Voxel-level analysis of normalized DSC-PWI time-intensity curves: a potential generalizable approach and its proof of concept in discriminating glioblastoma and metastasis

Objective Standard DSC-PWI analyses are based on concrete parameters and values, but an approach that contemplates all points in the time-intensity curves and all voxels in the region-of-interest may provide improved information, and more generalizable models. Therefore, a method of DSC-PWI analysis...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European radiology Ročník 32; číslo 6; s. 3705 - 3715
Hlavní autoři: Pons-Escoda, Albert, Garcia-Ruiz, Alonso, Naval-Baudin, Pablo, Grussu, Francesco, Fernandez, Juan Jose Sanchez, Simo, Angels Camins, Sarro, Noemi Vidal, Fernandez-Coello, Alejandro, Bruna, Jordi, Cos, Monica, Perez-Lopez, Raquel, Majos, Carles
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2022
Springer Nature B.V
Témata:
ISSN:1432-1084, 0938-7994, 1432-1084
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Objective Standard DSC-PWI analyses are based on concrete parameters and values, but an approach that contemplates all points in the time-intensity curves and all voxels in the region-of-interest may provide improved information, and more generalizable models. Therefore, a method of DSC-PWI analysis by means of normalized time-intensity curves point-by-point and voxel-by-voxel is constructed, and its feasibility and performance are tested in presurgical discrimination of glioblastoma and metastasis. Methods In this retrospective study, patients with histologically confirmed glioblastoma or solitary-brain-metastases and presurgical-MR with DSC-PWI (August 2007–March 2020) were retrieved. The enhancing tumor and immediate peritumoral region were segmented on CE-T1wi and coregistered to DSC-PWI. Time-intensity curves of the segmentations were normalized to normal-appearing white matter. For each participant, average and all-voxel-matrix of normalized-curves were obtained. The 10 best discriminatory time-points between each type of tumor were selected. Then, an intensity-histogram analysis on each of these 10 time-points allowed the selection of the best discriminatory voxel-percentile for each. Separate classifier models were trained for enhancing tumor and peritumoral region using binary logistic regressions. Results A total of 428 patients (321 glioblastomas, 107 metastases) fulfilled the inclusion criteria (256 men; mean age, 60 years; range, 20–86 years). Satisfactory results were obtained to segregate glioblastoma and metastases in training and test sets with AUCs 0.71–0.83, independent accuracies 65–79%, and combined accuracies up to 81–88%. Conclusion This proof-of-concept study presents a different perspective on brain MR DSC-PWI evaluation by the inclusion of all time-points of the curves and all voxels of segmentations to generate robust diagnostic models of special interest in heterogeneous diseases and populations. The method allows satisfactory presurgical segregation of glioblastoma and metastases. Key Points • An original approach to brain MR DSC-PWI analysis, based on a point-by-point and voxel-by-voxel assessment of normalized time-intensity curves, is presented. • The method intends to extract optimized information from MR DSC-PWI sequences by impeding the potential loss of information that may represent the standard evaluation of single concrete perfusion parameters (cerebral blood volume, percentage of signal recovery, or peak height) and values (mean, maximum, or minimum). • The presented approach may be of special interest in technically heterogeneous samples, and intrinsically heterogeneous diseases. Its application enables satisfactory presurgical differentiation of GB and metastases, a usual but difficult diagnostic challenge for neuroradiologist with vital implications in patient management.
AbstractList Standard DSC-PWI analyses are based on concrete parameters and values, but an approach that contemplates all points in the time-intensity curves and all voxels in the region-of-interest may provide improved information, and more generalizable models. Therefore, a method of DSC-PWI analysis by means of normalized time-intensity curves point-by-point and voxel-by-voxel is constructed, and its feasibility and performance are tested in presurgical discrimination of glioblastoma and metastasis.OBJECTIVEStandard DSC-PWI analyses are based on concrete parameters and values, but an approach that contemplates all points in the time-intensity curves and all voxels in the region-of-interest may provide improved information, and more generalizable models. Therefore, a method of DSC-PWI analysis by means of normalized time-intensity curves point-by-point and voxel-by-voxel is constructed, and its feasibility and performance are tested in presurgical discrimination of glioblastoma and metastasis.In this retrospective study, patients with histologically confirmed glioblastoma or solitary-brain-metastases and presurgical-MR with DSC-PWI (August 2007-March 2020) were retrieved. The enhancing tumor and immediate peritumoral region were segmented on CE-T1wi and coregistered to DSC-PWI. Time-intensity curves of the segmentations were normalized to normal-appearing white matter. For each participant, average and all-voxel-matrix of normalized-curves were obtained. The 10 best discriminatory time-points between each type of tumor were selected. Then, an intensity-histogram analysis on each of these 10 time-points allowed the selection of the best discriminatory voxel-percentile for each. Separate classifier models were trained for enhancing tumor and peritumoral region using binary logistic regressions.METHODSIn this retrospective study, patients with histologically confirmed glioblastoma or solitary-brain-metastases and presurgical-MR with DSC-PWI (August 2007-March 2020) were retrieved. The enhancing tumor and immediate peritumoral region were segmented on CE-T1wi and coregistered to DSC-PWI. Time-intensity curves of the segmentations were normalized to normal-appearing white matter. For each participant, average and all-voxel-matrix of normalized-curves were obtained. The 10 best discriminatory time-points between each type of tumor were selected. Then, an intensity-histogram analysis on each of these 10 time-points allowed the selection of the best discriminatory voxel-percentile for each. Separate classifier models were trained for enhancing tumor and peritumoral region using binary logistic regressions.A total of 428 patients (321 glioblastomas, 107 metastases) fulfilled the inclusion criteria (256 men; mean age, 60 years; range, 20-86 years). Satisfactory results were obtained to segregate glioblastoma and metastases in training and test sets with AUCs 0.71-0.83, independent accuracies 65-79%, and combined accuracies up to 81-88%.RESULTSA total of 428 patients (321 glioblastomas, 107 metastases) fulfilled the inclusion criteria (256 men; mean age, 60 years; range, 20-86 years). Satisfactory results were obtained to segregate glioblastoma and metastases in training and test sets with AUCs 0.71-0.83, independent accuracies 65-79%, and combined accuracies up to 81-88%.This proof-of-concept study presents a different perspective on brain MR DSC-PWI evaluation by the inclusion of all time-points of the curves and all voxels of segmentations to generate robust diagnostic models of special interest in heterogeneous diseases and populations. The method allows satisfactory presurgical segregation of glioblastoma and metastases.CONCLUSIONThis proof-of-concept study presents a different perspective on brain MR DSC-PWI evaluation by the inclusion of all time-points of the curves and all voxels of segmentations to generate robust diagnostic models of special interest in heterogeneous diseases and populations. The method allows satisfactory presurgical segregation of glioblastoma and metastases.• An original approach to brain MR DSC-PWI analysis, based on a point-by-point and voxel-by-voxel assessment of normalized time-intensity curves, is presented. • The method intends to extract optimized information from MR DSC-PWI sequences by impeding the potential loss of information that may represent the standard evaluation of single concrete perfusion parameters (cerebral blood volume, percentage of signal recovery, or peak height) and values (mean, maximum, or minimum). • The presented approach may be of special interest in technically heterogeneous samples, and intrinsically heterogeneous diseases. Its application enables satisfactory presurgical differentiation of GB and metastases, a usual but difficult diagnostic challenge for neuroradiologist with vital implications in patient management.KEY POINTS• An original approach to brain MR DSC-PWI analysis, based on a point-by-point and voxel-by-voxel assessment of normalized time-intensity curves, is presented. • The method intends to extract optimized information from MR DSC-PWI sequences by impeding the potential loss of information that may represent the standard evaluation of single concrete perfusion parameters (cerebral blood volume, percentage of signal recovery, or peak height) and values (mean, maximum, or minimum). • The presented approach may be of special interest in technically heterogeneous samples, and intrinsically heterogeneous diseases. Its application enables satisfactory presurgical differentiation of GB and metastases, a usual but difficult diagnostic challenge for neuroradiologist with vital implications in patient management.
ObjectiveStandard DSC-PWI analyses are based on concrete parameters and values, but an approach that contemplates all points in the time-intensity curves and all voxels in the region-of-interest may provide improved information, and more generalizable models. Therefore, a method of DSC-PWI analysis by means of normalized time-intensity curves point-by-point and voxel-by-voxel is constructed, and its feasibility and performance are tested in presurgical discrimination of glioblastoma and metastasis.MethodsIn this retrospective study, patients with histologically confirmed glioblastoma or solitary-brain-metastases and presurgical-MR with DSC-PWI (August 2007–March 2020) were retrieved. The enhancing tumor and immediate peritumoral region were segmented on CE-T1wi and coregistered to DSC-PWI. Time-intensity curves of the segmentations were normalized to normal-appearing white matter. For each participant, average and all-voxel-matrix of normalized-curves were obtained. The 10 best discriminatory time-points between each type of tumor were selected. Then, an intensity-histogram analysis on each of these 10 time-points allowed the selection of the best discriminatory voxel-percentile for each. Separate classifier models were trained for enhancing tumor and peritumoral region using binary logistic regressions.ResultsA total of 428 patients (321 glioblastomas, 107 metastases) fulfilled the inclusion criteria (256 men; mean age, 60 years; range, 20–86 years). Satisfactory results were obtained to segregate glioblastoma and metastases in training and test sets with AUCs 0.71–0.83, independent accuracies 65–79%, and combined accuracies up to 81–88%.ConclusionThis proof-of-concept study presents a different perspective on brain MR DSC-PWI evaluation by the inclusion of all time-points of the curves and all voxels of segmentations to generate robust diagnostic models of special interest in heterogeneous diseases and populations. The method allows satisfactory presurgical segregation of glioblastoma and metastases.Key Points• An original approach to brain MR DSC-PWI analysis, based on a point-by-point and voxel-by-voxel assessment of normalized time-intensity curves, is presented.• The method intends to extract optimized information from MR DSC-PWI sequences by impeding the potential loss of information that may represent the standard evaluation of single concrete perfusion parameters (cerebral blood volume, percentage of signal recovery, or peak height) and values (mean, maximum, or minimum).• The presented approach may be of special interest in technically heterogeneous samples, and intrinsically heterogeneous diseases. Its application enables satisfactory presurgical differentiation of GB and metastases, a usual but difficult diagnostic challenge for neuroradiologist with vital implications in patient management.
Objective Standard DSC-PWI analyses are based on concrete parameters and values, but an approach that contemplates all points in the time-intensity curves and all voxels in the region-of-interest may provide improved information, and more generalizable models. Therefore, a method of DSC-PWI analysis by means of normalized time-intensity curves point-by-point and voxel-by-voxel is constructed, and its feasibility and performance are tested in presurgical discrimination of glioblastoma and metastasis. Methods In this retrospective study, patients with histologically confirmed glioblastoma or solitary-brain-metastases and presurgical-MR with DSC-PWI (August 2007–March 2020) were retrieved. The enhancing tumor and immediate peritumoral region were segmented on CE-T1wi and coregistered to DSC-PWI. Time-intensity curves of the segmentations were normalized to normal-appearing white matter. For each participant, average and all-voxel-matrix of normalized-curves were obtained. The 10 best discriminatory time-points between each type of tumor were selected. Then, an intensity-histogram analysis on each of these 10 time-points allowed the selection of the best discriminatory voxel-percentile for each. Separate classifier models were trained for enhancing tumor and peritumoral region using binary logistic regressions. Results A total of 428 patients (321 glioblastomas, 107 metastases) fulfilled the inclusion criteria (256 men; mean age, 60 years; range, 20–86 years). Satisfactory results were obtained to segregate glioblastoma and metastases in training and test sets with AUCs 0.71–0.83, independent accuracies 65–79%, and combined accuracies up to 81–88%. Conclusion This proof-of-concept study presents a different perspective on brain MR DSC-PWI evaluation by the inclusion of all time-points of the curves and all voxels of segmentations to generate robust diagnostic models of special interest in heterogeneous diseases and populations. The method allows satisfactory presurgical segregation of glioblastoma and metastases. Key Points • An original approach to brain MR DSC-PWI analysis, based on a point-by-point and voxel-by-voxel assessment of normalized time-intensity curves, is presented. • The method intends to extract optimized information from MR DSC-PWI sequences by impeding the potential loss of information that may represent the standard evaluation of single concrete perfusion parameters (cerebral blood volume, percentage of signal recovery, or peak height) and values (mean, maximum, or minimum). • The presented approach may be of special interest in technically heterogeneous samples, and intrinsically heterogeneous diseases. Its application enables satisfactory presurgical differentiation of GB and metastases, a usual but difficult diagnostic challenge for neuroradiologist with vital implications in patient management.
Standard DSC-PWI analyses are based on concrete parameters and values, but an approach that contemplates all points in the time-intensity curves and all voxels in the region-of-interest may provide improved information, and more generalizable models. Therefore, a method of DSC-PWI analysis by means of normalized time-intensity curves point-by-point and voxel-by-voxel is constructed, and its feasibility and performance are tested in presurgical discrimination of glioblastoma and metastasis. In this retrospective study, patients with histologically confirmed glioblastoma or solitary-brain-metastases and presurgical-MR with DSC-PWI (August 2007-March 2020) were retrieved. The enhancing tumor and immediate peritumoral region were segmented on CE-T1wi and coregistered to DSC-PWI. Time-intensity curves of the segmentations were normalized to normal-appearing white matter. For each participant, average and all-voxel-matrix of normalized-curves were obtained. The 10 best discriminatory time-points between each type of tumor were selected. Then, an intensity-histogram analysis on each of these 10 time-points allowed the selection of the best discriminatory voxel-percentile for each. Separate classifier models were trained for enhancing tumor and peritumoral region using binary logistic regressions. A total of 428 patients (321 glioblastomas, 107 metastases) fulfilled the inclusion criteria (256 men; mean age, 60 years; range, 20-86 years). Satisfactory results were obtained to segregate glioblastoma and metastases in training and test sets with AUCs 0.71-0.83, independent accuracies 65-79%, and combined accuracies up to 81-88%. This proof-of-concept study presents a different perspective on brain MR DSC-PWI evaluation by the inclusion of all time-points of the curves and all voxels of segmentations to generate robust diagnostic models of special interest in heterogeneous diseases and populations. The method allows satisfactory presurgical segregation of glioblastoma and metastases. • An original approach to brain MR DSC-PWI analysis, based on a point-by-point and voxel-by-voxel assessment of normalized time-intensity curves, is presented. • The method intends to extract optimized information from MR DSC-PWI sequences by impeding the potential loss of information that may represent the standard evaluation of single concrete perfusion parameters (cerebral blood volume, percentage of signal recovery, or peak height) and values (mean, maximum, or minimum). • The presented approach may be of special interest in technically heterogeneous samples, and intrinsically heterogeneous diseases. Its application enables satisfactory presurgical differentiation of GB and metastases, a usual but difficult diagnostic challenge for neuroradiologist with vital implications in patient management.
Author Grussu, Francesco
Garcia-Ruiz, Alonso
Sarro, Noemi Vidal
Bruna, Jordi
Perez-Lopez, Raquel
Fernandez, Juan Jose Sanchez
Cos, Monica
Fernandez-Coello, Alejandro
Simo, Angels Camins
Majos, Carles
Pons-Escoda, Albert
Naval-Baudin, Pablo
Author_xml – sequence: 1
  givenname: Albert
  orcidid: 0000-0003-4167-8291
  surname: Pons-Escoda
  fullname: Pons-Escoda, Albert
  email: albert.pons.idi@gencat.cat
  organization: Radiology Department, Institut de Diagnòstic per la Imatge- IDI, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Neurooncology Unit, Institut d’Investigació Biomèdica de Bellvitge- IDIBELL, L’Hospitalet de Llobregat
– sequence: 2
  givenname: Alonso
  surname: Garcia-Ruiz
  fullname: Garcia-Ruiz, Alonso
  organization: Radiomics Groups, Vall d’Hebron Institut d’Oncologia- VHIO
– sequence: 3
  givenname: Pablo
  surname: Naval-Baudin
  fullname: Naval-Baudin, Pablo
  organization: Radiology Department, Institut de Diagnòstic per la Imatge- IDI, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat
– sequence: 4
  givenname: Francesco
  surname: Grussu
  fullname: Grussu, Francesco
  organization: Radiomics Groups, Vall d’Hebron Institut d’Oncologia- VHIO
– sequence: 5
  givenname: Juan Jose Sanchez
  surname: Fernandez
  fullname: Fernandez, Juan Jose Sanchez
  organization: Radiology Department, Institut de Diagnòstic per la Imatge- IDI, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat
– sequence: 6
  givenname: Angels Camins
  surname: Simo
  fullname: Simo, Angels Camins
  organization: Radiology Department, Institut de Diagnòstic per la Imatge- IDI, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat
– sequence: 7
  givenname: Noemi Vidal
  surname: Sarro
  fullname: Sarro, Noemi Vidal
  organization: Neurooncology Unit, Institut d’Investigació Biomèdica de Bellvitge- IDIBELL, L’Hospitalet de Llobregat, Pathology Department, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat
– sequence: 8
  givenname: Alejandro
  surname: Fernandez-Coello
  fullname: Fernandez-Coello, Alejandro
  organization: Neurosurgery Department, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Pathology and Experimental Therapeutics Department, Anatomy Unit, University of Barcelona, Biomedical Research Networking Centers of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)
– sequence: 9
  givenname: Jordi
  surname: Bruna
  fullname: Bruna, Jordi
  organization: Neurooncology Unit, Institut d’Investigació Biomèdica de Bellvitge- IDIBELL, L’Hospitalet de Llobregat
– sequence: 10
  givenname: Monica
  surname: Cos
  fullname: Cos, Monica
  organization: Radiology Department, Institut de Diagnòstic per la Imatge- IDI, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat
– sequence: 11
  givenname: Raquel
  surname: Perez-Lopez
  fullname: Perez-Lopez, Raquel
  organization: Radiomics Groups, Vall d’Hebron Institut d’Oncologia- VHIO, Radiology Department, Hospital Universitari Vall d’Hebron
– sequence: 12
  givenname: Carles
  surname: Majos
  fullname: Majos, Carles
  organization: Radiology Department, Institut de Diagnòstic per la Imatge- IDI, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Neurooncology Unit, Institut d’Investigació Biomèdica de Bellvitge- IDIBELL, L’Hospitalet de Llobregat
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35103827$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhSNURH_gBVggS2zYGOzYmTjs0JRCpUog8be07jg3gyvHDrZTMbxSXxKn0wrURSVL8Y3O-XR8z3F14IPHqnrO2WvOWPsmMSYEo6zmlCnZKcofVUdcipryMh_8dz-sjlO6ZIx1XLZPqkPRcCZU3R5V19_Db3TU4RU6Ah7cLtlEwkB8iCM4-wd7cvplTT__OCfZjkitz-iTzTti5niF6S0BMoXyL1twZIse42KDjUMC0xQDmJ8F3BObEyljQZdjgjc4ZWI96W0y0Y7WQ7Z-S7bOho2DlMMIN74Rc5mgxHpaPR7AJXx2-z2pvp29_7r-SC8-fThfv7ugRrRNpjUMXHWyQwWcA-8UU0rKDvoeB9OUldWd2QxGDANIBDU0qhfYik5iz0F2XJxUr_bcEvfXjCnrsWRE58BjmJOuV7VcNbJgi_TlPellmGNZ46JatUzVDVuAL25V82bEXk_lvRB3-q6GIlB7gYkhpYiDNjaXfQSfI1inOdNL43rfuC6N65vG9cKu71nv6A-axN6UithvMf6L_YDrL4y4wJ4
CitedBy_id crossref_primary_10_1002_acn3_52306
crossref_primary_10_1177_19714009241242596
crossref_primary_10_1007_s00330_024_10686_8
crossref_primary_10_1007_s00330_023_09892_7
crossref_primary_10_1007_s00330_024_10611_z
crossref_primary_10_1016_j_acra_2023_10_044
crossref_primary_10_1186_s12885_024_12571_5
crossref_primary_10_3174_ajnr_A8788
crossref_primary_10_1038_s41598_024_83452_x
crossref_primary_10_1007_s00330_023_10202_4
crossref_primary_10_1016_j_mri_2023_05_004
crossref_primary_10_1007_s00330_023_09917_1
crossref_primary_10_3390_diagnostics14060618
crossref_primary_10_1007_s00330_023_09729_3
crossref_primary_10_1016_j_rxeng_2024_03_002
crossref_primary_10_1007_s00234_024_03385_0
Cites_doi 10.4103/2152-7806.111302
10.1007/s00234-020-02522-9
10.1212/WNL.30.9.907
10.1056/NEJM199002223220802
10.1016/j.clineuro.2015.09.017
10.1016/j.neurad.2018.09.006
10.1097/JTO.0b013e3181ec173d
10.1259/bjr/65711810
10.1002/jmri.24648
10.3174/ajnr.A5027
10.1007/s00234-004-1246-7
10.1002/nbm.1016
10.4103/2152-7806.111298
10.3174/ajnr.A2333
10.1002/cncr.30164
10.1212/CON.0000000000000536
10.1093/neuonc/noz150
10.3174/ajnr.A0484
10.1097/PPO.0000000000000126
10.3174/ajnr.A3477
10.1093/neuonc/noaa141
10.1148/radiol.2492071659
10.1016/0360-3016(92)91021-E
10.1007/s11060-010-0240-7
10.1002/nbm.2833
10.3747/co.v16i1.308
10.1102/1470-7330.2012.0038
10.3174/ajnr.A6761
10.3171/jns.1991.75.4.0559
10.1007/s00401-007-0243-4
10.1148/radiol.2223010558
10.3174/ajnr.A4341
10.20517/2394-4722.2019.20
10.3171/2013.3.JNS122226
10.1016/0360-3016(89)90941-3
10.1002/jmri.20707
10.3174/ajnr.A5827
10.1016/j.ejrad.2005.12.032
10.14694/edbook_am.2014.34.e57
10.3174/ajnr.A6153
10.1016/B978-0-12-800945-1.00031-8
10.3174/ajnr.A2441
10.1007/s00234-010-0740-3
10.1155/2017/7064120
10.1007/s00701-010-0774-7
10.1371/journal.pone.0191341
10.1007/s00234-005-0030-7
ContentType Journal Article
Copyright The Author(s), under exclusive licence to European Society of Radiology 2022
2022. The Author(s), under exclusive licence to European Society of Radiology.
The Author(s), under exclusive licence to European Society of Radiology 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to European Society of Radiology 2022
– notice: 2022. The Author(s), under exclusive licence to European Society of Radiology.
– notice: The Author(s), under exclusive licence to European Society of Radiology 2022.
DBID AAYXX
CITATION
NPM
3V.
7QO
7RV
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s00330-021-08498-1
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
ProQuest Nursing and Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Central Student

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1084
EndPage 3715
ExternalDocumentID 35103827
10_1007_s00330_021_08498_1
Genre Journal Article
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
04C
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6PF
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECF
ECT
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UDS
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Y
Z7Z
Z82
Z83
Z85
Z87
Z88
Z8M
Z8O
Z8R
Z8S
Z8T
Z8V
Z8W
Z8Z
Z91
Z92
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
PUEGO
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c375t-2af18949e8a11a198088449addefc503329cbfc3ffa4ea8f58d3e7394ed1a4913
IEDL.DBID RSV
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000749416400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1432-1084
0938-7994
IngestDate Thu Sep 04 19:58:39 EDT 2025
Tue Dec 02 15:53:56 EST 2025
Tue Sep 30 00:37:07 EDT 2025
Sat Nov 29 04:37:29 EST 2025
Tue Nov 18 22:43:36 EST 2025
Fri Feb 21 02:45:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Brain neoplasms
Magnetic resonance imaging
Perfusion imaging
Glioblastoma
Metastases
Language English
License 2022. The Author(s), under exclusive licence to European Society of Radiology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-2af18949e8a11a198088449addefc503329cbfc3ffa4ea8f58d3e7394ed1a4913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4167-8291
PMID 35103827
PQID 2667082501
PQPubID 54162
PageCount 11
ParticipantIDs proquest_miscellaneous_2624654088
proquest_journals_2667082501
pubmed_primary_35103827
crossref_citationtrail_10_1007_s00330_021_08498_1
crossref_primary_10_1007_s00330_021_08498_1
springer_journals_10_1007_s00330_021_08498_1
PublicationCentury 2000
PublicationDate 20220600
2022-06-00
2022-Jun
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 6
  year: 2022
  text: 20220600
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle European radiology
PublicationTitleAbbrev Eur Radiol
PublicationTitleAlternate Eur Radiol
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Wen, Huse (CR44) 2017; 23
Willats, Calamante (CR15) 2013; 26
Mandrekar (CR49) 2010; 5
CR39
CR38
CR35
Vallée, Guillevin, Wager, Delwail, Guillevin, JV (CR26) 2018; 39
CR33
CR32
Louis, Ohgaki, Wiestler (CR43) 2007; 114
Pons-Escoda, Garcia-Ruiz, Naval-Baudin (CR42) 2020; 41
Liang, Thornton, Sandler, Greenberg (CR48) 1991; 75
Gaspar, Fisher, Macdonald (CR47) 1992; 24
CR4
CR5
Ostrom, Cioffi, Gittleman (CR2) 2019; 21
Cha, Lupo, Chen (CR31) 2007; 28
Upadhyay, Waldman (CR9) 2011; 84
CR46
CR41
CR40
Patchell, Tibbs, Walsh (CR8) 1990; 322
Klekner, Hutóczki, Virga (CR23) 2015; 139
Wang, Kim, Chawla (CR34) 2011; 32
Fuentes-Raspall, Vilardell, Perez-Bueno (CR7) 2011; 101
Boxerman, Paulson, Prah, Schmainda (CR17) 2013; 34
Shiroishi, Castellazzi, Boxerman (CR13) 2015; 41
Tsougos, Svolos, Kousi (CR28) 2012; 12
Boxerman, Quarles, Hu (CR16) 2020; 22
CR19
CR14
Hochberg, Pruitt (CR45) 1980; 30
CR12
Pekmezci, Perry (CR21) 2013; 4
CR11
Cindil, Sendur, Cerit (CR30) 2021; 63
Fink, Fink (CR10) 2013; 4
Altwairgi, Raja, Manzoor (CR3) 2017; 11
Askaner, Rydelius, Engelholm (CR37) 2019; 46
CR29
Chiang, Kuo, Lu (CR36) 2004; 46
CR27
Fidler (CR24) 2015; 21
CR25
Leu, Boxerman, Ellingson (CR18) 2017
CR22
Tate, Underwood, Acosta (CR50) 2006; 19
Donin, Filson, Drakaki (CR6) 2016; 122
Paulson, Schmainda (CR20) 2008; 249
Campos, Davey, Hird (CR1) 2009; 16
K Leu (8498_CR18) 2017
LE Gaspar (8498_CR47) 1992; 24
S Campos (8498_CR1) 2009; 16
8498_CR5
8498_CR4
JL Boxerman (8498_CR17) 2013; 34
8498_CR11
8498_CR14
8498_CR12
8498_CR19
L Willats (8498_CR15) 2013; 26
A Pons-Escoda (8498_CR42) 2020; 41
I Tsougos (8498_CR28) 2012; 12
S Cha (8498_CR31) 2007; 28
JL Boxerman (8498_CR16) 2020; 22
MS Shiroishi (8498_CR13) 2015; 41
8498_CR40
IC Chiang (8498_CR36) 2004; 46
8498_CR41
DN Louis (8498_CR43) 2007; 114
8498_CR46
AR Tate (8498_CR50) 2006; 19
Á Klekner (8498_CR23) 2015; 139
K Askaner (8498_CR37) 2019; 46
AK Altwairgi (8498_CR3) 2017; 11
K Fink (8498_CR10) 2013; 4
A Vallée (8498_CR26) 2018; 39
8498_CR32
8498_CR33
JN Mandrekar (8498_CR49) 2010; 5
IJ Fidler (8498_CR24) 2015; 21
8498_CR35
8498_CR38
8498_CR39
BC Liang (8498_CR48) 1991; 75
E Cindil (8498_CR30) 2021; 63
M Pekmezci (8498_CR21) 2013; 4
FH Hochberg (8498_CR45) 1980; 30
QT Ostrom (8498_CR2) 2019; 21
N Donin (8498_CR6) 2016; 122
R Fuentes-Raspall (8498_CR7) 2011; 101
8498_CR22
S Wang (8498_CR34) 2011; 32
ES Paulson (8498_CR20) 2008; 249
8498_CR25
PY Wen (8498_CR44) 2017; 23
N Upadhyay (8498_CR9) 2011; 84
8498_CR29
RA Patchell (8498_CR8) 1990; 322
8498_CR27
References_xml – volume: 4
  start-page: 245
  year: 2013
  ident: CR21
  article-title: Neuropathology of brain metastases
  publication-title: Surg Neurol Int
  doi: 10.4103/2152-7806.111302
– ident: CR22
– volume: 63
  start-page: 331
  year: 2021
  end-page: 342
  ident: CR30
  article-title: Validation of combined use of DWI and percentage signal recovery-optimized protocol of DSC-MRI in differentiation of high-grade glioma, metastasis, and lymphoma
  publication-title: Neuroradiology
  doi: 10.1007/s00234-020-02522-9
– volume: 30
  start-page: 907
  year: 1980
  end-page: 907
  ident: CR45
  article-title: Assumptions in the radiotherapy of glioblastoma
  publication-title: Neurology
  doi: 10.1212/WNL.30.9.907
– volume: 322
  start-page: 494
  year: 1990
  end-page: 500
  ident: CR8
  article-title: A randomized trial of surgery in the treatment of single metastases to the brain
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199002223220802
– ident: CR4
– volume: 139
  start-page: 138
  year: 2015
  end-page: 143
  ident: CR23
  article-title: Expression pattern of invasion-related molecules in the peritumoral brain
  publication-title: Clin Neurol Neurosurg
  doi: 10.1016/j.clineuro.2015.09.017
– ident: CR39
– ident: CR12
– volume: 46
  start-page: 367
  year: 2019
  end-page: 372
  ident: CR37
  article-title: Differentiation between glioblastomas and brain metastases and regarding their primary site of malignancy using dynamic susceptibility contrast MRI at 3T
  publication-title: J Neuroradiol
  doi: 10.1016/j.neurad.2018.09.006
– volume: 5
  start-page: 1315
  year: 2010
  end-page: 1316
  ident: CR49
  article-title: Receiver operating characteristic curve in diagnostic test ssessment
  publication-title: J Thorac Oncol
  doi: 10.1097/JTO.0b013e3181ec173d
– ident: CR35
– volume: 84
  start-page: S107
  year: 2011
  end-page: S111
  ident: CR9
  article-title: Conventional MRI evaluation of gliomas
  publication-title: Br J Radiol
  doi: 10.1259/bjr/65711810
– volume: 41
  start-page: 296
  year: 2015
  end-page: 313
  ident: CR13
  article-title: Principles of T 2 *-weighted dynamic susceptibility contrast MRI technique in brain tumor imaging
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.24648
– ident: CR29
– volume: 11
  start-page: 54
  year: 2017
  end-page: 62
  ident: CR3
  article-title: Management and treatment recommendations for World Health Organization Grade III and IV gliomas
  publication-title: Int J Health Sci (Qassim)
– ident: CR25
– year: 2017
  ident: CR18
  article-title: Effects of MRI protocol parameters, preload injection dose, fractionation strategies, and leakage correction algorithms on the fidelity of dynamic-susceptibility contrast MRI estimates of relative cerebral blood volume in gliomas
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A5027
– ident: CR46
– ident: CR19
– volume: 46
  start-page: 619
  year: 2004
  end-page: 627
  ident: CR36
  article-title: Distinction between high-grade gliomas and solitary metastases using peritumoral 3-T magnetic resonance spectroscopy, diffusion, and perfusion imagings
  publication-title: Neuroradiology
  doi: 10.1007/s00234-004-1246-7
– volume: 19
  start-page: 411
  year: 2006
  end-page: 434
  ident: CR50
  article-title: Development of a decision support system for diagnosis and grading of brain tumours usingin vivo magnetic resonance single voxel spectra
  publication-title: NMR Biomed
  doi: 10.1002/nbm.1016
– ident: CR11
– ident: CR32
– ident: CR5
– volume: 4
  start-page: 209
  year: 2013
  ident: CR10
  article-title: Imaging of brain metastases
  publication-title: Surg Neurol Int
  doi: 10.4103/2152-7806.111298
– volume: 32
  start-page: 507
  year: 2011
  end-page: 514
  ident: CR34
  article-title: Differentiation between glioblastomas, solitary brain metastases, and primary cerebral lymphomas using diffusion tensor and dynamic susceptibility contrast-enhanced MR imaging
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A2333
– volume: 39
  start-page: 1423
  year: 2018
  end-page: 1431
  ident: CR26
  article-title: Added value of spectroscopy to perfusion mrı in the differential diagnostic performance of common malignant brain tumors
  publication-title: AJNR Am J Neuroradiol
– volume: 122
  start-page: 3075
  year: 2016
  end-page: 3086
  ident: CR6
  article-title: Risk of second primary malignancies among cancer survivors in the United States, 1992 through 2008
  publication-title: Cancer
  doi: 10.1002/cncr.30164
– volume: 23
  start-page: 1531
  year: 2017
  end-page: 1547
  ident: CR44
  article-title: 2016 World Health Organization classification of central nervous system tumors
  publication-title: Contin Lifelong Learn Neurol
  doi: 10.1212/CON.0000000000000536
– ident: CR14
– ident: CR33
– volume: 21
  start-page: v1
  year: 2019
  end-page: v100
  ident: CR2
  article-title: CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noz150
– ident: CR40
– volume: 28
  start-page: 1078
  year: 2007
  end-page: 1084
  ident: CR31
  article-title: Differentiation of glioblastoma multiforme and single brain metastasis by peak height and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A0484
– ident: CR27
– volume: 21
  start-page: 284
  year: 2015
  end-page: 293
  ident: CR24
  article-title: The biology of brain metastasis
  publication-title: Cancer J
  doi: 10.1097/PPO.0000000000000126
– volume: 34
  start-page: 1364
  year: 2013
  end-page: 1369
  ident: CR17
  article-title: The effect of pulse sequence parameters and contrast agent dose on percentage signal recovery in DSC-MRI: implications for clinical applications
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A3477
– volume: 22
  start-page: 1262
  year: 2020
  end-page: 1275
  ident: CR16
  article-title: Consensus recommendations for a dynamic susceptibility contrast MRI protocol for use in high-grade gliomas
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noaa141
– volume: 249
  start-page: 601
  year: 2008
  end-page: 613
  ident: CR20
  article-title: Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors
  publication-title: Radiology
  doi: 10.1148/radiol.2492071659
– volume: 24
  start-page: 55
  year: 1992
  end-page: 57
  ident: CR47
  article-title: Supratentorial malignant glioma: patterns of recurrence and implications for external beam local treatment
  publication-title: Int J Radiat Oncol
  doi: 10.1016/0360-3016(92)91021-E
– volume: 101
  start-page: 117
  year: 2011
  end-page: 123
  ident: CR7
  article-title: Population-based incidence and survival of central nervous system (CNS) malignancies in Girona (Spain) 1994–2005
  publication-title: J Neurooncol
  doi: 10.1007/s11060-010-0240-7
– volume: 26
  start-page: 913
  year: 2013
  end-page: 931
  ident: CR15
  article-title: The 39 steps: evading error and deciphering the secrets for accurate dynamic susceptibility contrast MRI
  publication-title: NMR Biomed
  doi: 10.1002/nbm.2833
– ident: CR38
– volume: 16
  start-page: 62
  year: 2009
  end-page: 66
  ident: CR1
  article-title: Brain metastasis from an unknown primary, or primary brain tumour? A diagnostic dilemma
  publication-title: Curr Oncol
  doi: 10.3747/co.v16i1.308
– volume: 12
  start-page: 423
  year: 2012
  end-page: 436
  ident: CR28
  article-title: Differentiation of glioblastoma multiforme from metastatic brain tumor using proton magnetic resonance spectroscopy, diffusion and perfusion metrics at 3 T
  publication-title: Cancer Imaging
  doi: 10.1102/1470-7330.2012.0038
– volume: 41
  start-page: 1816
  year: 2020
  end-page: 1824
  ident: CR42
  article-title: Presurgical identification of primary central nervous system lymphoma with normalized time-intensity curve: a pilot study of a new method to analyze DSC-PWI
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A6761
– volume: 75
  start-page: 559
  year: 1991
  end-page: 563
  ident: CR48
  article-title: Malignant astrocytomas: focal tumor recurrence after focal external beam radiation therapy
  publication-title: J Neurosurg
  doi: 10.3171/jns.1991.75.4.0559
– volume: 114
  start-page: 97
  year: 2007
  end-page: 109
  ident: CR43
  article-title: The 2007 WHO classification of tumours of the central nervous system
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-007-0243-4
– ident: CR41
– ident: 8498_CR32
  doi: 10.1148/radiol.2223010558
– ident: 8498_CR14
  doi: 10.3174/ajnr.A4341
– ident: 8498_CR4
  doi: 10.20517/2394-4722.2019.20
– volume: 16
  start-page: 62
  year: 2009
  ident: 8498_CR1
  publication-title: Curr Oncol
  doi: 10.3747/co.v16i1.308
– volume: 39
  start-page: 1423
  year: 2018
  ident: 8498_CR26
  publication-title: AJNR Am J Neuroradiol
– volume: 19
  start-page: 411
  year: 2006
  ident: 8498_CR50
  publication-title: NMR Biomed
  doi: 10.1002/nbm.1016
– volume: 4
  start-page: 245
  year: 2013
  ident: 8498_CR21
  publication-title: Surg Neurol Int
  doi: 10.4103/2152-7806.111302
– volume: 28
  start-page: 1078
  year: 2007
  ident: 8498_CR31
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A0484
– ident: 8498_CR22
  doi: 10.3171/2013.3.JNS122226
– ident: 8498_CR46
  doi: 10.1016/0360-3016(89)90941-3
– volume: 41
  start-page: 296
  year: 2015
  ident: 8498_CR13
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.24648
– year: 2017
  ident: 8498_CR18
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A5027
– volume: 24
  start-page: 55
  year: 1992
  ident: 8498_CR47
  publication-title: Int J Radiat Oncol
  doi: 10.1016/0360-3016(92)91021-E
– volume: 22
  start-page: 1262
  year: 2020
  ident: 8498_CR16
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noaa141
– volume: 101
  start-page: 117
  year: 2011
  ident: 8498_CR7
  publication-title: J Neurooncol
  doi: 10.1007/s11060-010-0240-7
– volume: 11
  start-page: 54
  year: 2017
  ident: 8498_CR3
  publication-title: Int J Health Sci (Qassim)
– ident: 8498_CR39
  doi: 10.1002/jmri.20707
– ident: 8498_CR19
  doi: 10.3174/ajnr.A5827
– volume: 32
  start-page: 507
  year: 2011
  ident: 8498_CR34
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A2333
– volume: 84
  start-page: S107
  year: 2011
  ident: 8498_CR9
  publication-title: Br J Radiol
  doi: 10.1259/bjr/65711810
– volume: 23
  start-page: 1531
  year: 2017
  ident: 8498_CR44
  publication-title: Contin Lifelong Learn Neurol
  doi: 10.1212/CON.0000000000000536
– ident: 8498_CR40
  doi: 10.1016/j.ejrad.2005.12.032
– volume: 41
  start-page: 1816
  year: 2020
  ident: 8498_CR42
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A6761
– ident: 8498_CR5
  doi: 10.14694/edbook_am.2014.34.e57
– ident: 8498_CR38
  doi: 10.3174/ajnr.A6153
– volume: 26
  start-page: 913
  year: 2013
  ident: 8498_CR15
  publication-title: NMR Biomed
  doi: 10.1002/nbm.2833
– ident: 8498_CR12
  doi: 10.1016/B978-0-12-800945-1.00031-8
– volume: 34
  start-page: 1364
  year: 2013
  ident: 8498_CR17
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A3477
– volume: 12
  start-page: 423
  year: 2012
  ident: 8498_CR28
  publication-title: Cancer Imaging
  doi: 10.1102/1470-7330.2012.0038
– volume: 322
  start-page: 494
  year: 1990
  ident: 8498_CR8
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199002223220802
– volume: 114
  start-page: 97
  year: 2007
  ident: 8498_CR43
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-007-0243-4
– volume: 75
  start-page: 559
  year: 1991
  ident: 8498_CR48
  publication-title: J Neurosurg
  doi: 10.3171/jns.1991.75.4.0559
– ident: 8498_CR25
  doi: 10.3174/ajnr.A2441
– volume: 63
  start-page: 331
  year: 2021
  ident: 8498_CR30
  publication-title: Neuroradiology
  doi: 10.1007/s00234-020-02522-9
– volume: 4
  start-page: 209
  year: 2013
  ident: 8498_CR10
  publication-title: Surg Neurol Int
  doi: 10.4103/2152-7806.111298
– ident: 8498_CR35
  doi: 10.1007/s00234-010-0740-3
– volume: 46
  start-page: 367
  year: 2019
  ident: 8498_CR37
  publication-title: J Neuroradiol
  doi: 10.1016/j.neurad.2018.09.006
– volume: 122
  start-page: 3075
  year: 2016
  ident: 8498_CR6
  publication-title: Cancer
  doi: 10.1002/cncr.30164
– volume: 46
  start-page: 619
  year: 2004
  ident: 8498_CR36
  publication-title: Neuroradiology
  doi: 10.1007/s00234-004-1246-7
– volume: 30
  start-page: 907
  year: 1980
  ident: 8498_CR45
  publication-title: Neurology
  doi: 10.1212/WNL.30.9.907
– ident: 8498_CR11
  doi: 10.1155/2017/7064120
– volume: 21
  start-page: v1
  year: 2019
  ident: 8498_CR2
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noz150
– volume: 21
  start-page: 284
  year: 2015
  ident: 8498_CR24
  publication-title: Cancer J
  doi: 10.1097/PPO.0000000000000126
– volume: 139
  start-page: 138
  year: 2015
  ident: 8498_CR23
  publication-title: Clin Neurol Neurosurg
  doi: 10.1016/j.clineuro.2015.09.017
– volume: 5
  start-page: 1315
  year: 2010
  ident: 8498_CR49
  publication-title: J Thorac Oncol
  doi: 10.1097/JTO.0b013e3181ec173d
– volume: 249
  start-page: 601
  year: 2008
  ident: 8498_CR20
  publication-title: Radiology
  doi: 10.1148/radiol.2492071659
– ident: 8498_CR27
  doi: 10.1007/s00701-010-0774-7
– ident: 8498_CR29
  doi: 10.1371/journal.pone.0191341
– ident: 8498_CR33
  doi: 10.1007/s00234-005-0030-7
– ident: 8498_CR41
SSID ssj0009147
Score 2.4761598
Snippet Objective Standard DSC-PWI analyses are based on concrete parameters and values, but an approach that contemplates all points in the time-intensity curves and...
Standard DSC-PWI analyses are based on concrete parameters and values, but an approach that contemplates all points in the time-intensity curves and all voxels...
ObjectiveStandard DSC-PWI analyses are based on concrete parameters and values, but an approach that contemplates all points in the time-intensity curves and...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3705
SubjectTerms Blood volume
Brain
Brain cancer
Cerebral blood flow
Diagnostic Radiology
Glioblastoma
Histograms
Imaging
Information processing
Internal Medicine
Interventional Radiology
Mathematical models
Medicine
Medicine & Public Health
Metastases
Metastasis
Neuro
Neuroradiology
Parameters
Perfusion
Radiology
Signal reconstruction
Substantia alba
Tumors
Ultrasound
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fi9QwEA96ivji_9PqKRF802DTZNvEF5HTQ0GPBfW8t5JNk6PQa9dt91C_kl_SmTTdRQ7vRehLaJJOmUwyk5n5DSHPeAUSlMkKzJIqZ9LLjC106piWNs9nHo6okEh79LE4PFTHx3oeL9z6GFY57Ylho646i3fkL-EgKdCcSfnr5XeGVaPQuxpLaFwmVxAlIQuhe_Mt6C4PBcbAaFes0FrGpJmQOodFzFKGAQqpkhosqb8PpnPa5jlPaTiADm7-L-m3yI2oetI341q5TS659g659ik61--S30fdD9ewBsOIqIlgJbTztEW9tql_uYq-_bzP5t8-UCxJz-ox_H34Se16deb6V9TQZTdg_BF852QEtMaoscbRCbscJq5oPfQUmjA1PHZMnKR1SzFFeCwzhsHY9KSpuwVo90N3asK4UzdAywBZ98jXg3df9t-zWMuBWVHMBpYZz5WW2inDueFawe4mpcbd1Vt0pWbaLrwV3hvpjPIzVQlXCC1dxY3UXOySnbZr3QNCC5kjjJ6o8pmVwugF6CypycHu9MY4kSaET4wsbQQ6x3obTbmBaA7ML4H5ZWB-yRPyfDNmOcJ8XNh7b2J0GUW-L7dcTsjTzWsQVvTAmNZ1a-yTIX4d_HtC7o_ravM5gdiGKisS8mJaaNvJ_03Lw4tpeUSuZ5iwEe6N9sjOsFq7x-SqPRvqfvUkiMsffxQbJA
  priority: 102
  providerName: ProQuest
Title Voxel-level analysis of normalized DSC-PWI time-intensity curves: a potential generalizable approach and its proof of concept in discriminating glioblastoma and metastasis
URI https://link.springer.com/article/10.1007/s00330-021-08498-1
https://www.ncbi.nlm.nih.gov/pubmed/35103827
https://www.proquest.com/docview/2667082501
https://www.proquest.com/docview/2624654088
Volume 32
WOSCitedRecordID wos000749416400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: P5Z
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: M7P
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: 7RV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_enYgvfn_seS4RfNNA06Ztcm935x0KupQ9XRdfSjZNjkKvPbbdQ_2X_Ced6dchp4JCCZQkk5TJJJPOzG8IeckzkCBfZHAtySImnPDZSnmWKWGiKHRwRLWBtIv38Wwml0uV9EFh9eDtPpgk2516DHbDtGMeQ5cCTwoFd58tsgO0JCZsmJ8urqB2uYj78Jjf9_v1CLqmV16zibZHzcnd_5vkPXKnVy3pQbcW7pMbtnxAbn3ojecPyY9F9dUWrEA3Iap7MBJaOVqi3lrk321G35weseTzO4op51neubc336jZrC9tvU81vaga9C-Ccc46wGr0CissHbDJgXBG86am8Aqk4TFdYCTNS4ohwF0aMXS2pmdFXq1Ae2-qc932O7cNvGmY1iPy6eT449Fb1udqYCaIw4b52nGphLJSc645cEVKIRTuns6gqdRXZuVM4JwWVksXyiywcaCEzbgWigePyXZZlfYpobGIECYvyKLQiECrFegkno7gXum0toE3IXxgX2p6IHPMp1GkIwRzy4UUuJC2XEj5hLwa-1x0MB5_bb03rIq0F-k6BU0mxvu0B9UvxmoQRrSw6NJWG2zjIz4dfPuEPOlW0zhcgNiF0o8n5PWwdK6I_3kuu__W_Bm57WOARvufaI9sN-uNfU5umssmr9dTshXPF1gu47aUU7JzeDxL5lP0eU2gTMIv01acfgIB-BWQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoAL70eggJHgBBZ5OA8jIYRaqq66Xa1EaSsuwes4VaRssmyyhfKXkPiNzOSxK1TRWw9IuURxHCf5Zjxjz3wD8MJJUIJckaBbkgRcpMLlE2kbLoUOAj_FKapJpD0YhqNRdHQkx2vwu8-FobDKXic2ijopNa2Rv8GJJCR3xnbez75xqhpFu6t9CY0WFrvm9Du6bNW7wRb-35euu_1xf3OHd1UFuPZCv-auSp1ICmki5TgKfW6UMyEkyXmqaVPPlXqSai9NlTAqSv0o8UzoSWESRwnpeNjvJbgshGuTFI39LyuSX6cpaGZLVCKhlKJL0mlS9ahoms0pIMKOhETP7e-J8Ix1e2Zntpnwtm_-b5_qFtzoTGv2oZWF27Bmijtwda8LHrgLvw7KHybnOYVJMdWRsbAyZQXZ7Xn20yRs69MmHx8OWJ1NDc_a8P76lOnF_MRUb5lis7Km-Cp8znFL2E1RcblhPTc7dpywrK4YnmLXeOg2MZRlBaMU6LaMGgWbs-M8KyfovdTlVDX3TU2NZwqHdQ8-X8inug_rRVmYh8BCERBNoJcEvhaekhO0yWwVoF-dKmU82wKnB06sOyJ3qieSx0sK6gZsMYItbsAWOxa8Wt4za2lMzm290QMr7lRaFa9QZcHz5WVURrTDpApTLqiNS_x8-O4WPGhxvHycR9yNkRta8LoH9qrzf4_l0fljeQbXdvb3hvFwMNp9DNddSk5p1sg2YL2eL8wTuKJP6qyaP21ElcHXiwb8H64NeT0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtNAEB2VgipeuF8CBRYJnmBVXza2Fwkh1BARtUSRgFL1xWzWu5Ulxw6xUyi_xB_wdcz4kghV9K0PSH6xbK_X9pnZHe-ZMwDP3AQtyBMJhiVJwIUVHp9Kx3ApdBD0LQ5RdSLtwX44HkeHh3KyAb-7XBiiVXY-sXbUSaHpH_kODiQhhTOOu2NbWsRkMHwz_8apghSttHblNBqI7JnT7xi-la9HA_zWzz1v-O7T7nveVhjg2g_7FfeUdSMppImU6yqMv9HmhJBk81bTAp8n9dRq31oljIpsP0p8E_pSmMRVQro-tnsJLocYYxKdcNI_Wgv-unVxM0eiQwmlFG3CTp22RwXUHE7kCCcSEqO4vwfFMzPdM6u09eA3vP4_v7YbcK2dcrO3jY3chA2T34KtDy2p4Db8Oih-mIxnRJ9iqhVpYYVlOc3ns_SnSdjg4y6ffBmxKp0Znja0_-qU6eXixJSvmGLzoiLeFd7nuBHyJrZcZlin2Y4NJyytSoa72DRuukkYZWnOKDW6Ka9GJHR2nKXFFKOaqpip-rqZqXBPYbfuwOcLeVV3YTMvcnMfGKKM5AP9JOhr4Ss5xbmaowKMt61Sxnd64HYginUr8E51RrJ4JU1dAy9G4MU18GK3By9W18wbeZNzz97uQBa3rq6M1wjrwdPVYXRStPKkclMs6RyPdPvw2Xtwr8H06nY-aTpGXtiDlx3I143_uy8Pzu_LE9hCnMf7o_HeQ7jqUc5K_etsGzarxdI8giv6pErLxePaahl8vWi8_wHcqIIH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Voxel-level+analysis+of+normalized+DSC-PWI+time-intensity+curves%3A+a+potential+generalizable+approach+and+its+proof+of+concept+in+discriminating+glioblastoma+and+metastasis&rft.jtitle=European+radiology&rft.au=Pons-Escoda%2C+Albert&rft.au=Garcia-Ruiz%2C+Alonso&rft.au=Naval-Baudin%2C+Pablo&rft.au=Grussu%2C+Francesco&rft.date=2022-06-01&rft.eissn=1432-1084&rft.volume=32&rft.issue=6&rft.spage=3705&rft_id=info:doi/10.1007%2Fs00330-021-08498-1&rft_id=info%3Apmid%2F35103827&rft.externalDocID=35103827
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-1084&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-1084&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-1084&client=summon