The road to fully programmable protein catalysis
The ability to design efficient enzymes from scratch would have a profound effect on chemistry, biotechnology and medicine. Rapid progress in protein engineering over the past decade makes us optimistic that this ambition is within reach. The development of artificial enzymes containing metal cofact...
Saved in:
| Published in: | Nature (London) Vol. 606; no. 7912; pp. 49 - 58 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
02.06.2022
Nature Publishing Group |
| Subjects: | |
| ISSN: | 0028-0836, 1476-4687, 1476-4687 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The ability to design efficient enzymes from scratch would have a profound effect on chemistry, biotechnology and medicine. Rapid progress in protein engineering over the past decade makes us optimistic that this ambition is within reach. The development of artificial enzymes containing metal cofactors and noncanonical organocatalytic groups shows how protein structure can be optimized to harness the reactivity of nonproteinogenic elements. In parallel, computational methods have been used to design protein catalysts for diverse reactions on the basis of fundamental principles of transition state stabilization. Although the activities of designed catalysts have been quite low, extensive laboratory evolution has been used to generate efficient enzymes. Structural analysis of these systems has revealed the high degree of precision that will be needed to design catalysts with greater activity. To this end, emerging protein design methods, including deep learning, hold particular promise for improving model accuracy. Here we take stock of key developments in the field and highlight new opportunities for innovation that should allow us to transition beyond the current state of the art and enable the robust design of biocatalysts to address societal needs.
Recent progress in computational enzyme design, active site engineering and directed evolution are reviewed, highlighting methodological innovations needed to deliver improved designer biocatalysts. |
|---|---|
| AbstractList | The ability to design efficient enzymes from scratch would have a profound effect on chemistry, biotechnology and medicine. Rapid progress in protein engineering over the past decade makes us optimistic that this ambition is within reach. The development of artificial enzymes containing metal cofactors and noncanonical organocatalytic groups shows how protein structure can be optimized to harness the reactivity of nonproteinogenic elements. In parallel, computational methods have been used to design protein catalysts for diverse reactions on the basis of fundamental principles of transition state stabilization. Although the activities of designed catalysts have been quite low, extensive laboratory evolution has been used to generate efficient enzymes. Structural analysis of these systems has revealed the high degree of precision that will be needed to design catalysts with greater activity. To this end, emerging protein design methods, including deep learning, hold particular promise for improving model accuracy. Here we take stock of key developments in the field and highlight new opportunities for innovation that should allow us to transition beyond the current state of the art and enable the robust design of biocatalysts to address societal needs.
Recent progress in computational enzyme design, active site engineering and directed evolution are reviewed, highlighting methodological innovations needed to deliver improved designer biocatalysts. The ability to design efficient enzymes from scratch would have a profound effect on chemistry, biotechnology and medicine. Rapid progress in protein engineering over the past decade makes us optimistic that this ambition is within reach. The development of artificial enzymes containing metal cofactors and noncanonical organocatalytic groups shows how protein structure can be optimized to harness the reactivity of nonproteinogenic elements. In parallel, computational methods have been used to design protein catalysts for diverse reactions on the basis of fundamental principles of transition state stabilization. Although the activities of designed catalysts have been quite low, extensive laboratory evolution has been used to generate efficient enzymes. Structural analysis of these systems has revealed the high degree of precision that will be needed to design catalysts with greater activity. To this end, emerging protein design methods, including deep learning, hold particular promise for improving model accuracy. Here we take stock of key developments in the field and highlight new opportunities for innovation that should allow us to transition beyond the current state of the art and enable the robust design of biocatalysts to address societal needs.The ability to design efficient enzymes from scratch would have a profound effect on chemistry, biotechnology and medicine. Rapid progress in protein engineering over the past decade makes us optimistic that this ambition is within reach. The development of artificial enzymes containing metal cofactors and noncanonical organocatalytic groups shows how protein structure can be optimized to harness the reactivity of nonproteinogenic elements. In parallel, computational methods have been used to design protein catalysts for diverse reactions on the basis of fundamental principles of transition state stabilization. Although the activities of designed catalysts have been quite low, extensive laboratory evolution has been used to generate efficient enzymes. Structural analysis of these systems has revealed the high degree of precision that will be needed to design catalysts with greater activity. To this end, emerging protein design methods, including deep learning, hold particular promise for improving model accuracy. Here we take stock of key developments in the field and highlight new opportunities for innovation that should allow us to transition beyond the current state of the art and enable the robust design of biocatalysts to address societal needs. The ability to design efficient enzymes from scratch would have a profound effect on chemistry, biotechnology and medicine. Rapid progress in protein engineering over the past decade makes us optimistic that this ambition is within reach. The development of artificial enzymes containing metal cofactors and noncanonical organocatalytic groups shows how protein structure can be optimized to harness the reactivity of nonproteinogenic elements. In parallel, computational methods have been used to design protein catalysts for diverse reactions on the basis of fundamental principles of transition state stabilization. Although the activities of designed catalysts have been quite low, extensive laboratory evolution has been used to generate efficient enzymes. Structural analysis of these systems has revealed the high degree of precision that will be needed to design catalysts with greater activity. To this end, emerging protein design methods, including deep learning, hold particular promise for improving model accuracy. Here we take stock of key developments in the field and highlight new opportunities for innovation that should allow us to transition beyond the current state of the art and enable the robust design of biocatalysts to address societal needs. |
| Author | Lovelock, Sarah L. Baker, David Basler, Sophie Green, Anthony P. Crawshaw, Rebecca Hilvert, Donald Levy, Colin |
| Author_xml | – sequence: 1 givenname: Sarah L. orcidid: 0000-0002-4584-3189 surname: Lovelock fullname: Lovelock, Sarah L. organization: Manchester Institute of Biotechnology, School of Chemistry, University of Manchester – sequence: 2 givenname: Rebecca surname: Crawshaw fullname: Crawshaw, Rebecca organization: Manchester Institute of Biotechnology, School of Chemistry, University of Manchester – sequence: 3 givenname: Sophie orcidid: 0000-0002-4594-2670 surname: Basler fullname: Basler, Sophie organization: Laboratory of Organic Chemistry, ETH Zürich – sequence: 4 givenname: Colin surname: Levy fullname: Levy, Colin organization: Manchester Institute of Biotechnology, School of Chemistry, University of Manchester – sequence: 5 givenname: David orcidid: 0000-0001-7896-6217 surname: Baker fullname: Baker, David email: dabaker@uw.edu organization: Department of Biochemistry, University of Washington, Institute for Protein Design, University of Washington, Howard Hughes Medical Institute, University of Washington – sequence: 6 givenname: Donald orcidid: 0000-0002-3941-621X surname: Hilvert fullname: Hilvert, Donald email: donald.hilvert@org.chem.ethz.ch organization: Laboratory of Organic Chemistry, ETH Zürich – sequence: 7 givenname: Anthony P. orcidid: 0000-0003-0454-1798 surname: Green fullname: Green, Anthony P. email: anthony.green@manchester.ac.uk organization: Manchester Institute of Biotechnology, School of Chemistry, University of Manchester |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35650353$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kDtrwzAUhUVJaR7tH-hQDF26uL3WlSx5LKEvCHRJZyHLcurgRyrZQ_Lr68QJhQydxIXvOxydKRnVTW0JuY3gMQKUT55FXMYhUBoCYzwOdxdkEjERhyyWYkQmAFSGIDEek6n3awDgkWBXZIw85oAcJwSW3zZwjc6Ctgnyriy3wcY1K6erSqel3R-tLerA6FaXW1_4a3KZ69Lbm-M7I1-vL8v5e7j4fPuYPy9Cg4K3IaZMoOU2xViApDxjeYSZyA1PMgaMMs2tkKgpcmrQ0tyYlEGCOc-0kDnijDwMuX2Dn876VlWFN7YsdW2bzisaCyr6_0S8R-_P0HXTubpvd6CShCawD7w7Ul1a2UxtXFFpt1WnLXpADoBxjffO5soUrW6Lpm6dLkoVgdrProbZVT-7Osyudr1Kz9RT-r8SDpLv4Xpl3V_tf6xfB4CTKQ |
| CitedBy_id | crossref_primary_10_1038_s41929_023_01072_6 crossref_primary_10_1038_s41586_022_05335_3 crossref_primary_10_1016_j_chempr_2024_06_010 crossref_primary_10_1002_ange_202421686 crossref_primary_10_1021_jacs_3c02742 crossref_primary_10_3390_ijms23168934 crossref_primary_10_1038_s41467_023_36971_6 crossref_primary_10_1093_protein_gzac015 crossref_primary_10_1002_anie_202505976 crossref_primary_10_1038_s41557_023_01287_x crossref_primary_10_1002_anie_202404880 crossref_primary_10_1093_protein_gzac013 crossref_primary_10_3390_eng5010006 crossref_primary_10_1039_D5SC01055A crossref_primary_10_1039_D5GC03406J crossref_primary_10_1002_chem_202202343 crossref_primary_10_1016_j_biotechadv_2024_108366 crossref_primary_10_1038_s41578_025_00828_9 crossref_primary_10_1002_ange_202301660 crossref_primary_10_1002_ange_202212158 crossref_primary_10_1002_ange_202212555 crossref_primary_10_1038_s41589_024_01707_0 crossref_primary_10_1002_ange_202309305 crossref_primary_10_1002_biot_202300162 crossref_primary_10_1002_pro_4640 crossref_primary_10_1093_molbev_msad126 crossref_primary_10_1016_j_copbio_2022_102829 crossref_primary_10_1016_j_cogsc_2025_101010 crossref_primary_10_1016_j_csbj_2023_03_045 crossref_primary_10_1038_s41586_022_05342_4 crossref_primary_10_1039_D4SC07521H crossref_primary_10_1002_chem_202501422 crossref_primary_10_1002_pro_4405 crossref_primary_10_1016_j_cell_2025_06_014 crossref_primary_10_1016_j_ijbiomac_2024_134014 crossref_primary_10_1038_s41467_025_59176_5 crossref_primary_10_1002_cbic_202200566 crossref_primary_10_1016_j_cels_2023_10_009 crossref_primary_10_1038_s41467_024_46308_6 crossref_primary_10_1016_j_bbagen_2023_130329 crossref_primary_10_1002_ange_202404312 crossref_primary_10_1016_j_biortech_2025_133231 crossref_primary_10_1016_j_jprot_2025_105524 crossref_primary_10_1021_acs_chemrev_4c00471 crossref_primary_10_1128_aem_01963_22 crossref_primary_10_1007_s00253_023_12702_1 crossref_primary_10_1038_s41467_024_53048_0 crossref_primary_10_1002_ange_202215935 crossref_primary_10_1002_mlf2_70009 crossref_primary_10_1002_anie_202309305 crossref_primary_10_1126_science_ado5068 crossref_primary_10_1371_journal_pone_0332409 crossref_primary_10_1021_jacs_3c06169 crossref_primary_10_7554_eLife_102788_3 crossref_primary_10_1038_s41587_024_02461_3 crossref_primary_10_1039_D3SC02982D crossref_primary_10_3390_molecules28186683 crossref_primary_10_1002_anie_202505797 crossref_primary_10_1126_science_adu2454 crossref_primary_10_1016_j_sbi_2025_103124 crossref_primary_10_1038_s41589_024_01793_0 crossref_primary_10_1051_bioconf_202412701006 crossref_primary_10_1103_PhysRevResearch_7_023299 crossref_primary_10_1093_bib_bbae381 crossref_primary_10_1007_s00211_023_01371_x crossref_primary_10_3390_biom14060701 crossref_primary_10_3762_bjoc_21_30 crossref_primary_10_1016_j_jhazmat_2024_135414 crossref_primary_10_1039_D3EY00239J crossref_primary_10_1002_adfm_202315509 crossref_primary_10_1093_nsr_nwad331 crossref_primary_10_1021_acscatal_5c01146 crossref_primary_10_1016_j_coelec_2024_101541 crossref_primary_10_1073_pnas_2414748122 crossref_primary_10_1016_j_biortech_2025_133224 crossref_primary_10_1002_cbic_202500075 crossref_primary_10_3390_ijms24108581 crossref_primary_10_1002_cbic_202500076 crossref_primary_10_1016_j_cej_2022_140276 crossref_primary_10_1002_ijch_202400006 crossref_primary_10_1016_j_mcat_2024_113874 crossref_primary_10_1126_science_adh8615 crossref_primary_10_1002_adma_202308837 crossref_primary_10_1016_j_inoche_2025_115413 crossref_primary_10_1002_ange_202505797 crossref_primary_10_1021_jacs_4c03795 crossref_primary_10_1186_s40643_023_00723_7 crossref_primary_10_1016_j_biotechadv_2025_108603 crossref_primary_10_1021_acscatal_5c01646 crossref_primary_10_1021_acscentsci_5c00949 crossref_primary_10_1038_s41592_024_02504_2 crossref_primary_10_1007_s11005_023_01665_z crossref_primary_10_1016_j_ijbiomac_2024_129294 crossref_primary_10_1016_j_biotechadv_2024_108399 crossref_primary_10_1038_s44222_024_00225_x crossref_primary_10_1002_anie_202413073 crossref_primary_10_1002_chem_202301180 crossref_primary_10_1038_s41467_024_46574_4 crossref_primary_10_1039_D2SC04479J crossref_primary_10_1002_ange_202311159 crossref_primary_10_1093_femsre_fuaf011 crossref_primary_10_1038_s41586_024_07391_3 crossref_primary_10_1021_jacs_3c02423 crossref_primary_10_1073_pnas_2308286120 crossref_primary_10_1038_s41586_025_08611_0 crossref_primary_10_1021_jacs_4c09428 crossref_primary_10_1016_j_copbio_2022_102759 crossref_primary_10_1016_j_coelec_2024_101565 crossref_primary_10_1002_anie_202404312 crossref_primary_10_1002_anie_202419262 crossref_primary_10_1021_jacs_4c16521 crossref_primary_10_1016_j_sbi_2025_103018 crossref_primary_10_1021_jacs_5c09407 crossref_primary_10_1016_j_progpolymsci_2023_101737 crossref_primary_10_1021_acs_jafc_5c05979 crossref_primary_10_1002_pro_70132 crossref_primary_10_1002_anie_202419022 crossref_primary_10_1111_febs_17146 crossref_primary_10_1016_j_trac_2024_117971 crossref_primary_10_1002_ange_202505976 crossref_primary_10_1126_science_ade9434 crossref_primary_10_1002_ange_202413073 crossref_primary_10_1016_j_ijbiomac_2023_127787 crossref_primary_10_1016_j_bpj_2024_04_030 crossref_primary_10_59717_j_xinn_med_2023_100012 crossref_primary_10_1002_ange_202404880 crossref_primary_10_7554_eLife_102788 crossref_primary_10_1021_jacs_4c16633 crossref_primary_10_1002_anie_202301660 crossref_primary_10_1016_j_cels_2025_101372 crossref_primary_10_1038_s41467_022_35468_y crossref_primary_10_1038_s44160_023_00417_0 crossref_primary_10_1109_ACCESS_2025_3560387 crossref_primary_10_1021_jacs_5c05656 crossref_primary_10_1016_j_ijbiomac_2024_135810 crossref_primary_10_1021_jacs_5c02388 crossref_primary_10_1016_j_mocell_2025_100191 crossref_primary_10_1016_j_sbi_2023_102671 crossref_primary_10_1002_cctc_202400598 crossref_primary_10_1021_acs_orglett_5c03309 crossref_primary_10_3389_fmolb_2022_908285 crossref_primary_10_1016_j_synbio_2025_04_014 crossref_primary_10_1002_anie_202215935 crossref_primary_10_1002_chem_202404519 crossref_primary_10_1016_j_jhazmat_2023_131295 crossref_primary_10_1039_D4CS00561A crossref_primary_10_1016_j_checat_2025_101394 crossref_primary_10_1002_wcms_70003 crossref_primary_10_1080_07388551_2023_2236787 crossref_primary_10_35534_sbe_2023_10013 crossref_primary_10_1002_adma_202307499 crossref_primary_10_1063_1674_0068_cjcp2312146 crossref_primary_10_3390_molecules28134990 crossref_primary_10_1021_acscentsci_5c00590 crossref_primary_10_1016_j_cbpa_2024_102508 crossref_primary_10_1021_jacs_4c03879 crossref_primary_10_1002_ijch_202300078 crossref_primary_10_1016_j_checat_2023_100559 crossref_primary_10_1039_D5QO00423C crossref_primary_10_1021_jacs_4c03914 crossref_primary_10_1038_s41467_024_47671_0 crossref_primary_10_1038_s41589_025_01944_x crossref_primary_10_1002_anie_202421686 crossref_primary_10_1002_cctc_202401952 crossref_primary_10_1038_s41467_024_46123_z crossref_primary_10_1002_anie_202311159 crossref_primary_10_1016_j_cell_2023_12_028 crossref_primary_10_1038_s41467_024_50005_9 crossref_primary_10_1002_cbic_202401010 crossref_primary_10_1002_anie_202212555 crossref_primary_10_1016_j_checat_2025_101442 crossref_primary_10_1002_anie_202212158 crossref_primary_10_22201_fq_18708404e_2025_3_90539 crossref_primary_10_1016_j_chempr_2023_03_006 crossref_primary_10_1002_cbic_202300754 crossref_primary_10_3390_molecules29235518 crossref_primary_10_1016_j_copbio_2023_103004 crossref_primary_10_1016_j_jclepro_2022_134429 crossref_primary_10_1038_s41929_025_01390_x crossref_primary_10_1039_D5CP90116B crossref_primary_10_1002_ange_202419262 crossref_primary_10_1038_s41586_024_08399_5 crossref_primary_10_1038_s41586_025_09136_2 crossref_primary_10_1002_ange_202419022 crossref_primary_10_1007_s12274_022_5104_x crossref_primary_10_1016_j_biotechadv_2023_108294 crossref_primary_10_3390_metabo13101097 |
| Cites_doi | 10.1038/nchembio.2503 10.1126/science.abj8754 10.1073/pnas.1915054117 10.1002/pro.3757 10.1146/annurev-biochem-062917-012034 10.1038/nature19946 10.1021/ja208015j 10.1126/science.aay8484 10.1038/nchem.2555 10.1038/nchem.1454 10.1021/jacs.6b07029 10.1073/pnas.1010381107 10.1016/j.cell.2018.10.021 10.1038/s41586-018-0509-0 10.1002/pro.2128 10.1126/science.1188934 10.1038/nature12623 10.1016/j.cbpa.2020.01.006 10.1038/s41586-021-03819-2 10.1038/nature06879 10.1021/acscatal.9b04321 10.1126/science.aaw1143 10.1146/annurev.biochem.69.1.751 10.1126/science.abd3623 10.1021/acscatal.9b05129 10.1038/nbt.2109 10.1021/cr068388p 10.1021/jacs.8b07189 10.1126/science.abc0881 10.1038/s41586-019-1923-7 10.1002/anie.201813499 10.1021/ja3037367 10.1038/nature09929 10.1038/nchem.2596 10.1038/nchem.2643 10.1021/acscatal.9b02272 10.1021/cr068373r 10.1016/S0167-7799(03)00194-X 10.1002/pro.462 10.1038/s41467-021-21511-x 10.1038/s41586-018-0808-5 10.1038/nature11117 10.1073/pnas.1118082108 10.1038/s41557-018-0082-z 10.1039/b514972j 10.1021/jacs.6b06843 10.1002/anie.201204077 10.1126/science.1062722 10.1021/ja076043y 10.1126/science.1226132 10.1146/annurev-biochem-072611-101825 10.1371/journal.pcbi.1005786 10.1002/anie.201708408 10.1126/science.aat8474 10.1021/bi201881p 10.1038/nchembio.1498 10.1021/jacs.5b07812 10.1038/nature24031 10.1126/science.aau3744 10.1002/pro.2059 10.1038/nchembio.1276 10.1038/s41557-020-00633-7 10.1038/s41557-021-00763-6 10.1038/nchembio.203 10.1038/nature08620 10.1073/pnas.1914808117 10.1038/s41467-020-18619-x 10.1038/s41586-019-1262-8 10.1016/j.cbpa.2011.03.006 10.1126/science.aba3304 10.1016/j.copbio.2004.06.001 10.1038/s41929-019-0341-4 10.1073/pnas.0910781107 10.1038/s41929-019-0340-5 10.1038/s41557-020-00628-4 10.1016/j.copbio.2017.12.008 10.1126/science.1152692 10.1073/pnas.251555398 10.1038/s41570-018-0055-1 10.1126/science.1190239 10.1038/nature19114 10.1002/anie.201707637 10.1126/science.10049109 10.1021/jacsau.1c00145 10.1038/s41586-021-04184-w 10.1126/science.aar4239 10.1021/cb3006227 10.1021/acscatal.1c02786 10.1038/s41929-018-0105-6 10.1073/pnas.1401073111 10.1021/acscatal.9b01464 10.1021/ja075261o 10.1002/pro.481 10.1038/nchembio.2474 10.1021/cr068370e 10.1021/jacs.8b07157 10.1038/nchembio.257 10.1021/ar970004h 10.1038/nchem.1201 10.1021/acs.accounts.8b00674 10.1038/s41557-021-00833-9 10.1002/anie.201901491 10.1021/ja205927u 10.1126/science.3787261 10.1021/cr0684016 10.1146/annurev.biochem.052308.105824 10.1126/science.8211138 10.1126/science.1142696 10.1073/pnas.1901979116 10.1126/science.270.5243.1797 10.1101/2020.11.29.402743 10.1101/2021.11.10.468128 |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2022 2022. Springer Nature Limited. Copyright Nature Publishing Group Jun 2, 2022 |
| Copyright_xml | – notice: Springer Nature Limited 2022 – notice: 2022. Springer Nature Limited. – notice: Copyright Nature Publishing Group Jun 2, 2022 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 |
| DOI | 10.1038/s41586-022-04456-z |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PATMY name: Environmental Science Database url: http://search.proquest.com/environmentalscience sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics Engineering |
| EISSN | 1476-4687 |
| EndPage | 58 |
| ExternalDocumentID | 35650353 10_1038_s41586_022_04456_z |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: European Research Council – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/M027023/1 – fundername: Medical Research Council grantid: MR/T041722/1 – fundername: Howard Hughes Medical Institute |
| GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAHBH AAHTB AAIKC AAKAB AAMNW AARCD AASDW AAYEP ABDQB ABFSG ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUFD ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACSTC ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AEZWR AFANA AFBBN AFFHD AFFNX AFHIU AFKRA AFKWF AFLOW AFRAH AFSHS AGAYW AGHSJ AGSOS AGSTI AHMBA AHSBF AHWEU AIDUJ AIXLP ALFFA ALMA_UNASSIGNED_HOLDINGS ALPWD AMTXH ARAPS ARMCB ASPBG ATCPS ATHPR ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS EX3 EXGXG F5P FAC FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TUS TWZ U5U UKHRP UKR UMD UQL VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YFH YNT YOC YQT YR2 YR5 YXB YZZ ZCA ~02 ~7V ~88 ~KM AAYXX CITATION .-4 .GJ .HR 00M 08P 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ AAYZH ABAWZ ABDBF ABDPE ABEFU ABNNU ACBNA ACBTR ACRPL ACTDY ACUHS ADGHP ADNMO ADRHT ADXHL ADYSU ADZCM AETEA AFFDN AFHKK AGCDD AGGDT AGNAY AGQPQ AIDAL AIYXT AJUXI ALIPV APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC CGR CUY CVF DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC ECM EIF EJD EMB EMF EMK EMOBN EPL ESE ESN ESX FA8 I-F ITC J5H L-9 LGEZI LOTEE MVM N4W NADUK NEJ NFIDA NPM NXXTH ODYON OHT P-O PEA PM3 PV9 QS- R4F RHI SKT SV3 TH9 TUD UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZY4 ~8M ~G0 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 88A 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 |
| ID | FETCH-LOGICAL-c375t-3b473e5eb3670825d4f13d7fc59d40424a5e783a2352c3e2fccb4093f5da78f33 |
| IEDL.DBID | 7RV |
| ISICitedReferencesCount | 231 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000804867100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-0836 1476-4687 |
| IngestDate | Sun Nov 09 10:47:20 EST 2025 Tue Oct 07 07:22:00 EDT 2025 Mon Jul 21 06:03:45 EDT 2025 Tue Nov 18 22:01:32 EST 2025 Sat Nov 29 03:49:03 EST 2025 Mon Nov 10 01:23:11 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7912 |
| Language | English |
| License | 2022. Springer Nature Limited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c375t-3b473e5eb3670825d4f13d7fc59d40424a5e783a2352c3e2fccb4093f5da78f33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-4594-2670 0000-0001-7896-6217 0000-0003-0454-1798 0000-0002-4584-3189 0000-0002-3941-621X |
| PMID | 35650353 |
| PQID | 2672992903 |
| PQPubID | 40569 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2672705115 proquest_journals_2672992903 pubmed_primary_35650353 crossref_citationtrail_10_1038_s41586_022_04456_z crossref_primary_10_1038_s41586_022_04456_z springer_journals_10_1038_s41586_022_04456_z |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-02 |
| PublicationDateYYYYMMDD | 2022-06-02 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | International weekly journal of science |
| PublicationTitle | Nature (London) |
| PublicationTitleAbbrev | Nature |
| PublicationTitleAlternate | Nature |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Dou (CR90) 2018; 561 Smith, Hecht (CR34) 2011; 15 Chino (CR37) 2017; 56 Moroz (CR59) 2015; 137 Burton, Thomson, Dawson, Brady, Woolfson (CR60) 2016; 8 Wu, Boxer (CR49) 2016; 138 Basler (CR44) 2021; 13 Kiss, Celebi-Olcum, Moretti, Baker, Houk (CR21) 2013; 52 Turner (CR5) 2009; 5 Huffman (CR2) 2019; 366 Hill, Raleigh, Lombardi, DeGrado (CR31) 2000; 33 Bjelic (CR82) 2013; 8 Wagner, Lerner, Barbas (CR64) 1995; 270 Devine (CR4) 2018; 2 Siegel (CR72) 2010; 329 Chen, Huang, Kan, Zhang, Arnold (CR18) 2018; 360 Mirts, Petrik, Hosseinzadeh, Nilges, Lu (CR30) 2018; 361 Fernandez-Gacio, Uguen, Fastrez (CR10) 2003; 21 Wu, Kan, Lewis, Wittmann, Arnold (CR100) 2019; 116 Mayer, Dulson, Reddem, Thunnissen, Roelfes (CR62) 2019; 58 Crawshaw (CR76) 2022; 14 Senior (CR92) 2020; 577 Richter (CR57) 2012; 134 Ma (CR98) 2021; 11 Studer (CR43) 2018; 362 Lombardi, Pirro, Maglio, Chino, DeGrado (CR38) 2019; 52 Davey, Damry, Goto, Chica (CR87) 2017; 13 Mukherjee, Yang, Hoffmann, List (CR107) 2007; 107 Davey, Chica (CR112) 2012; 21 Qu, Li, Acevedo-Rocha, Sun, Reetz (CR9) 2020; 59 Russ (CR102) 2020; 369 Wentworth (CR66) 2001; 293 Erkkila, Majander, Pihko (CR106) 2007; 107 Yeung (CR29) 2009; 462 Der, Edwards, Kuhlman (CR42) 2012; 51 Bolon, Mayo (CR56) 2001; 98 Koder, Dutton (CR32) 2006; 25 Li, Liu, Wang, Mehta, Schultz (CR52) 2018; 140 Althoff (CR79) 2012; 21 Debon (CR13) 2019; 2 Tramontano, Janda, Lerner (CR63) 1986; 234 Bornscheuer (CR6) 2012; 485 Hyster, Knorr, Ward, Rovis (CR27) 2012; 338 Otten (CR77) 2020; 370 Zhang (CR17) 2018; 565 Reig (CR39) 2012; 4 Jeschek (CR24) 2016; 537 Faiella (CR33) 2009; 5 Bunzel (CR85) 2021; 13 Frushicheva, Cao, Chu, Warshel (CR84) 2010; 107 Faraldos (CR48) 2011; 133 Jumper (CR95) 2021; 596 Hsieh, Yonkovich, Kochersperger, Schultz (CR67) 1993; 260 Rajagopalan (CR58) 2014; 10 Mazurenko, Prokop, Damborsky (CR97) 2020; 10 Becker, Schmoldt, Adams, Wilhelm, Kolmar (CR11) 2004; 15 Liu, Schultz (CR46) 2010; 79 Stenner, Steventon, Seddon, Anderson (CR36) 2020; 117 Huang, Boyken, Baker (CR89) 2016; 537 Hiranuma (CR93) 2021; 12 Rebelein, Ward (CR26) 2018; 53 Gouverneur (CR65) 1993; 262 Hilvert (CR22) 2013; 82 Hayashi (CR104) 2018; 1 Green, Hayashi, Mittl, Hilvert (CR53) 2016; 138 Eiben (CR81) 2012; 30 Biegasiewicz (CR19) 2019; 364 Seyedsayamdost, Xie, Chan, Schultz, Stubbe (CR47) 2007; 129 Privett (CR70) 2012; 109 Wei (CR91) 2020; 117 Ortmayer (CR50) 2020; 10 Jiang (CR71) 2008; 319 Rothlisberger (CR69) 2008; 453 Bedbrook, Yang, Rice, Gradinaru, Arnold (CR99) 2017; 13 Schober (CR3) 2019; 2 Ravikumar, Arzumanyan, Obadi, Javanpour, Liu (CR16) 2018; 175 Hilvert (CR68) 2000; 69 Bryson (CR15) 2017; 13 Zhao (CR25) 2018; 140 Blomberg (CR73) 2013; 503 Ortmayer (CR51) 2021; 1 Giger (CR80) 2013; 9 Pan (CR88) 2021; 369 Zhao, Burke, Green (CR54) 2020; 55 Broom (CR78) 2020; 11 Preiswerk (CR74) 2014; 111 Doyle, Jacobsen (CR108) 2007; 107 Salgado, Faraone-Mennella, Tezcan (CR40) 2007; 129 Burke (CR55) 2019; 570 Wurz (CR109) 2007; 107 Zastrow, Peacock, Stuckey, Pecoraro (CR35) 2011; 4 Weitzner, Kipnis, Daniel, Hilvert, Baker (CR86) 2019; 28 Baek (CR94) 2021; 373 Esvelt, Carlson, Liu (CR14) 2011; 472 Zeymer, Hilvert (CR7) 2018; 87 Der (CR41) 2012; 134 Anishchenko (CR96) 2021; 600 Arnold (CR8) 2018; 57 Savile (CR1) 2010; 329 Obexer (CR75) 2017; 9 CR103 Chin (CR45) 2017; 550 CR101 Ji, Park, Gu, Clark, Hartwig (CR20) 2021; 13 Kiss, Rothlisberger, Baker, Houk (CR83) 2010; 19 Agresti (CR12) 2010; 107 Carminati, Fasan (CR105) 2019; 9 Drienovska, Mayer, Dulson, Roelfes (CR61) 2018; 10 Baker (CR23) 2010; 19 Bhagi-Damodaran (CR28) 2017; 9 St-Jacques, Eyahpaise, Chica (CR111) 2019; 9 Beeson, Mastracchio, Hong, Ashton, Macmillan (CR110) 2007; 316 A Lombardi (4456_CR38) 2019; 52 M Schober (4456_CR3) 2019; 2 X Pan (4456_CR88) 2021; 369 A Debon (4456_CR13) 2019; 2 JC Li (4456_CR52) 2018; 140 BD Weitzner (4456_CR86) 2019; 28 S Rajagopalan (4456_CR58) 2014; 10 N Yeung (4456_CR29) 2009; 462 EN Salgado (4456_CR40) 2007; 129 I Drienovska (4456_CR61) 2018; 10 D Baker (4456_CR23) 2010; 19 JA Davey (4456_CR112) 2012; 21 M Baek (4456_CR94) 2021; 373 JG Rebelein (4456_CR26) 2018; 53 DN Bolon (4456_CR56) 2001; 98 UT Bornscheuer (4456_CR6) 2012; 485 DI Bryson (4456_CR15) 2017; 13 D Rothlisberger (4456_CR69) 2008; 453 AP Green (4456_CR53) 2016; 138 KM Esvelt (4456_CR14) 2011; 472 AD St-Jacques (4456_CR111) 2019; 9 S Mukherjee (4456_CR107) 2007; 107 A Ravikumar (4456_CR16) 2018; 175 L Giger (4456_CR80) 2013; 9 N Preiswerk (4456_CR74) 2014; 111 R Crawshaw (4456_CR76) 2022; 14 D Hilvert (4456_CR22) 2013; 82 S Mazurenko (4456_CR97) 2020; 10 K Chen (4456_CR18) 2018; 360 J Dou (4456_CR90) 2018; 561 J Zhao (4456_CR25) 2018; 140 J Zhao (4456_CR54) 2020; 55 CC Liu (4456_CR46) 2010; 79 MA Huffman (4456_CR2) 2019; 366 MP Frushicheva (4456_CR84) 2010; 107 S Studer (4456_CR43) 2018; 362 LC Hsieh (4456_CR67) 1993; 260 CB Eiben (4456_CR81) 2012; 30 I Anishchenko (4456_CR96) 2021; 600 F Richter (4456_CR57) 2012; 134 EA Althoff (4456_CR79) 2012; 21 L Jiang (4456_CR71) 2008; 319 C Mayer (4456_CR62) 2019; 58 M Jeschek (4456_CR24) 2016; 537 M Chino (4456_CR37) 2017; 56 A Erkkila (4456_CR106) 2007; 107 RK Zhang (4456_CR17) 2018; 565 AJ Burton (4456_CR60) 2016; 8 HA Bunzel (4456_CR85) 2021; 13 AW Senior (4456_CR92) 2020; 577 4456_CR103 4456_CR101 G Kiss (4456_CR83) 2010; 19 A Fernandez-Gacio (4456_CR10) 2003; 21 C Zeymer (4456_CR7) 2018; 87 YS Moroz (4456_CR59) 2015; 137 A Broom (4456_CR78) 2020; 11 TD Beeson (4456_CR110) 2007; 316 A Bhagi-Damodaran (4456_CR28) 2017; 9 T Hayashi (4456_CR104) 2018; 1 CN Bedbrook (4456_CR99) 2017; 13 BA Smith (4456_CR34) 2011; 15 MR Seyedsayamdost (4456_CR47) 2007; 129 JA Reig (4456_CR39) 2012; 4 JA Faraldos (4456_CR48) 2011; 133 KF Biegasiewicz (4456_CR19) 2019; 364 HK Privett (4456_CR70) 2012; 109 R Stenner (4456_CR36) 2020; 117 JW Chin (4456_CR45) 2017; 550 J Jumper (4456_CR95) 2021; 596 TK Hyster (4456_CR27) 2012; 338 CK Savile (4456_CR1) 2010; 329 AJ Burke (4456_CR55) 2019; 570 M Ortmayer (4456_CR51) 2021; 1 EJ Ma (4456_CR98) 2021; 11 D Hilvert (4456_CR68) 2000; 69 JB Siegel (4456_CR72) 2010; 329 R Obexer (4456_CR75) 2017; 9 NJ Turner (4456_CR5) 2009; 5 M Ortmayer (4456_CR50) 2020; 10 PS Huang (4456_CR89) 2016; 537 P Ji (4456_CR20) 2021; 13 Y Wu (4456_CR49) 2016; 138 RB Hill (4456_CR31) 2000; 33 S Basler (4456_CR44) 2021; 13 G Qu (4456_CR9) 2020; 59 FH Arnold (4456_CR8) 2018; 57 JJ Agresti (4456_CR12) 2010; 107 ML Zastrow (4456_CR35) 2011; 4 J Wagner (4456_CR64) 1995; 270 EN Mirts (4456_CR30) 2018; 361 N Hiranuma (4456_CR93) 2021; 12 BS Der (4456_CR41) 2012; 134 BS Der (4456_CR42) 2012; 51 AG Doyle (4456_CR108) 2007; 107 S Becker (4456_CR11) 2004; 15 G Kiss (4456_CR21) 2013; 52 A Tramontano (4456_CR63) 1986; 234 S Bjelic (4456_CR82) 2013; 8 RL Koder (4456_CR32) 2006; 25 DM Carminati (4456_CR105) 2019; 9 P Wentworth Jr. (4456_CR66) 2001; 293 R Blomberg (4456_CR73) 2013; 503 M Faiella (4456_CR33) 2009; 5 JA Davey (4456_CR87) 2017; 13 WP Russ (4456_CR102) 2020; 369 PN Devine (4456_CR4) 2018; 2 VE Gouverneur (4456_CR65) 1993; 262 KY Wei (4456_CR91) 2020; 117 R Otten (4456_CR77) 2020; 370 RP Wurz (4456_CR109) 2007; 107 Z Wu (4456_CR100) 2019; 116 |
| References_xml | – volume: 13 start-page: 1280 year: 2017 end-page: 1285 ident: CR87 article-title: Rational design of proteins that exchange on functional timescales publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2503 – volume: 373 start-page: 871 year: 2021 end-page: 876 ident: CR94 article-title: Accurate prediction of protein structures and interactions using a three-track neural network publication-title: Science doi: 10.1126/science.abj8754 – volume: 117 start-page: 1419 year: 2020 end-page: 1428 ident: CR36 article-title: A de novo peroxidase is also a promiscuous yet stereoselective carbene transferase publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1915054117 – volume: 28 start-page: 2036 year: 2019 end-page: 2041 ident: CR86 article-title: A computational method for design of connected catalytic networks in proteins publication-title: Protein Sci. doi: 10.1002/pro.3757 – volume: 87 start-page: 131 year: 2018 end-page: 157 ident: CR7 article-title: Directed evolution of protein catalysts publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-062917-012034 – volume: 537 start-page: 320 year: 2016 end-page: 327 ident: CR89 article-title: The coming of age of de novo protein design publication-title: Nature doi: 10.1038/nature19946 – volume: 134 start-page: 375 year: 2012 end-page: 385 ident: CR41 article-title: Metal-mediated affinity and orientation specificity in a computationally designed protein homodimer publication-title: J. Am. Chem. Soc. doi: 10.1021/ja208015j – volume: 366 start-page: 1255 year: 2019 end-page: 1259 ident: CR2 article-title: Design of an in vitro biocatalytic cascade for the manufacture of islatravir publication-title: Science doi: 10.1126/science.aay8484 – volume: 8 start-page: 837 year: 2016 end-page: 844 ident: CR60 article-title: Installing hydrolytic activity into a completely de novo protein framework publication-title: Nat. Chem. doi: 10.1038/nchem.2555 – volume: 4 start-page: 900 year: 2012 end-page: 906 ident: CR39 article-title: Alteration of the oxygen-dependent reactivity of de novo Due Ferri proteins publication-title: Nat. Chem. doi: 10.1038/nchem.1454 – volume: 138 start-page: 11344 year: 2016 end-page: 11352 ident: CR53 article-title: A chemically programmed proximal ligand enhances the catalytic properties of a heme enzyme publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b07029 – volume: 107 start-page: 16869 year: 2010 end-page: 16874 ident: CR84 article-title: Exploring challenges in rational enzyme design by simulating the catalysis in artificial Kemp eliminase publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1010381107 – volume: 175 start-page: 1946 year: 2018 end-page: 1957 ident: CR16 article-title: Scalable, continuous evolution of genes at mutation rates above genomic error thresholds publication-title: Cell doi: 10.1016/j.cell.2018.10.021 – volume: 561 start-page: 485 year: 2018 end-page: 491 ident: CR90 article-title: De novo design of a fluorescence-activating β-barrel publication-title: Nature doi: 10.1038/s41586-018-0509-0 – volume: 21 start-page: 1241 year: 2012 end-page: 1252 ident: CR112 article-title: Multistate approaches in computational protein design publication-title: Protein Sci. doi: 10.1002/pro.2128 – ident: CR101 – volume: 329 start-page: 305 year: 2010 end-page: 309 ident: CR1 article-title: Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture publication-title: Science doi: 10.1126/science.1188934 – volume: 503 start-page: 418 year: 2013 end-page: 421 ident: CR73 article-title: Precision is essential for efficient catalysis in an evolved Kemp eliminase publication-title: Nature doi: 10.1038/nature12623 – volume: 55 start-page: 136 year: 2020 end-page: 144 ident: CR54 article-title: Enzymes with noncanonical amino acids publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2020.01.006 – volume: 596 start-page: 583 year: 2021 end-page: 589 ident: CR95 article-title: Highly accurate protein structure prediction with AlphaFold publication-title: Nature doi: 10.1038/s41586-021-03819-2 – volume: 453 start-page: 190 year: 2008 end-page: 195 ident: CR69 article-title: Kemp elimination catalysts by computational enzyme design publication-title: Nature doi: 10.1038/nature06879 – volume: 10 start-page: 1210 year: 2020 end-page: 1223 ident: CR97 article-title: Machine learning in enzyme engineering publication-title: ACS Catal. doi: 10.1021/acscatal.9b04321 – volume: 364 start-page: 1166 year: 2019 end-page: 1169 ident: CR19 article-title: Photoexcitation of flavoenzymes enables a stereoselective radical cyclization publication-title: Science doi: 10.1126/science.aaw1143 – volume: 69 start-page: 751 year: 2000 end-page: 793 ident: CR68 article-title: Critical analysis of antibody catalysis publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.69.1.751 – volume: 370 start-page: 1442 year: 2020 end-page: 1446 ident: CR77 article-title: How directed evolution reshapes the energy landscape in an enzyme to boost catalysis publication-title: Science doi: 10.1126/science.abd3623 – volume: 10 start-page: 2735 year: 2020 end-page: 2746 ident: CR50 article-title: Rewiring the ‘push–pull’ catalytic machinery of a heme enzyme using an expanded genetic code publication-title: ACS Catal. doi: 10.1021/acscatal.9b05129 – volume: 30 start-page: 190 year: 2012 end-page: 192 ident: CR81 article-title: Increased Diels–Alderase activity through backbone remodeling guided by Foldit players publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2109 – volume: 107 start-page: 5416 year: 2007 end-page: 5470 ident: CR106 article-title: Iminium catalysis publication-title: Chem. Rev. doi: 10.1021/cr068388p – volume: 140 start-page: 13171 year: 2018 end-page: 13175 ident: CR25 article-title: Genetic engineering of an artificial metalloenzyme for transfer hydrogenation of a self-immolative substrate in ’s periplasm publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07189 – volume: 369 start-page: 1132 year: 2021 end-page: 1136 ident: CR88 article-title: Expanding the space of protein geometries by computational design of de novo fold families publication-title: Science doi: 10.1126/science.abc0881 – volume: 577 start-page: 706 year: 2020 end-page: 710 ident: CR92 article-title: Improved protein structure prediction using potentials from deep learning publication-title: Nature doi: 10.1038/s41586-019-1923-7 – volume: 58 start-page: 2083 year: 2019 end-page: 2087 ident: CR62 article-title: Directed evolution of a designer enzyme featuring an unnatural catalytic amino acid publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201813499 – volume: 134 start-page: 16197 year: 2012 end-page: 16206 ident: CR57 article-title: Computational design of catalytic dyads and oxyanion holes for ester hydrolysis publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3037367 – volume: 472 start-page: 499 year: 2011 end-page: 503 ident: CR14 article-title: A system for the continuous directed evolution of biomolecules publication-title: Nature doi: 10.1038/nature09929 – volume: 9 start-page: 50 year: 2017 end-page: 56 ident: CR75 article-title: Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase publication-title: Nat. Chem. doi: 10.1038/nchem.2596 – volume: 9 start-page: 257 year: 2017 end-page: 263 ident: CR28 article-title: Why copper is preferred over iron for oxygen activation and reduction in haem-copper oxidases publication-title: Nat. Chem. doi: 10.1038/nchem.2643 – volume: 9 start-page: 9683 year: 2019 end-page: 9687 ident: CR105 article-title: Stereoselective cyclopropanation of electron-deficient olefins with a cofactor redesigned carbene transferase featuring radical reactivity publication-title: ACS Catal. doi: 10.1021/acscatal.9b02272 – volume: 107 start-page: 5713 year: 2007 end-page: 5743 ident: CR108 article-title: Small-molecule H-bond donors in asymmetric catalysis publication-title: Chem. Rev. doi: 10.1021/cr068373r – volume: 21 start-page: 408 year: 2003 end-page: 414 ident: CR10 article-title: Phage display as a tool for the directed evolution of enzymes publication-title: Trends Biotechnol. doi: 10.1016/S0167-7799(03)00194-X – volume: 19 start-page: 1760 year: 2010 end-page: 1773 ident: CR83 article-title: Evaluation and ranking of enzyme designs publication-title: Protein Sci. doi: 10.1002/pro.462 – volume: 12 year: 2021 ident: CR93 article-title: Improved protein structure refinement guided by deep learning based accuracy estimation publication-title: Nat. Commun. doi: 10.1038/s41467-021-21511-x – volume: 565 start-page: 67 year: 2018 end-page: 72 ident: CR17 article-title: Enzymatic assembly of carbon–carbon bonds via iron-catalysed C–H functionalization publication-title: Nature doi: 10.1038/s41586-018-0808-5 – volume: 485 start-page: 185 year: 2012 end-page: 194 ident: CR6 article-title: Engineering the third wave of biocatalysis publication-title: Nature doi: 10.1038/nature11117 – volume: 109 start-page: 3790 year: 2012 end-page: 3795 ident: CR70 article-title: Iterative approach to computational enzyme design publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1118082108 – volume: 10 start-page: 946 year: 2018 end-page: 952 ident: CR61 article-title: A designer enzyme for hydrazone and oxime formation featuring an unnatural catalytic aniline residue publication-title: Nat. Chem. doi: 10.1038/s41557-018-0082-z – volume: 25 start-page: 3045 year: 2006 end-page: 3051 ident: CR32 article-title: Intelligent design: the de novo engineering of proteins with specified functions publication-title: Dalton Trans. doi: 10.1039/b514972j – volume: 138 start-page: 11890 year: 2016 end-page: 11895 ident: CR49 article-title: A critical test of the electrostatic contribution to catalysis with noncanonical amino acids in ketosteroid isomerase publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b06843 – ident: CR103 – volume: 52 start-page: 5700 year: 2013 end-page: 5725 ident: CR21 article-title: Computational enzyme design publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201204077 – volume: 293 start-page: 1806 year: 2001 end-page: 1811 ident: CR66 article-title: Antibody catalysis of the oxidation of water publication-title: Science doi: 10.1126/science.1062722 – volume: 129 start-page: 15060 year: 2007 end-page: 15071 ident: CR47 article-title: Site-specific insertion of 3-aminotyrosine into subunit α2 of E. coli ribonucleotide reductase: direct evidence for involvement of Y730 and Y731 in radical propagation publication-title: J. Am. Chem. Soc doi: 10.1021/ja076043y – volume: 338 start-page: 500 year: 2012 end-page: 503 ident: CR27 article-title: Biotinylated Rh(III) complexes in engineered streptavidin for accelerated asymmetric C–H activation publication-title: Science doi: 10.1126/science.1226132 – volume: 82 start-page: 447 year: 2013 end-page: 470 ident: CR22 article-title: Design of protein catalysts publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-072611-101825 – volume: 13 start-page: e1005786 year: 2017 ident: CR99 article-title: Machine learning to design integral membrane channelrhodopsins for efficient eukaryotic expression and plasma membrane localization publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005786 – volume: 57 start-page: 4143 year: 2018 end-page: 4148 ident: CR8 article-title: Directed evolution: bringing new chemistry to life publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201708408 – volume: 361 start-page: 1098 year: 2018 end-page: 1101 ident: CR30 article-title: A designed heme-[4Fe–4S] metalloenzyme catalyzes sulfite reduction like the native enzyme publication-title: Science doi: 10.1126/science.aat8474 – volume: 51 start-page: 3933 year: 2012 end-page: 3940 ident: CR42 article-title: Catalysis by a de novo zinc-mediated protein interface: implications for natural enzyme evolution and rational enzyme engineering publication-title: Biochemistry doi: 10.1021/bi201881p – volume: 10 start-page: 386 year: 2014 end-page: 391 ident: CR58 article-title: Design of activated serine-containing catalytic triads with atomic-level accuracy publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1498 – volume: 137 start-page: 14905 year: 2015 end-page: 14911 ident: CR59 article-title: New tricks for old proteins: single mutations in a nonenzymatic protein give rise to various enzymatic activities publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b07812 – volume: 550 start-page: 53 year: 2017 end-page: 60 ident: CR45 article-title: Expanding and reprogramming the genetic code publication-title: Nature doi: 10.1038/nature24031 – volume: 362 start-page: 1285 year: 2018 end-page: 1288 ident: CR43 article-title: Evolution of a highly active and enantiospecific metalloenzyme from short peptides publication-title: Science doi: 10.1126/science.aau3744 – volume: 21 start-page: 717 year: 2012 end-page: 726 ident: CR79 article-title: Robust design and optimization of retroaldol enzymes publication-title: Protein Sci. doi: 10.1002/pro.2059 – volume: 9 start-page: 494 year: 2013 end-page: 498 ident: CR80 article-title: Evolution of a designed retro-aldolase leads to complete active site remodeling publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1276 – volume: 13 start-page: 312 year: 2021 end-page: 318 ident: CR20 article-title: Abiotic reduction of ketones with silanes catalysed by carbonic anhydrase through an enzymatic zinc hydride publication-title: Nat. Chem. doi: 10.1038/s41557-020-00633-7 – volume: 13 start-page: 1017 year: 2021 end-page: 1022 ident: CR85 article-title: Evolution of dynamical networks enhances catalysis in a designer enzyme publication-title: Nat. Chem. doi: 10.1038/s41557-021-00763-6 – volume: 5 start-page: 567 year: 2009 end-page: 573 ident: CR5 article-title: Directed evolution drives the next generation of biocatalysts publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.203 – volume: 462 start-page: 1079 year: 2009 end-page: 1082 ident: CR29 article-title: Rational design of a structural and functional nitric oxide reductase publication-title: Nature doi: 10.1038/nature08620 – volume: 117 start-page: 7208 year: 2020 end-page: 7215 ident: CR91 article-title: Computational design of closely related proteins that adopt two well-defined but structurally divergent folds publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1914808117 – volume: 11 year: 2020 ident: CR78 article-title: Ensemble-based enzyme design can recapitulate the effects of laboratory directed evolution in silico publication-title: Nat. Commun. doi: 10.1038/s41467-020-18619-x – volume: 570 start-page: 219 year: 2019 end-page: 223 ident: CR55 article-title: Design and evolution of an enzyme with a non-canonical organocatalytic mechanism publication-title: Nature doi: 10.1038/s41586-019-1262-8 – volume: 15 start-page: 421 year: 2011 end-page: 426 ident: CR34 article-title: Novel proteins: from fold to function publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2011.03.006 – volume: 369 start-page: 440 year: 2020 end-page: 445 ident: CR102 article-title: An evolution-based model for designing chorismate mutase enzymes publication-title: Science doi: 10.1126/science.aba3304 – volume: 15 start-page: 323 year: 2004 end-page: 329 ident: CR11 article-title: Ultra-high-throughput screening based on cell-surface display and fluorescence-activated cell sorting for the identification of novel biocatalysts publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2004.06.001 – volume: 2 start-page: 909 year: 2019 end-page: 915 ident: CR3 article-title: Chiral synthesis of LSD1 inhibitor GSK2879552 enabled by directed evolution of an imine reductase publication-title: Nat. Catal. doi: 10.1038/s41929-019-0341-4 – volume: 107 start-page: 4004 year: 2010 end-page: 4009 ident: CR12 article-title: Ultrahigh-throughput screening in drop-based microfluidics for directed evolution publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0910781107 – volume: 2 start-page: 740 year: 2019 end-page: 747 ident: CR13 article-title: Ultrahigh-throughput screening enables efficient single-round oxidase remodelling publication-title: Nat. Catal. doi: 10.1038/s41929-019-0340-5 – volume: 13 start-page: 231 year: 2021 end-page: 235 ident: CR44 article-title: Efficient Lewis acid catalysis of an abiological reaction in a de novo protein scaffold publication-title: Nat. Chem. doi: 10.1038/s41557-020-00628-4 – volume: 53 start-page: 106 year: 2018 end-page: 114 ident: CR26 article-title: In vivo catalyzed new-to-nature reactions publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2017.12.008 – volume: 319 start-page: 1387 year: 2008 end-page: 1391 ident: CR71 article-title: De novo computational design of retro-aldol enzymes publication-title: Science doi: 10.1126/science.1152692 – volume: 98 start-page: 14274 year: 2001 end-page: 14279 ident: CR56 article-title: Enzyme-like proteins by computational design publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.251555398 – volume: 2 start-page: 409 year: 2018 end-page: 421 ident: CR4 article-title: Extending the application of biocatalysis to meet the challenges of drug development publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0055-1 – volume: 329 start-page: 309 year: 2010 end-page: 313 ident: CR72 article-title: Computational design of an enzyme catalyst for a stereoselective bimolecular Diels–Alder reaction publication-title: Science doi: 10.1126/science.1190239 – volume: 537 start-page: 661 year: 2016 end-page: 665 ident: CR24 article-title: Directed evolution of artificial metalloenzymes for in vivo metathesis publication-title: Nature doi: 10.1038/nature19114 – volume: 56 start-page: 15580 year: 2017 end-page: 15583 ident: CR37 article-title: A de novo heterodimeric Due Ferri protein minimizes the release of reactive intermediates in dioxygen-dependent oxidation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201707637 – volume: 260 start-page: 337 year: 1993 end-page: 339 ident: CR67 article-title: Controlling chemical reactivity with antibodies publication-title: Science doi: 10.1126/science.10049109 – volume: 1 start-page: 913 year: 2021 end-page: 918 ident: CR51 article-title: A noncanonical tryptophan analogue reveals an active site hydrogen bond controlling ferryl reactivity in a heme peroxidase publication-title: JACS Au doi: 10.1021/jacsau.1c00145 – volume: 600 start-page: 547 year: 2021 end-page: 552 ident: CR96 article-title: De novo protein design by deep network hallucination publication-title: Nature doi: 10.1038/s41586-021-04184-w – volume: 360 start-page: 71 year: 2018 end-page: 75 ident: CR18 article-title: Enzymatic construction of highly strained carbocycles publication-title: Science doi: 10.1126/science.aar4239 – volume: 8 start-page: 749 year: 2013 end-page: 757 ident: CR82 article-title: Computational design of enone-binding proteins with catalytic activity for the Morita–Baylis–Hillman reaction publication-title: ACS Chem. Biol. doi: 10.1021/cb3006227 – volume: 11 start-page: 12433 year: 2021 end-page: 12445 ident: CR98 article-title: Machine-directed evolution of an imine reductase for activity and stereoselectivity publication-title: ACS Catal. doi: 10.1021/acscatal.1c02786 – volume: 1 start-page: 578 year: 2018 end-page: 584 ident: CR104 article-title: Capture and characterization of a reactive haem–carbenoid complex in an artificial metalloenzyme publication-title: Nat. Catal. doi: 10.1038/s41929-018-0105-6 – volume: 111 start-page: 8013 year: 2014 end-page: 8018 ident: CR74 article-title: Impact of scaffold rigidity on the design and evolution of an artificial Diels–Alderase publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1401073111 – volume: 9 start-page: 5480 year: 2019 end-page: 5485 ident: CR111 article-title: Computational design of multisubstrate enzyme specificity publication-title: ACS Catal. doi: 10.1021/acscatal.9b01464 – volume: 129 start-page: 13374 year: 2007 end-page: 13375 ident: CR40 article-title: Controlling protein–protein interactions through metal coordination: assembly of a 16-helix bundle protein publication-title: J. Am. Chem. Soc doi: 10.1021/ja075261o – volume: 19 start-page: 1817 year: 2010 end-page: 1819 ident: CR23 article-title: An exciting but challenging road ahead for computational enzyme design publication-title: Protein Sci. doi: 10.1002/pro.481 – volume: 13 start-page: 1253 year: 2017 end-page: 1260 ident: CR15 article-title: Continuous directed evolution of aminoacyl-tRNA synthetases publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2474 – volume: 107 start-page: 5570 year: 2007 end-page: 5595 ident: CR109 article-title: Chiral dialkylaminopyridine catalysts in asymmetric synthesis publication-title: Chem. Rev. doi: 10.1021/cr068370e – volume: 140 start-page: 15997 year: 2018 end-page: 16000 ident: CR52 article-title: Enhancing protein stability with genetically encoded noncanonical amino acids publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07157 – volume: 5 start-page: 882 year: 2009 end-page: 884 ident: CR33 article-title: An artificial di-iron oxo-protein with phenol oxidase activity publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.257 – volume: 33 start-page: 745 year: 2000 end-page: 754 ident: CR31 article-title: De novo design of helical bundles as models for understanding protein folding and function publication-title: Acc. Chem. Res. doi: 10.1021/ar970004h – volume: 4 start-page: 118 year: 2011 end-page: 123 ident: CR35 article-title: Hydrolytic catalysis and structural stabilization in a designed metalloprotein publication-title: Nat. Chem. doi: 10.1038/nchem.1201 – volume: 52 start-page: 1148 year: 2019 end-page: 1159 ident: CR38 article-title: De novo design of four-helix bundle metalloproteins: one scaffold, diverse reactivities publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00674 – volume: 14 start-page: 313 year: 2022 end-page: 320 ident: CR76 article-title: Engineering an efficient and enantioselective enzyme for the Morita–Baylis–Hillman reaction publication-title: Nat. Chem. doi: 10.1038/s41557-021-00833-9 – volume: 59 start-page: 13204 year: 2020 end-page: 13231 ident: CR9 article-title: The crucial role of methodology development in directed evolution of selective enzymes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201901491 – volume: 133 start-page: 13906 year: 2011 end-page: 13909 ident: CR48 article-title: Probing eudesmane cation−π interactions in catalysis by aristolochene synthase with non-canonical amino acids publication-title: J. Am. Chem. Soc. doi: 10.1021/ja205927u – volume: 234 start-page: 1566 year: 1986 end-page: 1570 ident: CR63 article-title: Catalytic antibodies publication-title: Science doi: 10.1126/science.3787261 – volume: 107 start-page: 5471 year: 2007 end-page: 5569 ident: CR107 article-title: Asymmetric enamine catalysis publication-title: Chem. Rev. doi: 10.1021/cr0684016 – volume: 79 start-page: 413 year: 2010 end-page: 444 ident: CR46 article-title: Adding new chemistries to the genetic code publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.052308.105824 – volume: 262 start-page: 204 year: 1993 end-page: 208 ident: CR65 article-title: Control of the exo and endo pathways of the Diels–Alder reaction by antibody catalysis publication-title: Science doi: 10.1126/science.8211138 – volume: 316 start-page: 582 year: 2007 end-page: 585 ident: CR110 article-title: Enantioselective organocatalysis using SOMO activation publication-title: Science doi: 10.1126/science.1142696 – volume: 116 start-page: 8852 year: 2019 end-page: 8858 ident: CR100 article-title: Machine learning-assisted directed protein evolution with combinatorial libraries publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1901979116 – volume: 270 start-page: 1797 year: 1995 end-page: 1800 ident: CR64 article-title: Efficient aldolase