvO-TtN_chIaFhkzp3bFqzkJg4YV392o9ww4xFUIv9isUzrwDl8gC-XcsfPYT5qq78MjBN3kVp88RmuU8zbQuXWOVKp1IZ0s3FEEY9fY3t8NZD248DE_P-qE3LE4Z4wkSeMKdDeDubc9iijVw5eqWnv-k0T2POiT-EF7PHpDNCIiivfH3cjlHErSM5hEctu80-h-ThJyhp9rue_85f_u-1PL56Lc_h9ubulx2zszXefgILIspBEIcVmJ9Ojv1TuGl_TvebybMoUQy-XzdfngGBvlYc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VpaByoO3yWihgJJBAYG3WjuP0gKqKdkVVtNoDSL2ZxA-pUknKZgtqf1p_XceOswtU9NYD5ziJH9887Bl_A_CKZ8aJ0hjqSWGp5yuhBUslFeWWSbnhPJNlKDYhx-P88HBrsgQX3V0Yn1bZ6cSgqE2t_Rn5gGXoBqItT_jAxbSIye5o--QH9RWkfKS1K6fRQuTAnv3C7VvzYX8X1_o1Y6O9Lx8_0VhhgGouxYzyMpXcCtxQZtLvlUzqhtxIpwX21AcFC2FlzguGbormljmtS9wQcSdMIXPnD0NR_d-SaZawkDY4WaSX_MUAHS_sJDwfNGg0c5_6y2iS4vTQ8z-N4hVP90qUNhi_0dr_PG3rcC-63GSnlZENWLJVD-7-RsTYg9shEVY3PdiIyq4hbyIj99v7kKAwkWldGDKriR_gGYl5bd_9zTMSyC6OKhLOwjzFywP4eiMjegjLVV3Zx0By9DqcLhKdFTbNcl2aREvjjEyFD0OXfRh2a6105GH35UCOVcgH4Llq8aEQHyrgQ5334d38nZOWheTa1psdFlTUSI1aAKEPL-ePUZf4AFFR2fq0bSMRuUPRh0ct9Oa_4-j5J1zg2-87LC4-_u--PLm-Ly_gDsJRfd4fHzyFVRZEwkvGJizPpqf2Gazon7OjZvo8CBeBbzcNy0sZB18o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+road+to+fully+programmable+protein+catalysis&rft.jtitle=Nature+%28London%29&rft.au=Lovelock%2C+Sarah+L.&rft.au=Crawshaw%2C+Rebecca&rft.au=Basler%2C+Sophie&rft.au=Levy%2C+Colin&rft.date=2022-06-02&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=606&rft.issue=7912&rft.spage=49&rft.epage=58&rft_id=info:doi/10.1038%2Fs41586-022-04456-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41586_022_04456_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon