Multimodal large language models for bioimage analysis
Multimodal large language models have been recognized as a historical milestone in the field of artificial intelligence and have demonstrated revolutionary potentials not only in commercial applications, but also for many scientific fields. Here we give a brief overview of multimodal large language...
Uložené v:
| Vydané v: | Nature methods Ročník 21; číslo 8; s. 1390 - 1393 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Nature Publishing Group US
01.08.2024
Nature Publishing Group |
| Predmet: | |
| ISSN: | 1548-7091, 1548-7105, 1548-7105 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Multimodal large language models have been recognized as a historical milestone in the field of artificial intelligence and have demonstrated revolutionary potentials not only in commercial applications, but also for many scientific fields. Here we give a brief overview of multimodal large language models through the lens of bioimage analysis and discuss how we could build these models as a community to facilitate biology research. |
|---|---|
| AbstractList | Multimodal large language models have been recognized as a historical milestone in the field of artificial intelligence and have demonstrated revolutionary potentials not only in commercial applications, but also for many scientific fields. Here we give a brief overview of multimodal large language models through the lens of bioimage analysis and discuss how we could build these models as a community to facilitate biology research. |
| Author | Zhang, Shanghang Dai, Gaole Chen, Jianxu Huang, Tiejun |
| Author_xml | – sequence: 1 givenname: Shanghang orcidid: 0000-0003-4047-3526 surname: Zhang fullname: Zhang, Shanghang email: shanghang@pku.edu.cn organization: State Key Laboratory of Multimedia Information Processing, School of Computer Science, Peking University – sequence: 2 givenname: Gaole surname: Dai fullname: Dai, Gaole organization: State Key Laboratory of Multimedia Information Processing, School of Computer Science, Peking University – sequence: 3 givenname: Tiejun surname: Huang fullname: Huang, Tiejun organization: State Key Laboratory of Multimedia Information Processing, School of Computer Science, Peking University – sequence: 4 givenname: Jianxu orcidid: 0000-0002-8500-1357 surname: Chen fullname: Chen, Jianxu email: jianxu.chen@isas.de organization: Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39122942$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kD9PwzAQxS1URGnhCzCgSiwsAZ_tNPaIKv5JRSwwW05iV66cuNjJ0G-PS1ohdejg8-n0e6d3b4JGrW81QjeAHwBT_hgZ5IJkmLD0KGUZOUOXkDOeFYDz0aHHAsZoEuMa4wSR_AKNqQBCBCOXaP7Ru842vlZu5lRY6VTbVa9Sk4baxZnxYVZab5vdTLXKbaONV-jcKBf19f6fou-X56_FW7b8fH1fPC2zihZ5lxFTi7LGYIwATRmnJa5gTquCUQ5CGKK54pqweUkKKAxjQuRsTgvNC6O1AjpF98PeTfA_vY6dbGystEsmte-jpOk4wikQkdC7I3Tt-5D8DhQGgSFP1O2e6stG13IT0mFhKw-JJIAPQBV8jEEbWdlOdda3XVDWScByF74cwpcpfPkXvtxJyZH0sP2kiA6imOB2pcO_7ROqXyLBk9I |
| CitedBy_id | crossref_primary_10_1038_s44303_025_00092_0 crossref_primary_10_1016_j_eng_2025_08_021 crossref_primary_10_3390_bios14110537 crossref_primary_10_1038_s41592_024_02391_7 |
| Cites_doi | 10.1038/s41592-019-0708-0 10.1101/2023.08.21.554208 10.1109/ICCV51070.2023.00371 10.1038/s41592-024-02310-w 10.1038/s41592-023-01912-0 10.1101/2023.10.31.565037 10.1038/s42256-023-00626-4 10.1038/s41592-024-02244-3 10.1038/s41592-024-02201-0 10.1101/2024.04.15.589472 10.1007/978-1-4842-6576-5 10.48550/arXiv.2001.08361 10.1038/s41592-022-01588-y |
| ContentType | Journal Article |
| Copyright | Springer Nature America, Inc. 2024 Springer Nature America, Inc. 2024. |
| Copyright_xml | – notice: Springer Nature America, Inc. 2024 – notice: Springer Nature America, Inc. 2024. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QO 7SS 7TK 7U9 7X2 7X7 7XB 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. L6V LK8 M0K M0S M1P M2P M7N M7P M7S P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U RC3 7X8 |
| DOI | 10.1038/s41592-024-02334-2 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1548-7105 |
| EndPage | 1393 |
| ExternalDocumentID | 39122942 10_1038_s41592_024_02334_2 |
| Genre | Letter Journal Article Correspondence |
| GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 7X2 7X7 7XC 88E 88I 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AAHBH AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACGOD ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFRAH AFSHS AGAYW AHBCP AHMBA AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ BVXVI CCPQU CS3 D1I D1J D1K DB5 DU5 DWQXO EBS EE. EJD EMOBN ESX F5P FEDTE FSGXE FYUFA FZEXT GNUQQ HCIFZ HMCUK HVGLF HZ~ IAO IHR INH INR ITC K6- KB. L6V LK5 LK8 M0K M1P M2P M7P M7R M7S NNMJJ O9- ODYON P2P P62 PATMY PCBAR PDBOC PQQKQ PROAC PSQYO PTHSS PYCSY Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX AFFHD AGSTI ATHPR CITATION NFIDA PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7QL 7QO 7SS 7TK 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
| ID | FETCH-LOGICAL-c375t-2fd9bd01ff91e3483b0c163c7438199f2e8a8e246b2717f449954637e87feea13 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001297657900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1548-7091 1548-7105 |
| IngestDate | Sun Nov 09 14:21:18 EST 2025 Sun Nov 30 04:20:37 EST 2025 Wed Feb 19 02:08:58 EST 2025 Tue Nov 18 22:25:18 EST 2025 Sat Nov 29 01:48:15 EST 2025 Fri Feb 21 02:37:45 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c375t-2fd9bd01ff91e3483b0c163c7438199f2e8a8e246b2717f449954637e87feea13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Correspondence-1 |
| ORCID | 0000-0002-8500-1357 0000-0003-4047-3526 |
| PMID | 39122942 |
| PQID | 3091019015 |
| PQPubID | 28015 |
| PageCount | 4 |
| ParticipantIDs | proquest_miscellaneous_3091283129 proquest_journals_3091019015 pubmed_primary_39122942 crossref_citationtrail_10_1038_s41592_024_02334_2 crossref_primary_10_1038_s41592_024_02334_2 springer_journals_10_1038_s41592_024_02334_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationSubtitle | Techniques for life scientists and chemists |
| PublicationTitle | Nature methods |
| PublicationTitleAbbrev | Nat Methods |
| PublicationTitleAlternate | Nat Methods |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group US Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
| References | Ngiam, J. et al. Multimodal deep learning. In ICML’11: Proc 28th International Conf. on Machine Learning (eds Getoor, L. & Scheffer, T.) 689–696 (Omnipress, 2011). CuiHNat. Methods202410.1038/s41592-024-02201-038491270 DingNNat. Mach. Intell.2023522023510.1038/s42256-023-00626-4 Liu, K. & Prabhakar, V. Preprint at bioRxivhttps://doi.org/10.1101/2023.10.31.565037 (2023). AlvelidJDamentiMSgattoniCTestaINat. Methods202219126812751:CAS:528:DC%2BB38XitlKmt7jN10.1038/s41592-022-01588-y360760379550628 Schaar, A. C. et al. Preprint at bioRxivhttps://doi.org/10.1101/2024.04.15.589472 (2024). Kaplan, J. et al. Preprint at https://doi.org/10.48550/arXiv.2001.08361 (2020). Kirillov, A. et al. Segment anything. In Proc. IEEE/CVF International Conf. on Computer Vision, 4015–4026 (IEEE, 2023). StrackRNat. Methods202017231:CAS:528:DC%2BB3cXksFGhsw%3D%3D10.1038/s41592-019-0708-031907483 Royer, L. A. Nat. Methodshttps://doi.org/10.1038/s41592-024-02310-w (2024). MaCTanWHeRYanBNat. Methods202410.1038/s41592-024-02244-33902596911127718 Brown, T. et al. Language models are few-shot learners. In Adv. Neural Inf. Process. Syst. 33 (eds.) (2020). CarpenterAECiminiBAEliceiriKWNat. Methods2023209629641:CAS:528:DC%2BB3sXhsVGrurjK10.1038/s41592-023-01912-03743400110448787 Lewis, P. et al. Retrieval-augmented generation for knowledge-intensive NLP tasks. In Adv. Neural Inf. Process. Syst. 33 (eds) 9459–9474 (2020). Archit, A. et al. (2023). Preprint at bioRxivhttps://doi.org/10.1101/2023.08.21.554208 (2023) Patel, J. M. Getting Structured Data from the Internet: Running Web Crawlers/Scrapers on a Big Data Production Scale (Apress, 2020). 2334_CR4 2334_CR12 2334_CR6 2334_CR14 2334_CR13 2334_CR10 R Strack (2334_CR8) 2020; 17 N Ding (2334_CR16) 2023; 5 2334_CR1 2334_CR2 2334_CR3 C Ma (2334_CR9) 2024 H Cui (2334_CR11) 2024 J Alvelid (2334_CR5) 2022; 19 AE Carpenter (2334_CR7) 2023; 20 2334_CR15 |
| References_xml | – reference: Brown, T. et al. Language models are few-shot learners. In Adv. Neural Inf. Process. Syst. 33 (eds.) (2020). – reference: CarpenterAECiminiBAEliceiriKWNat. Methods2023209629641:CAS:528:DC%2BB3sXhsVGrurjK10.1038/s41592-023-01912-03743400110448787 – reference: Lewis, P. et al. Retrieval-augmented generation for knowledge-intensive NLP tasks. In Adv. Neural Inf. Process. Syst. 33 (eds) 9459–9474 (2020). – reference: MaCTanWHeRYanBNat. Methods202410.1038/s41592-024-02244-33902596911127718 – reference: Patel, J. M. Getting Structured Data from the Internet: Running Web Crawlers/Scrapers on a Big Data Production Scale (Apress, 2020). – reference: DingNNat. Mach. Intell.2023522023510.1038/s42256-023-00626-4 – reference: Schaar, A. C. et al. Preprint at bioRxivhttps://doi.org/10.1101/2024.04.15.589472 (2024). – reference: Ngiam, J. et al. Multimodal deep learning. In ICML’11: Proc 28th International Conf. on Machine Learning (eds Getoor, L. & Scheffer, T.) 689–696 (Omnipress, 2011). – reference: CuiHNat. Methods202410.1038/s41592-024-02201-038491270 – reference: Kirillov, A. et al. Segment anything. In Proc. IEEE/CVF International Conf. on Computer Vision, 4015–4026 (IEEE, 2023). – reference: StrackRNat. Methods202017231:CAS:528:DC%2BB3cXksFGhsw%3D%3D10.1038/s41592-019-0708-031907483 – reference: Kaplan, J. et al. Preprint at https://doi.org/10.48550/arXiv.2001.08361 (2020). – reference: AlvelidJDamentiMSgattoniCTestaINat. Methods202219126812751:CAS:528:DC%2BB38XitlKmt7jN10.1038/s41592-022-01588-y360760379550628 – reference: Liu, K. & Prabhakar, V. Preprint at bioRxivhttps://doi.org/10.1101/2023.10.31.565037 (2023). – reference: Royer, L. A. Nat. Methodshttps://doi.org/10.1038/s41592-024-02310-w (2024). – reference: Archit, A. et al. (2023). Preprint at bioRxivhttps://doi.org/10.1101/2023.08.21.554208 (2023) – volume: 17 start-page: 23 year: 2020 ident: 2334_CR8 publication-title: Nat. Methods doi: 10.1038/s41592-019-0708-0 – ident: 2334_CR10 doi: 10.1101/2023.08.21.554208 – ident: 2334_CR4 doi: 10.1109/ICCV51070.2023.00371 – ident: 2334_CR6 doi: 10.1038/s41592-024-02310-w – volume: 20 start-page: 962 year: 2023 ident: 2334_CR7 publication-title: Nat. Methods doi: 10.1038/s41592-023-01912-0 – ident: 2334_CR14 doi: 10.1101/2023.10.31.565037 – ident: 2334_CR3 – volume: 5 start-page: 220 year: 2023 ident: 2334_CR16 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-023-00626-4 – ident: 2334_CR2 – year: 2024 ident: 2334_CR9 publication-title: Nat. Methods doi: 10.1038/s41592-024-02244-3 – year: 2024 ident: 2334_CR11 publication-title: Nat. Methods doi: 10.1038/s41592-024-02201-0 – ident: 2334_CR12 doi: 10.1101/2024.04.15.589472 – ident: 2334_CR13 doi: 10.1007/978-1-4842-6576-5 – ident: 2334_CR1 doi: 10.48550/arXiv.2001.08361 – volume: 19 start-page: 1268 year: 2022 ident: 2334_CR5 publication-title: Nat. Methods doi: 10.1038/s41592-022-01588-y – ident: 2334_CR15 |
| SSID | ssj0033425 |
| Score | 2.4928582 |
| Snippet | Multimodal large language models have been recognized as a historical milestone in the field of artificial intelligence and have demonstrated revolutionary... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1390 |
| SubjectTerms | 631/114/1305 631/114/1564 Artificial intelligence Bioinformatics Biological Microscopy Biological Techniques Biology Biomedical and Life Sciences Biomedical Engineering/Biotechnology Comment Datasets Humans Image Processing, Computer-Assisted - methods Language Large language models Life Sciences Metadata Microscopy Proteomics Software |
| Title | Multimodal large language models for bioimage analysis |
| URI | https://link.springer.com/article/10.1038/s41592-024-02334-2 https://www.ncbi.nlm.nih.gov/pubmed/39122942 https://www.proquest.com/docview/3091019015 https://www.proquest.com/docview/3091283129 |
| Volume | 21 |
| WOSCitedRecordID | wos001297657900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1548-7105 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0033425 issn: 1548-7091 databaseCode: P5Z dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1548-7105 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0033425 issn: 1548-7091 databaseCode: M0K dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1548-7105 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0033425 issn: 1548-7091 databaseCode: M7P dateStart: 20220101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1548-7105 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0033425 issn: 1548-7091 databaseCode: PCBAR dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1548-7105 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0033425 issn: 1548-7091 databaseCode: M7S dateStart: 20220101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1548-7105 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0033425 issn: 1548-7091 databaseCode: PATMY dateStart: 20220101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1548-7105 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0033425 issn: 1548-7091 databaseCode: 7X7 dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1548-7105 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0033425 issn: 1548-7091 databaseCode: KB. dateStart: 20220101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1548-7105 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0033425 issn: 1548-7091 databaseCode: BENPR dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1548-7105 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0033425 issn: 1548-7091 databaseCode: M2P dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB-qVvBF-2HrtfbYQt9q6m6S3SRPRYtSEI-jH3D4suzmAw70Vm_vBP_7TrLZkyL64sMO7OZjQybJTDKT-QF8MdpQq3RKnEpzwpmRpJJWEIPClVueV1xVAWxCjEZyMlHjeODWRrfKfk0MC7VptD8jP2ResAXp9f36hnjUKG9djRAaa7CBmk3mXbrO6bhfiRnjAXTVa-VEYPl4aSZl8rBFweX9LinHBzMS-r9geqBtPrCUBgF0uvPcpr-C7ah6JkfdWHkNL-zsDWx2YJR3b6EId3GvGoN5Lr1_eNKfZSYBLqdNUL9N6mkzvfLfqhjNZBf-np78-fGTRFQFopnIF4Q6o2qTZs6pzDIuWZ1qVMq08MG-lHLUSuQW5UVNcavnOPcR4womrBTO2ipj72B91szsHiRGFxZZnUuHuzhndFUVudbU2ppnmls9gKzv0lLHkOMe-eKyDKZvJsuODSWyoQxsKOkAvq7KXHcBN57Mvd93eRknX1ve9_cAPq-Scdp4W0g1s82yy4OaFWo7A3jfcXj1O4ZJVHGs_KBn-X3lj7flw9Nt-QhbNAw37zy4D-uL-dJ-gpf6djFt50NYExMRqBzCxvHJaPwL386OvyE9T8-GYWB7Kjr6G-k4v_gHnDP4rA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9VAEJ8gaPQi4udTlJroSTa0u9t292AMAQkEfOGACbe13Z1NXgKvSB8a_in_Rme37SOEyI2Dh17a7XbSmZ2Pndn5AXxw1nHUNmVepzmTwilWKSyZI-MqUeaV1FUEmyjHY3V8rA8X4M9wFiaUVQ46MSpq19iwR74hgmGL1uvL2U8WUKNCdnWA0OjEYh8vf1PI1n7e2yb-fuR85-vR1i7rUQWYFWU-Y9w7Xbs0815nKKQSdWrJKbFlaHalteeoiFoui5pTqOOlDB3TClGiKj1ilQma9x4sydBZLJQK8sNB8wshI8hriAJYSfT2h3RSoTZaMpShzpNLumgg49cN4Q3v9kZmNhq8neX_7Vc9gce9a51sdmthBRZw-hQedGCbl8-giGeNTxtHY05C_Xsy7NUmEQ6oTch_T-pJMzkN96q-W8tz-H4nRL-AxWkzxVeQOFsgiXKuPEWp3tmqKnJrOWItMyvRjiAbWGhs31I9IHucmJjaF8p0bDfEdhPZbvgIPs3fOesaitw6enVgsemVS2uu-DuC9_PHpBZCrqeaYnPRjSHPkby5EbzsJGr-OUGPuJY0-fogYleT_5uW17fTsgYPd4--HZiDvfH-G3jEo6iHQslVWJydX-BbuG9_zSbt-bu4aBL4cdei9xeFv0vz |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8lAvvB9bCgQJTtTaxHYS-4AQoqyoilZ7AKniYhJ7LK3UbkqzLepf49d17CRboYreeuCQSzJxRpnPnhnPeAbgjbOOo7Yp8zrNmRROsUphyRwpV4kyr6SuYrOJcjpV-_t6tgZ_hrMwIa1yWBPjQu0aG_bIxyIotqi9xr5Pi5jtTD4c_WKhg1SItA7tNDqI7OHZb3Lf2ve7OyTrt5xPPn_79IX1HQaYFWW-ZNw7Xbs0815nKKQSdWrJQLFlKHylteeoiHMui5qT2-OlDNXTClGiKj1ilQka9wbcLMnHDOmEs_zHoAWEkLHha_AIWEm89wd2UqHGLSnNkPPJJV1EyPjfSvGSpXspShuV3-Te__zb7sPd3uROPnZz5AGs4eIh3O6acJ49giKeQT5sHNEchLz4ZNjDTWKboDYhuz6p5838MNyr-iouj-H7tTD9BNYXzQKfQeJsgQTxXHnyXr2zVVXk1nLEWmZWoh1BNojT2L7Ueuj4cWBiyF8o00HAEARMhIDhI3i3eueoKzRyJfXWIG7TLzqtuZD1CF6vHtNyEWJA1QKbk46GLEqy8kbwtEPX6nOCHnEtafDtAW4Xg_-bl82reXkFdwhx5uvudO85bPCI-pA_uQXry-MTfAG37Oly3h6_jPMngZ_Xjbxz-ixU3w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+large+language+models+for+bioimage+analysis&rft.jtitle=Nature+methods&rft.au=Zhang%2C+Shanghang&rft.au=Dai%2C+Gaole&rft.au=Huang%2C+Tiejun&rft.au=Chen%2C+Jianxu&rft.date=2024-08-01&rft.issn=1548-7091&rft.eissn=1548-7105&rft.volume=21&rft.issue=8&rft.spage=1390&rft.epage=1393&rft_id=info:doi/10.1038%2Fs41592-024-02334-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41592_024_02334_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7091&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7091&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7091&client=summon |