catalytic antibodies that use the enamine mechanism of natural enzymes publication-title: Science doi: 10.1126/science.270.5243.1797 – volume: 116 start-page: 8852 year: 2019 ident: 4456_CR100 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1901979116 – volume: 2 start-page: 909 year: 2019 ident: 4456_CR3 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0341-4 – volume: 56 start-page: 15580 year: 2017 ident: 4456_CR37 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201707637 – volume: 21 start-page: 1241 year: 2012 ident: 4456_CR112 publication-title: Protein Sci. doi: 10.1002/pro.2128 – volume: 107 start-page: 5713 year: 2007 ident: 4456_CR108 publication-title: Chem. Rev. doi: 10.1021/cr068373r – volume: 362 start-page: 1285 year: 2018 ident: 4456_CR43 publication-title: Science doi: 10.1126/science.aau3744 – volume: 117 start-page: 7208 year: 2020 ident: 4456_CR91 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1914808117 – volume: 485 start-page: 185 year: 2012 ident: 4456_CR6 publication-title: Nature doi: 10.1038/nature11117 – volume: 140 start-page: 15997 year: 2018 ident: 4456_CR52 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07157 – volume: 319 start-page: 1387 year: 2008 ident: 4456_CR71 publication-title: Science doi: 10.1126/science.1152692 – volume: 19 start-page: 1817 year: 2010 ident: 4456_CR23 publication-title: Protein Sci. doi: 10.1002/pro.481 – volume: 10 start-page: 2735 year: 2020 ident: 4456_CR50 publication-title: ACS Catal. doi: 10.1021/acscatal.9b05129 – volume: 8 start-page: 837 year: 2016 ident: 4456_CR60 publication-title: Nat. Chem. doi: 10.1038/nchem.2555 – volume: 4 start-page: 118 year: 2011 ident: 4456_CR35 publication-title: Nat. Chem. doi: 10.1038/nchem.1201 – volume: 69 start-page: 751 year: 2000 ident: 4456_CR68 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.69.1.751 – volume: 234 start-page: 1566 year: 1986 ident: 4456_CR63 publication-title: Science doi: 10.1126/science.3787261 – volume: 10 start-page: 386 year: 2014 ident: 4456_CR58 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1498 – volume: 537 start-page: 320 year: 2016 ident: 4456_CR89 publication-title: Nature doi: 10.1038/nature19946 – volume: 107 start-page: 5416 year: 2007 ident: 4456_CR106 publication-title: Chem. Rev. doi: 10.1021/cr068388p – volume: 462 start-page: 1079 year: 2009 ident: 4456_CR29 publication-title: Nature doi: 10.1038/nature08620 – volume: 338 start-page: 500 year: 2012 ident: 4456_CR27 publication-title: Science doi: 10.1126/science.1226132 – volume: 133 start-page: 13906 year: 2011 ident: 4456_CR48 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja205927u – volume: 600 start-page: 547 year: 2021 ident: 4456_CR96 publication-title: Nature doi: 10.1038/s41586-021-04184-w – volume: 117 start-page: 1419 year: 2020 ident: 4456_CR36 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1915054117 – volume: 87 start-page: 131 year: 2018 ident: 4456_CR7 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-062917-012034 – volume: 2 start-page: 409 year: 2018 ident: 4456_CR4 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0055-1 – volume: 316 start-page: 582 year: 2007 ident: 4456_CR110 publication-title: Science doi: 10.1126/science.1142696 – volume: 107 start-page: 5570 year: 2007 ident: 4456_CR109 publication-title: Chem. Rev. doi: 10.1021/cr068370e – volume: 9 start-page: 5480 year: 2019 ident: 4456_CR111 publication-title: ACS Catal. doi: 10.1021/acscatal.9b01464 – volume: 10 start-page: 1210 year: 2020 ident: 4456_CR97 publication-title: ACS Catal. doi: 10.1021/acscatal.9b04321 – volume: 596 start-page: 583 year: 2021 ident: 4456_CR95 publication-title: Nature doi: 10.1038/s41586-021-03819-2 – volume: 28 start-page: 2036 year: 2019 ident: 4456_CR86 publication-title: Protein Sci. doi: 10.1002/pro.3757 – volume: 561 start-page: 485 year: 2018 ident: 4456_CR90 publication-title: Nature doi: 10.1038/s41586-018-0509-0 – volume: 329 start-page: 305 year: 2010 ident: 4456_CR1 publication-title: Science doi: 10.1126/science.1188934 – volume: 13 start-page: 1017 year: 2021 ident: 4456_CR85 publication-title: Nat. Chem. doi: 10.1038/s41557-021-00763-6 – volume: 361 start-page: 1098 year: 2018 ident: 4456_CR30 publication-title: Science doi: 10.1126/science.aat8474 – volume: 14 start-page: 313 year: 2022 ident: 4456_CR76 publication-title: Nat. Chem. doi: 10.1038/s41557-021-00833-9 – volume: 107 start-page: 5471 year: 2007 ident: 4456_CR107 publication-title: Chem. Rev. doi: 10.1021/cr0684016 – volume: 503 start-page: 418 year: 2013 ident: 4456_CR73 publication-title: Nature doi: 10.1038/nature12623 – volume: 9 start-page: 9683 year: 2019 ident: 4456_CR105 publication-title: ACS Catal. doi: 10.1021/acscatal.9b02272 – volume: 129 start-page: 15060 year: 2007 ident: 4456_CR47 publication-title: J. Am. Chem. Soc doi: 10.1021/ja076043y – volume: 51 start-page: 3933 year: 2012 ident: 4456_CR42 publication-title: Biochemistry doi: 10.1021/bi201881p – volume: 138 start-page: 11890 year: 2016 ident: 4456_CR49 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b06843 – volume: 21 start-page: 408 year: 2003 ident: 4456_CR10 publication-title: Trends Biotechnol. doi: 10.1016/S0167-7799(03)00194-X – volume: 107 start-page: 4004 year: 2010 ident: 4456_CR12 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0910781107 – volume: 262 start-page: 204 year: 1993 ident: 4456_CR65 publication-title: Science doi: 10.1126/science.8211138 – volume: 82 start-page: 447 year: 2013 ident: 4456_CR22 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-072611-101825 – volume: 13 start-page: 312 year: 2021 ident: 4456_CR20 publication-title: Nat. Chem. doi: 10.1038/s41557-020-00633-7 – volume: 55 start-page: 136 year: 2020 ident: 4456_CR54 publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2020.01.006 – volume: 366 start-page: 1255 year: 2019 ident: 4456_CR2 publication-title: Science doi: 10.1126/science.aay8484 – volume: 570 start-page: 219 year: 2019 ident: 4456_CR55 publication-title: Nature doi: 10.1038/s41586-019-1262-8 – volume: 134 start-page: 375 year: 2012 ident: 4456_CR41 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja208015j – volume: 260 start-page: 337 year: 1993 ident: 4456_CR67 publication-title: Science doi: 10.1126/science.10049109 – volume: 364 start-page: 1166 year: 2019 ident: 4456_CR19 publication-title: Science doi: 10.1126/science.aaw1143 – volume: 9 start-page: 257 year: 2017 ident: 4456_CR28 publication-title: Nat. Chem. doi: 10.1038/nchem.2643 – volume: 13 start-page: e1005786 year: 2017 ident: 4456_CR99 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005786 – volume: 15 start-page: 421 year: 2011 ident: 4456_CR34 publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2011.03.006 – volume: 11 year: 2020 ident: 4456_CR78 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18619-x – volume: 2 start-page: 740 year: 2019 ident: 4456_CR13 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0340-5 – volume: 293 start-page: 1806 year: 2001 ident: 4456_CR66 publication-title: Science doi: 10.1126/science.1062722 – volume: 107 start-page: 16869 year: 2010 ident: 4456_CR84 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1010381107 – volume: 175 start-page: 1946 year: 2018 ident: 4456_CR16 publication-title: Cell doi: 10.1016/j.cell.2018.10.021 – volume: 5 start-page: 567 year: 2009 ident: 4456_CR5 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.203 – volume: 53 start-page: 106 year: 2018 ident: 4456_CR26 publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2017.12.008 – volume: 1 start-page: 913 year: 2021 ident: 4456_CR51 publication-title: JACS Au doi: 10.1021/jacsau.1c00145 – volume: 369 start-page: 1132 year: 2021 ident: 4456_CR88 publication-title: Science doi: 10.1126/science.abc0881 – volume: 270 start-page: 1797 year: 1995 ident: 4456_CR64 publication-title: Science doi: 10.1126/science.270.5243.1797 – volume: 134 start-page: 16197 year: 2012 ident: 4456_CR57 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3037367 – volume: 15 start-page: 323 year: 2004 ident: 4456_CR11 publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2004.06.001 – volume: 129 start-page: 13374 year: 2007 ident: 4456_CR40 publication-title: J. Am. Chem. Soc doi: 10.1021/ja075261o – volume: 21 start-page: 717 year: 2012 ident: 4456_CR79 publication-title: Protein Sci. doi: 10.1002/pro.2059 – volume: 9 start-page: 50 year: 2017 ident: 4456_CR75 publication-title: Nat. Chem. doi: 10.1038/nchem.2596 – volume: 9 start-page: 494 year: 2013 ident: 4456_CR80 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1276 – ident: 4456_CR101 doi: 10.1101/2020.11.29.402743 – volume: 369 start-page: 440 year: 2020 ident: 4456_CR102 publication-title: Science doi: 10.1126/science.aba3304 – volume: 565 start-page: 67 year: 2018 ident: 4456_CR17 publication-title: Nature doi: 10.1038/s41586-018-0808-5 – volume: 59 start-page: 13204 year: 2020 ident: 4456_CR9 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201901491 – volume: 10 start-page: 946 year: 2018 ident: 4456_CR61 publication-title: Nat. Chem. doi: 10.1038/s41557-018-0082-z – volume: 329 start-page: 309 year: 2010 ident: 4456_CR72 publication-title: Science doi: 10.1126/science.1190239 – volume: 4 start-page: 900 year: 2012 ident: 4456_CR39 publication-title: Nat. Chem. doi: 10.1038/nchem.1454 – volume: 537 start-page: 661 year: 2016 ident: 4456_CR24 publication-title: Nature doi: 10.1038/nature19114 – volume: 33 start-page: 745 year: 2000 ident: 4456_CR31 publication-title: Acc. Chem. Res. doi: 10.1021/ar970004h – volume: 472 start-page: 499 year: 2011 ident: 4456_CR14 publication-title: Nature doi: 10.1038/nature09929 – volume: 8 start-page: 749 year: 2013 ident: 4456_CR82 publication-title: ACS Chem. Biol. doi: 10.1021/cb3006227 – volume: 13 start-page: 1280 year: 2017 ident: 4456_CR87 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2503 – volume: 11 start-page: 12433 year: 2021 ident: 4456_CR98 publication-title: ACS Catal. doi: 10.1021/acscatal.1c02786 – volume: 111 start-page: 8013 year: 2014 ident: 4456_CR74 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1401073111 – ident: 4456_CR103 doi: 10.1101/2021.11.10.468128 – volume: 140 start-page: 13171 year: 2018 ident: 4456_CR25 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07189 – volume: 109 start-page: 3790 year: 2012 ident: 4456_CR70 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1118082108 – volume: 12 year: 2021 ident: 4456_CR93 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21511-x – volume: 453 start-page: 190 year: 2008 ident: 4456_CR69 publication-title: Nature doi: 10.1038/nature06879 – volume: 577 start-page: 706 year: 2020 ident: 4456_CR92 publication-title: Nature doi: 10.1038/s41586-019-1923-7 – volume: 57 start-page: 4143 year: 2018 ident: 4456_CR8 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201708408 – volume: 30 start-page: 190 year: 2012 ident: 4456_CR81 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2109 – volume: 1 start-page: 578 year: 2018 ident: 4456_CR104 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0105-6 – volume: 58 start-page: 2083 year: 2019 ident: 4456_CR62 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201813499 – volume: 98 start-page: 14274 year: 2001 ident: 4456_CR56 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.251555398 – volume: 5 start-page: 882 year: 2009 ident: 4456_CR33 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.257 – volume: 373 start-page: 871 year: 2021 ident: 4456_CR94 publication-title: Science doi: 10.1126/science.abj8754 – volume: 52 start-page: 1148 year: 2019 ident: 4456_CR38 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00674 – volume: 550 start-page: 53 year: 2017 ident: 4456_CR45 publication-title: Nature doi: 10.1038/nature24031 – volume: 360 start-page: 71 year: 2018 ident: 4456_CR18 publication-title: Science doi: 10.1126/science.aar4239 – volume: 79 start-page: 413 year: 2010 ident: 4456_CR46 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.052308.105824 – volume: 138 start-page: 11344 year: 2016 ident: 4456_CR53 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b07029 – volume: 13 start-page: 1253 year: 2017 ident: 4456_CR15 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2474 – volume: 52 start-page: 5700 year: 2013 ident: 4456_CR21 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201204077 – volume: 137 start-page: 14905 year: 2015 ident: 4456_CR59 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b07812 – volume: 19 start-page: 1760 year: 2010 ident: 4456_CR83 publication-title: Protein Sci. doi: 10.1002/pro.462 – volume: 370 start-page: 1442 year: 2020 ident: 4456_CR77 publication-title: Science doi: 10.1126/science.abd3623 – volume: 25 start-page: 3045 year: 2006 ident: 4456_CR32 publication-title: Dalton Trans. doi: 10.1039/b514972j – volume: 13 start-page: 231 year: 2021 ident: 4456_CR44 publication-title: Nat. Chem. doi: 10.1038/s41557-020-00628-4 |
| SSID | ssj0005174 |
| Score | 2.7137444 |
| SecondaryResourceType | review_article |
| Snippet | The ability to design efficient enzymes from scratch would have a profound effect on chemistry, biotechnology and medicine. Rapid progress in protein... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 49 |
| SubjectTerms | 119/118 631/92/606 639/638/77/603 Binding sites Biocatalysis Biocatalysts Biotechnology Biotechnology - methods Biotechnology - trends Catalysis Catalysts Cofactors Computer applications Deep learning Design Engineering Enzymes Humanities and Social Sciences Laboratories Ligands multidisciplinary Protein engineering Protein Engineering - methods Protein Engineering - trends Protein structure Proteins Proteins - chemistry Proteins - metabolism Review Article Robust design Science Science (multidisciplinary) Structural analysis Zinc |
| Title | The road to fully programmable protein catalysis |
| URI | https://link.springer.com/article/10.1038/s41586-022-04456-z https://www.ncbi.nlm.nih.gov/pubmed/35650353 https://www.proquest.com/docview/2672992903 https://www.proquest.com/docview/2672705115 |
| Volume | 606 |
| WOSCitedRecordID | wos000804867100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAQT databaseName: Nature customDbUrl: eissn: 1476-4687 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: RNT dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.nature.com providerName: Nature Publishing – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1476-4687 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: P5Z dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M0K dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7P dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PCBAR dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1476-4687 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7S dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PATMY dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-4687 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7X7 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: KB. dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7RV dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1476-4687 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: BENPR dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1476-4687 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2M dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 8C1 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1476-4687 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2O dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2P dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9RAEB60VdAHtWfV01pW8EHRbZNMNrt9EltahNLzqD84fAnJbgIFTerlWmj_emc2e3dqsS--fBCymyyZ2czszuw3AC8xc7UqnZNMCiuZr0QWSaqlKndcig4x06UvNqFHIzOZ7IzDhlsX0irn_0T_o3at5T3y7SQjN5BseYTvTn9KrhrF0dVQQuMmrMbsG5M-6-OvyxSPv1iYw6GZCM12R4bLcPptIqOUhigv_zRMV7zNK5FSb4AO7v_v0B_AveB6ive9rqzBjaoZwN3fCAkHcNsnhNpuAGth0nfiVWCmfv0QIlIqMW0LJ2at4I37CxHyu37wCSzhSR9OGuH3hJjqZB2-HOx_3vsgQ8kFaVGrmcQy1VgpWmFnmhePLq1jdLq2ikTHUdJCVdpgkZDfZrFKamtLWiFirVyhTY34CFaatqmegDBkfWtbRDYrqjQztnSR1a52OlUcji2HEM-_d24DHzmXxfie-7g4mryXUU4yyr2M8sshvFn0Oe3ZOK5tvTGXRx5mZpcvhTGEF4vbNKc4UFI0VXvWt9GkPbEawuNe_IvXIXnAESrq_XauD8uH_3ssT68fyzO4k3hdZJXcgJXZ9Kx6Drfs-eykm256rWacaI-G0OzFm7C6uz8aH9PV4e4W4VF0yJgcefzoccyoe_xEOFbffgEEIgYi |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dT9UwFD8hqBEfUK4fXEWtiSYabdjtWdfyYIxBCQS88QET3urWdgkJbnB30cAf5d_IabddUCJvPPi8dut6vntOfwfgJWaulIVzPIDC8oBXwnORKi6LNZeiQ8xUEZtNqPFY7-2tfZ2D3_1dmFBW2evEqKhdbcMZ-arIyA0kW57gh8MjHrpGhexq30KjZYttf_KLQrbm_dYnou8rITY-765v8q6rALeo5JRjkSr0koLITIX4yKXlCJ0qraTVhURgLr3SmAtyTSx6UVpbUBCEpXS50mU4ACWVfyNFgUGK9PqFkpK_UJ-7SzoJ6tWGDKUO5b6CJyltCT_90xBe8m4vZWajwdu4-79t1T1Y7Fxr9rGVhSWY89UA7lwAXBzArVjwapsBLHVKrWGvO-TtN_chIaFhkzp3bFqzkJg4YV392o9ww4xFUIv9isUzrwDl8gC-XcsfPYT5qq78MjBN3kVp88RmuU8zbQuXWOVKp1IZ0s3FEEY9fY3t8NZD248DE_P-qE3LE4Z4wkSeMKdDeDubc9iijVw5eqWnv-k0T2POiT-EF7PHpDNCIiivfH3cjlHErSM5hEctu80-h-ThJyhp9rue_85f_u-1PL56Lc_h9ubulx2zszXefgILIspBEIcVmJ9Ojv1TuGl_TvebybMoUQy-XzdfngGBvlYc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VpaByoO3yWihgJJBAYG3WjuP0gKqKdkVVtNoDSL2ZxA-pUknKZgtqf1p_XceOswtU9NYD5ziJH9887Bl_A_CKZ8aJ0hjqSWGp5yuhBUslFeWWSbnhPJNlKDYhx-P88HBrsgQX3V0Yn1bZ6cSgqE2t_Rn5gGXoBqItT_jAxbSIye5o--QH9RWkfKS1K6fRQuTAnv3C7VvzYX8X1_o1Y6O9Lx8_0VhhgGouxYzyMpXcCtxQZtLvlUzqhtxIpwX21AcFC2FlzguGbormljmtS9wQcSdMIXPnD0NR_d-SaZawkDY4WaSX_MUAHS_sJDwfNGg0c5_6y2iS4vTQ8z-N4hVP90qUNhi_0dr_PG3rcC-63GSnlZENWLJVD-7-RsTYg9shEVY3PdiIyq4hbyIj99v7kKAwkWldGDKriR_gGYl5bd_9zTMSyC6OKhLOwjzFywP4eiMjegjLVV3Zx0By9DqcLhKdFTbNcl2aREvjjEyFD0OXfRh2a6105GH35UCOVcgH4Llq8aEQHyrgQ5334d38nZOWheTa1psdFlTUSI1aAKEPL-ePUZf4AFFR2fq0bSMRuUPRh0ct9Oa_4-j5J1zg2-87LC4-_u--PLm-Ly_gDsJRfd4fHzyFVRZEwkvGJizPpqf2Gazon7OjZvo8CBeBbzcNy0sZB18o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+road+to+fully+programmable+protein+catalysis&rft.jtitle=Nature+%28London%29&rft.au=Lovelock%2C+Sarah+L.&rft.au=Crawshaw%2C+Rebecca&rft.au=Basler%2C+Sophie&rft.au=Levy%2C+Colin&rft.date=2022-06-02&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=606&rft.issue=7912&rft.spage=49&rft.epage=58&rft_id=info:doi/10.1038%2Fs41586-022-04456-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41586_022_04456_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |