Decellularized kidney capsule as a three-dimensional scaffold for tissue regeneration
Tissue regeneration is thought to have considerable promise with the use of scaffolds designed for tissue engineering. Although polymer-based scaffolds for tissue engineering have been used extensively and developed quickly, their ability to mimic the in-vivo milieu, overcome immunogenicity, and hav...
Uložené v:
| Vydané v: | Cell and tissue banking Ročník 25; číslo 2; s. 721 - 734 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Dordrecht
Springer Netherlands
01.06.2024
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1389-9333, 1573-6814, 1573-6814 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Tissue regeneration is thought to have considerable promise with the use of scaffolds designed for tissue engineering. Although polymer-based scaffolds for tissue engineering have been used extensively and developed quickly, their ability to mimic the in-vivo milieu, overcome immunogenicity, and have comparable mechanical or biochemical properties has limited their capability for repair. Fortunately, there is a compelling method to get around these challenges thanks to the development of extracellular matrix (ECM) scaffolds made from decellularized tissues. We used ECM decellularized sheep kidney capsule tissue in our research. Using detergents such as Triton-X100 and sodium dodecyl sulfate (SDS), these scaffolds were decellularized. DNA content, histology, mechanical properties analysis, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), biocompatibility, hemocompatibility and scanning electron microscope (SEM) imaging were measured. The results showed that the three-dimensional (3D) structure of the ECM remained largely intact. The scaffolds mentioned above had several hydrophilic properties. The best biocompatibility and blood compatibility properties were reported in the SDS method of 0.5%. The best decellularization scaffold was introduced with 0.5% SDS. Therefore, it can be proposed as a scaffold that has ECM like natural tissue, for tissue engineering applications. |
|---|---|
| AbstractList | Tissue regeneration is thought to have considerable promise with the use of scaffolds designed for tissue engineering. Although polymer-based scaffolds for tissue engineering have been used extensively and developed quickly, their ability to mimic the in-vivo milieu, overcome immunogenicity, and have comparable mechanical or biochemical properties has limited their capability for repair. Fortunately, there is a compelling method to get around these challenges thanks to the development of extracellular matrix (ECM) scaffolds made from decellularized tissues. We used ECM decellularized sheep kidney capsule tissue in our research. Using detergents such as Triton-X100 and sodium dodecyl sulfate (SDS), these scaffolds were decellularized. DNA content, histology, mechanical properties analysis, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), biocompatibility, hemocompatibility and scanning electron microscope (SEM) imaging were measured. The results showed that the three-dimensional (3D) structure of the ECM remained largely intact. The scaffolds mentioned above had several hydrophilic properties. The best biocompatibility and blood compatibility properties were reported in the SDS method of 0.5%. The best decellularization scaffold was introduced with 0.5% SDS. Therefore, it can be proposed as a scaffold that has ECM like natural tissue, for tissue engineering applications.Tissue regeneration is thought to have considerable promise with the use of scaffolds designed for tissue engineering. Although polymer-based scaffolds for tissue engineering have been used extensively and developed quickly, their ability to mimic the in-vivo milieu, overcome immunogenicity, and have comparable mechanical or biochemical properties has limited their capability for repair. Fortunately, there is a compelling method to get around these challenges thanks to the development of extracellular matrix (ECM) scaffolds made from decellularized tissues. We used ECM decellularized sheep kidney capsule tissue in our research. Using detergents such as Triton-X100 and sodium dodecyl sulfate (SDS), these scaffolds were decellularized. DNA content, histology, mechanical properties analysis, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), biocompatibility, hemocompatibility and scanning electron microscope (SEM) imaging were measured. The results showed that the three-dimensional (3D) structure of the ECM remained largely intact. The scaffolds mentioned above had several hydrophilic properties. The best biocompatibility and blood compatibility properties were reported in the SDS method of 0.5%. The best decellularization scaffold was introduced with 0.5% SDS. Therefore, it can be proposed as a scaffold that has ECM like natural tissue, for tissue engineering applications. Tissue regeneration is thought to have considerable promise with the use of scaffolds designed for tissue engineering. Although polymer-based scaffolds for tissue engineering have been used extensively and developed quickly, their ability to mimic the in-vivo milieu, overcome immunogenicity, and have comparable mechanical or biochemical properties has limited their capability for repair. Fortunately, there is a compelling method to get around these challenges thanks to the development of extracellular matrix (ECM) scaffolds made from decellularized tissues. We used ECM decellularized sheep kidney capsule tissue in our research. Using detergents such as Triton-X100 and sodium dodecyl sulfate (SDS), these scaffolds were decellularized. DNA content, histology, mechanical properties analysis, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), biocompatibility, hemocompatibility and scanning electron microscope (SEM) imaging were measured. The results showed that the three-dimensional (3D) structure of the ECM remained largely intact. The scaffolds mentioned above had several hydrophilic properties. The best biocompatibility and blood compatibility properties were reported in the SDS method of 0.5%. The best decellularization scaffold was introduced with 0.5% SDS. Therefore, it can be proposed as a scaffold that has ECM like natural tissue, for tissue engineering applications. |
| Author | Bozorgi, Azam Rezakhani, Leila Khazaei, Mozafar Ibrahim, Rawa Faris, Rayan Khazaei, Mohammad Rasool |
| Author_xml | – sequence: 1 givenname: Mohammad Rasool surname: Khazaei fullname: Khazaei, Mohammad Rasool organization: Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences – sequence: 2 givenname: Rawa surname: Ibrahim fullname: Ibrahim, Rawa organization: Student Research Committee, Kermanshah University of Medical Sciences – sequence: 3 givenname: Rayan surname: Faris fullname: Faris, Rayan organization: Student Research Committee, Kermanshah University of Medical Sciences – sequence: 4 givenname: Azam surname: Bozorgi fullname: Bozorgi, Azam organization: Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences – sequence: 5 givenname: Mozafar surname: Khazaei fullname: Khazaei, Mozafar organization: Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences – sequence: 6 givenname: Leila surname: Rezakhani fullname: Rezakhani, Leila email: leila_rezakhani@yahoo.com, Leila.rezakhani@kums.ac.ir organization: Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38671187$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kTtPxDAQhC0E4nHwByiQJRoagzdO7LhEvKWTaKC2HGcNhlxy2EkBvx4fB0KioNotvhnt7OyRzX7okZBD4KfAuTpLwCsJjBclAw5CMtggu1ApwWQN5WbeRa2ZFkLskL2UXjgvuCrENtkRtVQAtdolj5fosOumzsbwgS19DW2P79TZZZo6pDZRS8fniMjasMA-haG3HU3Oej90LfVDpGNIaUIa8Ql7jHbMyD7Z8rZLePA9Z-Tx-urh4pbN72_uLs7nzAlVjawArqx2VkvfqHyTVI1SoHI2XlVQals6mRHn0dYtFN6XEnUrrBcNb2qnxYycrH2XcXibMI1mEdIqj-1xmJIRvFRa6BJ4Ro__oC_DFHOYFSULVQMvV4ZH39TULLA1yxgWNr6bn4dloF4DLg4pRfTGhfEr8xht6Axws-rGrLsxuRvz1Y2BLC3-SH_c_xWJtShluH_C-Hv2P6pPQHef0Q |
| CitedBy_id | crossref_primary_10_1002_pat_6602 crossref_primary_10_1002_mabi_202400322 crossref_primary_10_1007_s00289_025_06008_7 crossref_primary_10_1016_j_tice_2024_102623 crossref_primary_10_1016_j_tice_2025_103135 |
| Cites_doi | 10.1039/C6TB03299K 10.1016/j.mtbio.2022.100488 10.1186/s12951-023-02082-z 10.1007/s10561-021-09916-w 10.1177/0885328216652068 10.1007/s00217-009-1191-0 10.1002/bab.2348 10.1371/journal.pone.0209269 10.1016/j.mtbio.2021.100127 10.3390/polym10060581 10.1039/C5RA20745B 10.7124/bc.000A3C 10.1016/j.cej.2021.130926 10.1155/2018/2495848 10.3390/md16100394 10.1016/j.msec.2013.05.045 10.1021/acsbiomaterials.2c00194 10.3389/fbioe.2022.805299 10.1016/j.tice.2019.101324 10.1016/j.micron.2010.09.010 10.1016/j.ijbiomac.2019.03.186 10.1002/bab.2547 10.3390/bioengineering11040321 10.1002/jsfa.3795 10.1016/j.mtla.2018.10.001 10.1002/term.3150 10.1557/s43578-023-00935-9 10.1021/acsomega.9b04421 10.1007/s12033-021-00346-3 10.1016/j.ijbiomac.2015.08.038 10.1002/mabi.202100160 10.1016/j.ijbiomac.2017.02.057 10.1177/08839115221085736 10.3390/ma15051937 10.1002/jbm.b.30938 10.1111/aor.14162 10.1007/s10561-021-09939-3 10.13005/ojc/320336 10.33549/physiolres.935185 10.1002/jbm.b.34903 10.1007/978-981-13-0445-3_10 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024. The Author(s), under exclusive licence to Springer Nature B.V. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2024. The Author(s), under exclusive licence to Springer Nature B.V. |
| DBID | AAYXX CITATION NPM 3V. 7RV 7U9 7X7 7XB 88A 88E 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB0 LK8 M0S M1P M7N M7P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
| DOI | 10.1007/s10561-024-10136-1 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Virology and AIDS Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest Central Student PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7RV name: Nursing & Allied Health Database url: https://search.proquest.com/nahs sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1573-6814 |
| EndPage | 734 |
| ExternalDocumentID | 38671187 10_1007_s10561_024_10136_1 |
| Genre | Journal Article |
| GroupedDBID | --- -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 203 29B 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5GY 5VS 67N 67Z 6NX 7RV 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABOCM ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BDATZ BENPR BGNMA BHPHI BKEYQ BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAK LK8 LLZTM M0L M1P M4Y M7P MA- N2Q NAPCQ NB0 NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM OVD PF0 PQQKQ PROAC PSQYO PT4 Q2X QOR QOS R89 R9I RNI ROL RPX RRX RSV RZC RZE S16 S1Z S27 S3A S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TEORI TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z87 ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7U9 7XB 8FK AZQEC DWQXO GNUQQ H94 K9. M7N PKEHL PQEST PQUKI PRINS 7X8 PUEGO |
| ID | FETCH-LOGICAL-c375t-2107a9ca96fb738667b7717007055149a4c6107cfea8d12ff46e9d3af3b0b8c93 |
| IEDL.DBID | 7RV |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001208650800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1389-9333 1573-6814 |
| IngestDate | Fri Sep 05 06:33:50 EDT 2025 Sat Nov 08 14:43:46 EST 2025 Mon Jul 21 05:45:18 EDT 2025 Sat Nov 29 02:19:12 EST 2025 Tue Nov 18 22:22:45 EST 2025 Fri Feb 21 02:42:32 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Kidney capsule Scaffold Tissue regeneration Tissue engineering Decellularization |
| Language | English |
| License | 2024. The Author(s), under exclusive licence to Springer Nature B.V. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c375t-2107a9ca96fb738667b7717007055149a4c6107cfea8d12ff46e9d3af3b0b8c93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 38671187 |
| PQID | 3062781049 |
| PQPubID | 42947 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_3047939410 proquest_journals_3062781049 pubmed_primary_38671187 crossref_citationtrail_10_1007_s10561_024_10136_1 crossref_primary_10_1007_s10561_024_10136_1 springer_journals_10_1007_s10561_024_10136_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht – name: Netherlands |
| PublicationSubtitle | International Journal for Banking, Engineering and Transplantation of Cells and Tissues Incorporating Advances in Tissue Banking |
| PublicationTitle | Cell and tissue banking |
| PublicationTitleAbbrev | Cell Tissue Bank |
| PublicationTitleAlternate | Cell Tissue Bank |
| PublicationYear | 2024 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Prasertsung, Kanokpanont, Bunaprasert, Thanakit, Damrongsakkul (CR31) 2008; 85 Benjakul, Thiansilakul, Visessanguan, Roytrakul, Kishimura, Prodpran, Meesane (CR4) 2010; 90 Nara, Chameettachal, Midha, Murab, Ghosh (CR28) 2016; 6 Cai, Chen, Wu, Chen, Tao, Li, Dong, Zou, Chen, Bi (CR5) 2021; 12 Khazaei, Ami, Mozafar, Rezakhani (CR19) 2023; 18 Chandika, Ko, Gun-Woo, Heo, Nguyen, Jeon, Lee, Jang, Kim, Park (CR6) 2015; 81 Lee, Choi, Lee, Jeon, An, Lee, Yang, Cho (CR23) 2022; 427 Sajed, Zarnani, Madjd, Arefi, Bolouri, Vafaei, Samadikuchaksaraei, Gholipourmalekabadi, Haghighipour, Ghods (CR35) 2022; 46 Sizeland, Hofman, Hallett, Martin, Potgieter, Kirby, Hawley, Mudie, Ryan, Haverkamp (CR40) 2018; 3 Alizadeh, Rezakhani, Nooshabadi, Alizadeh (CR3) 2022; 23 Liu, Ming-Zhao, Peng, Liu, Lim, Zhang, Zhu, Wei (CR26) 2022; 17 Sokol, Grekov, Yemets, Yu Galkin, Shchotkina, Dovghaliuk, Telehuzova, Rudenko, Romaniuk, Yemets (CR41) 2020; 36 Gao, Guo, Chen, Yuan, Mingjie Wang, Zhang, Xi, Guo (CR12) 2017; 5 Singh, Purohit, Bhaskar, Yadav, Bhushan, Gupta, Mishra (CR39) 2022; 110 Li, Yu-Qin Zhao, He, Wang (CR25) 2018; 16 de Campos Vidal, Mello (CR7) 2011; 42 Deepak, Babu (CR8) 2023; 38 Neishabouri, Khaboushan, Daghigh, Kajbafzadeh, Zolbin (CR29) 2022; 10 Sharifi, Kheradmandi, Salehi, Alizadeh, Ten Hagen, Falahati (CR36) 2022; 8 Gupta, Dinda, Potdar, Mishra (CR15) 2013; 33 Alizadeh, Rezakhani, Shoa, Ghasemi (CR1) 2020; 63 Dzobo, Thomford, Senthebane, Shipanga, Rowe, Dandara, Motaung (CR9) 2018 Ehterami, Kolarijani, Nazarnezhad, Alizadeh, Masoudi, Salehi (CR11) 2022; 37 Kittiphattanabawon, Benjakul, Visessanguan, Shahidi (CR22) 2010; 230 Alizadeh, Rezakhani, Khodaei, Soleimannejad, Alizadeh (CR2) 2021; 15 Lupon, Acun, Taveau, Oganesyan, Lancia, Andrews, Randolph, Cetrulo Jr, Lellouch, Uygun (CR27) 2024; 11 Sun, Hou, Li, Zhang (CR42) 2017; 99 Inci (CR17) 2022; 69 Rahmati, Jalili, Dehkordi, Przedborski (CR32) 2022; 24 Ji, Yang, Ji, Zhu, Ma, Chen, Jia, Tang, Cao (CR18) 2020; 5 Simsa, Padma, Heher, Hellström, Teuschl, Jenndahl, Bergh, Fogelstrand (CR38) 2018; 13 Guarnieri, Reda, Di Nardo, Miccoli, Zanza, Testarelli (CR14) 2022; 15 Sharma, Laxmi Swetha, Roy (CR37) 2019; 132 CR24 Goyal, Gangwar, Khangembam, Yadav, Kumar, Verma, Kumar (CR13) 2022; 23 Khazaei, Alizadeh, Rezakhani (CR20) 2023; 71 Wang, Zhao, Zhang, Huang, Tavakoli, Tang (CR44) 2018; 10 Saghebasl, Amini, Nobakht, Haiaty, Bagheri, Hasanpour, Milani, Saghati, Naturi, Farhadi (CR34) 2023; 21 Haghjooy Javanmard, Anari, Zargar Kharazi, Vatankhah (CR16) 2016; 31 Tavassoli, Matin, Niaki, Mahdavi-Shahri, Shahabipour (CR43) 2015; 18 Kim, Kim, So, Hwang (CR21) 2021; 21 Zhang, Chen, Hong, Rubei, Liu, Liu (CR45) 2022; 10 Ehterami, Masoomikarimi, Bastami, Jafarisani, Alizadeh, Mehrabi, Salehi (CR10) 2021; 63 Novotna, Novakova, Galfiova, Lorencova, Klein, Žiaran, Kuniakova (CR30) 2023; 72 Rizk, Mostafa (CR33) 2016; 32 10136_CR24 S Nara (10136_CR28) 2016; 6 S Sharma (10136_CR37) 2019; 132 D Cai (10136_CR5) 2021; 12 S Saghebasl (10136_CR34) 2023; 21 R Simsa (10136_CR38) 2018; 13 A Ehterami (10136_CR10) 2021; 63 E Lupon (10136_CR27) 2024; 11 T Deepak (10136_CR8) 2023; 38 K Dzobo (10136_CR9) 2018 B-S Kim (10136_CR21) 2021; 21 M Khazaei (10136_CR20) 2023; 71 M Sharifi (10136_CR36) 2022; 8 H Singh (10136_CR39) 2022; 110 J Wang (10136_CR44) 2018; 10 AA Sokol (10136_CR41) 2020; 36 P Chandika (10136_CR6) 2015; 81 R Sajed (10136_CR35) 2022; 46 S Haghjooy Javanmard (10136_CR16) 2016; 31 M Alizadeh (10136_CR3) 2022; 23 A Neishabouri (10136_CR29) 2022; 10 A Tavassoli (10136_CR43) 2015; 18 S Gao (10136_CR12) 2017; 5 Y Ji (10136_CR18) 2020; 5 O Novotna (10136_CR30) 2023; 72 B de Campos Vidal (10136_CR7) 2011; 42 SK Gupta (10136_CR15) 2013; 33 L-Y Li (10136_CR25) 2018; 16 S Benjakul (10136_CR4) 2010; 90 I Prasertsung (10136_CR31) 2008; 85 Z Liu (10136_CR26) 2022; 17 S Rahmati (10136_CR32) 2022; 24 A Ehterami (10136_CR11) 2022; 37 JS Lee (10136_CR23) 2022; 427 MA Rizk (10136_CR33) 2016; 32 L Sun (10136_CR42) 2017; 99 M Alizadeh (10136_CR2) 2021; 15 A Alizadeh (10136_CR1) 2020; 63 R Guarnieri (10136_CR14) 2022; 15 I Inci (10136_CR17) 2022; 69 KH Sizeland (10136_CR40) 2018; 3 RP Goyal (10136_CR13) 2022; 23 MR Khazaei (10136_CR19) 2023; 18 P Kittiphattanabawon (10136_CR22) 2010; 230 X Zhang (10136_CR45) 2022; 10 |
| References_xml | – volume: 5 start-page: 2273 year: 2017 end-page: 2285 ident: CR12 article-title: Fabrication and characterization of electrospun nanofibers composed of decellularized meniscus extracellular matrix and polycaprolactone for meniscus tissue engineering publication-title: J Mater Chem B doi: 10.1039/C6TB03299K – volume: 17 year: 2022 ident: CR26 article-title: Decellularized tilapia fish skin: a novel candidate for tendon tissue engineering publication-title: Mater Today Bio doi: 10.1016/j.mtbio.2022.100488 – volume: 21 start-page: 313 year: 2023 ident: CR34 article-title: Polyurethane-based nanofibrous mat containing porphyrin with photosensitivity and bactericidal properties can promote cutaneous tissue healing in rats publication-title: J Nanobiotechnol doi: 10.1186/s12951-023-02082-z – volume: 23 start-page: 79 issue: 1 year: 2022 end-page: 92 ident: CR13 article-title: Decellularization of caprine esophagus using fruit pericarp extract of Sapindus mukorossi publication-title: Cell Tissue Bank doi: 10.1007/s10561-021-09916-w – volume: 31 start-page: 438 year: 2016 end-page: 449 ident: CR16 article-title: In vitro hemocompatibility and cytocompatibility of a three-layered vascular scaffold fabricated by sequential electrospinning of PCL, collagen, and PLLA nanofibers publication-title: J Biomater Appl doi: 10.1177/0885328216652068 – volume: 230 start-page: 475 year: 2010 end-page: 483 ident: CR22 article-title: Isolation and properties of acid-and pepsin-soluble collagen from the skin of blacktip shark ( ) publication-title: Eur Food Res Technol doi: 10.1007/s00217-009-1191-0 – volume: 69 start-page: 2257 year: 2022 end-page: 2266 ident: CR17 article-title: Characterization of decellularized chicken skin as a tissue engineering scaffold publication-title: Biotechnol Appl Biochem doi: 10.1002/bab.2348 – volume: 13 year: 2018 ident: CR38 article-title: Systematic in vitro comparison of decellularization protocols for blood vessels publication-title: PLoS ONE doi: 10.1371/journal.pone.0209269 – volume: 12 year: 2021 ident: CR5 article-title: Construction of multifunctional porcine acellular dermal matrix hydrogel blended with vancomycin for hemorrhage control, antibacterial action, and tissue repair in infected trauma wounds publication-title: Mater Today Bio doi: 10.1016/j.mtbio.2021.100127 – volume: 10 start-page: 581 year: 2018 ident: CR44 article-title: Novel bacterial cellulose/gelatin hydrogels as 3D scaffolds for tumor cell culture publication-title: Polymers doi: 10.3390/polym10060581 – volume: 6 start-page: 2225 year: 2016 end-page: 2240 ident: CR28 article-title: Preservation of biomacromolecular composition and ultrastructure of a decellularized cornea using a perfusion bioreactor publication-title: RSC Adv doi: 10.1039/C5RA20745B – volume: 36 start-page: 392 year: 2020 ident: CR41 article-title: Comparison of bovine pericardium decellularization protocols for production of biomaterial for cardiac surgery publication-title: Biopolym Cell doi: 10.7124/bc.000A3C – volume: 10 start-page: 15 year: 2022 end-page: 31 ident: CR45 article-title: Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering publication-title: Bioact Mater – volume: 427 year: 2022 ident: CR23 article-title: Mechanically-reinforced and highly adhesive decellularized tissue-derived hydrogel for efficient tissue repair publication-title: Chem Eng J doi: 10.1016/j.cej.2021.130926 – year: 2018 ident: CR9 article-title: Advances in regenerative medicine and tissue engineering: innovation and transformation of medicine publication-title: Stem Cells Int doi: 10.1155/2018/2495848 – volume: 16 start-page: 394 year: 2018 ident: CR25 article-title: Physicochemical and antioxidant properties of acid-and pepsin-soluble collagens from the scales of miiuy croaker ( ) publication-title: Mar Drugs doi: 10.3390/md16100394 – volume: 33 start-page: 4032 year: 2013 end-page: 4038 ident: CR15 article-title: Fabrication and characterization of scaffold from cadaver goat-lung tissue for skin tissue engineering applications publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2013.05.045 – volume: 18 start-page: 32 issue: 1 year: 2023 ident: CR19 article-title: The decellularized calf testis: introducing suitable scaffolds for spermatogenesis studies publication-title: Int J Fertil Steril – volume: 8 start-page: 3199 year: 2022 end-page: 3219 ident: CR36 article-title: Criteria, challenges, and opportunities for acellularized allogeneic/xenogeneic bone grafts in bone repairing publication-title: ACS Biomater Sci Eng doi: 10.1021/acsbiomaterials.2c00194 – volume: 10 year: 2022 ident: CR29 article-title: Decellularization in tissue engineering and regenerative medicine: evaluation, modification, and application methods publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2022.805299 – volume: 63 year: 2020 ident: CR1 article-title: Frequency of CD44 positive cells in MKN45 cell line after treatment with docetaxel in two and three-dimensional cell cultures publication-title: Tissue Cell doi: 10.1016/j.tice.2019.101324 – volume: 42 start-page: 283 year: 2011 end-page: 289 ident: CR7 article-title: Collagen type I amide I band infrared spectroscopy publication-title: Micron doi: 10.1016/j.micron.2010.09.010 – volume: 132 start-page: 97 year: 2019 end-page: 108 ident: CR37 article-title: Chitosan-Chondroitin sulfate based polyelectrolyte complex for effective management of chronic wounds publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2019.03.186 – volume: 71 start-page: 387 issue: 2 year: 2023 end-page: 401 ident: CR20 article-title: Resveratrol‐loaded decellularized ovine pericardium: ECM introduced for tissue engineering publication-title: Biotechnol Appl Biochem doi: 10.1002/bab.2547 – volume: 11 start-page: 321 year: 2024 ident: CR27 article-title: Optimized decellularization of a porcine fasciocutaneaous flap publication-title: Bioengineering doi: 10.3390/bioengineering11040321 – volume: 90 start-page: 132 year: 2010 end-page: 138 ident: CR4 article-title: Extraction and characterisation of pepsin-solubilised collagens from the skin of bigeye snapper (Priacanthus tayenus and Priacanthus macracanthus) publication-title: J Sci Food Agric doi: 10.1002/jsfa.3795 – volume: 3 start-page: 90 year: 2018 end-page: 96 ident: CR40 article-title: Nanostructure of electrospun collagen: do electrospun collagen fibers form native structures? publication-title: Materialia doi: 10.1016/j.mtla.2018.10.001 – volume: 15 start-page: 116 year: 2021 end-page: 128 ident: CR2 article-title: Evaluating the effects of vacuum on the microstructure and biocompatibility of bovine decellularized pericardium publication-title: J Tissue Eng Regen Med doi: 10.1002/term.3150 – volume: 38 start-page: 1973 year: 2023 end-page: 1983 ident: CR8 article-title: Investigation of hemocompatibility and physicochemical properties of acellular caprine pericardium for biomedical applications publication-title: J Mater Res doi: 10.1557/s43578-023-00935-9 – volume: 5 start-page: 8572 year: 2020 end-page: 8578 ident: CR18 article-title: ‘DFT-calculated IR spectrum amide I, II, and III band contributions of N-methylacetamide fine components publication-title: ACS Omega doi: 10.1021/acsomega.9b04421 – volume: 24 start-page: 506 year: 2022 ident: CR32 article-title: An effective method for decellularization of human foreskin: implications for skin regeneration in small wounds publication-title: Cell J – volume: 63 start-page: 818 year: 2021 end-page: 827 ident: CR10 article-title: Fabrication and characterization of nanofibrous poly(L-Lactic Acid)/chitosan-based scaffold by liquid-liquid phase separation technique for nerve tissue engineering publication-title: Mol Biotechnol doi: 10.1007/s12033-021-00346-3 – volume: 81 start-page: 504 year: 2015 end-page: 513 ident: CR6 article-title: Fish collagen/alginate/chitooligosaccharides integrated scaffold for skin tissue regeneration application publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2015.08.038 – volume: 21 start-page: 2100160 year: 2021 ident: CR21 article-title: Supercritical fluid-based decellularization technologies for regenerative medicine applications publication-title: Macromol Biosci doi: 10.1002/mabi.202100160 – volume: 99 start-page: 8 year: 2017 end-page: 14 ident: CR42 article-title: Characterization of acid-and pepsin-soluble collagen extracted from the skin of Nile tilapia ( ) publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2017.02.057 – volume: 37 start-page: 85 year: 2022 end-page: 97 ident: CR11 article-title: Peripheral nerve regeneration by thiolated chitosan hydrogel containing taurine: in vitro and in vivo study publication-title: J Bioact Compat Polym doi: 10.1177/08839115221085736 – volume: 15 start-page: 1937 year: 2022 ident: CR14 article-title: In vitro direct and indirect cytotoxicity comparative analysis of one pre-hydrated versus one dried acellular porcine dermal matrix publication-title: Materials doi: 10.3390/ma15051937 – volume: 85 start-page: 210 year: 2008 end-page: 219 ident: CR31 article-title: ‘Development of acellular dermis from porcine skin using periodic pressurized technique publication-title: J Biomed Mater Res Part B Appl Biomater off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater doi: 10.1002/jbm.b.30938 – volume: 46 start-page: 375 year: 2022 end-page: 386 ident: CR35 article-title: Introduction of an efficient method for placenta decellularization with high potential to preserve ultrastructure and support cell attachment publication-title: Artif Organs doi: 10.1111/aor.14162 – volume: 18 start-page: 1221 year: 2015 ident: CR43 article-title: Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold publication-title: Iran J Basic Med Sci – volume: 23 start-page: 261 year: 2022 end-page: 269 ident: CR3 article-title: The effect of Scrophularia striata on cell attachment and biocompatibility of decellularized bovine pericardia publication-title: Cell Tissue Bank doi: 10.1007/s10561-021-09939-3 – volume: 32 start-page: 1601 year: 2016 ident: CR33 article-title: Extraction and characterization of collagen from buffalo skin for biomedical applications publication-title: Orient J Chem doi: 10.13005/ojc/320336 – ident: CR24 – volume: 72 start-page: S287 issue: Suppl 3 year: 2023 ident: CR30 article-title: Decellularization techniques of human foreskin for tissue engineering application publication-title: Physiol Res doi: 10.33549/physiolres.935185 – volume: 110 start-page: 210 year: 2022 end-page: 219 ident: CR39 article-title: Curcumin in decellularized goat small intestine submucosa for wound healing and skin tissue engineering publication-title: J Biomed Mater Res B Appl Biomater doi: 10.1002/jbm.b.34903 – volume: 8 start-page: 3199 year: 2022 ident: 10136_CR36 publication-title: ACS Biomater Sci Eng doi: 10.1021/acsbiomaterials.2c00194 – volume: 69 start-page: 2257 year: 2022 ident: 10136_CR17 publication-title: Biotechnol Appl Biochem doi: 10.1002/bab.2348 – volume: 16 start-page: 394 year: 2018 ident: 10136_CR25 publication-title: Mar Drugs doi: 10.3390/md16100394 – volume: 132 start-page: 97 year: 2019 ident: 10136_CR37 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2019.03.186 – volume: 33 start-page: 4032 year: 2013 ident: 10136_CR15 publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2013.05.045 – volume: 15 start-page: 1937 year: 2022 ident: 10136_CR14 publication-title: Materials doi: 10.3390/ma15051937 – volume: 230 start-page: 475 year: 2010 ident: 10136_CR22 publication-title: Eur Food Res Technol doi: 10.1007/s00217-009-1191-0 – volume: 11 start-page: 321 year: 2024 ident: 10136_CR27 publication-title: Bioengineering doi: 10.3390/bioengineering11040321 – volume: 18 start-page: 32 issue: 1 year: 2023 ident: 10136_CR19 publication-title: Int J Fertil Steril – year: 2018 ident: 10136_CR9 publication-title: Stem Cells Int doi: 10.1155/2018/2495848 – volume: 5 start-page: 2273 year: 2017 ident: 10136_CR12 publication-title: J Mater Chem B doi: 10.1039/C6TB03299K – volume: 10 start-page: 15 year: 2022 ident: 10136_CR45 publication-title: Bioact Mater – volume: 90 start-page: 132 year: 2010 ident: 10136_CR4 publication-title: J Sci Food Agric doi: 10.1002/jsfa.3795 – volume: 71 start-page: 387 issue: 2 year: 2023 ident: 10136_CR20 publication-title: Biotechnol Appl Biochem doi: 10.1002/bab.2547 – volume: 72 start-page: S287 issue: Suppl 3 year: 2023 ident: 10136_CR30 publication-title: Physiol Res doi: 10.33549/physiolres.935185 – volume: 110 start-page: 210 year: 2022 ident: 10136_CR39 publication-title: J Biomed Mater Res B Appl Biomater doi: 10.1002/jbm.b.34903 – volume: 81 start-page: 504 year: 2015 ident: 10136_CR6 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2015.08.038 – volume: 6 start-page: 2225 year: 2016 ident: 10136_CR28 publication-title: RSC Adv doi: 10.1039/C5RA20745B – volume: 36 start-page: 392 year: 2020 ident: 10136_CR41 publication-title: Biopolym Cell doi: 10.7124/bc.000A3C – volume: 10 start-page: 581 year: 2018 ident: 10136_CR44 publication-title: Polymers doi: 10.3390/polym10060581 – volume: 37 start-page: 85 year: 2022 ident: 10136_CR11 publication-title: J Bioact Compat Polym doi: 10.1177/08839115221085736 – volume: 23 start-page: 261 year: 2022 ident: 10136_CR3 publication-title: Cell Tissue Bank doi: 10.1007/s10561-021-09939-3 – volume: 15 start-page: 116 year: 2021 ident: 10136_CR2 publication-title: J Tissue Eng Regen Med doi: 10.1002/term.3150 – volume: 46 start-page: 375 year: 2022 ident: 10136_CR35 publication-title: Artif Organs doi: 10.1111/aor.14162 – volume: 63 start-page: 818 year: 2021 ident: 10136_CR10 publication-title: Mol Biotechnol doi: 10.1007/s12033-021-00346-3 – volume: 3 start-page: 90 year: 2018 ident: 10136_CR40 publication-title: Materialia doi: 10.1016/j.mtla.2018.10.001 – volume: 24 start-page: 506 year: 2022 ident: 10136_CR32 publication-title: Cell J – volume: 63 year: 2020 ident: 10136_CR1 publication-title: Tissue Cell doi: 10.1016/j.tice.2019.101324 – volume: 13 year: 2018 ident: 10136_CR38 publication-title: PLoS ONE doi: 10.1371/journal.pone.0209269 – volume: 18 start-page: 1221 year: 2015 ident: 10136_CR43 publication-title: Iran J Basic Med Sci – volume: 85 start-page: 210 year: 2008 ident: 10136_CR31 publication-title: J Biomed Mater Res Part B Appl Biomater off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater doi: 10.1002/jbm.b.30938 – ident: 10136_CR24 doi: 10.1007/978-981-13-0445-3_10 – volume: 12 year: 2021 ident: 10136_CR5 publication-title: Mater Today Bio doi: 10.1016/j.mtbio.2021.100127 – volume: 31 start-page: 438 year: 2016 ident: 10136_CR16 publication-title: J Biomater Appl doi: 10.1177/0885328216652068 – volume: 38 start-page: 1973 year: 2023 ident: 10136_CR8 publication-title: J Mater Res doi: 10.1557/s43578-023-00935-9 – volume: 23 start-page: 79 issue: 1 year: 2022 ident: 10136_CR13 publication-title: Cell Tissue Bank doi: 10.1007/s10561-021-09916-w – volume: 99 start-page: 8 year: 2017 ident: 10136_CR42 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2017.02.057 – volume: 5 start-page: 8572 year: 2020 ident: 10136_CR18 publication-title: ACS Omega doi: 10.1021/acsomega.9b04421 – volume: 17 year: 2022 ident: 10136_CR26 publication-title: Mater Today Bio doi: 10.1016/j.mtbio.2022.100488 – volume: 42 start-page: 283 year: 2011 ident: 10136_CR7 publication-title: Micron doi: 10.1016/j.micron.2010.09.010 – volume: 21 start-page: 2100160 year: 2021 ident: 10136_CR21 publication-title: Macromol Biosci doi: 10.1002/mabi.202100160 – volume: 427 year: 2022 ident: 10136_CR23 publication-title: Chem Eng J doi: 10.1016/j.cej.2021.130926 – volume: 32 start-page: 1601 year: 2016 ident: 10136_CR33 publication-title: Orient J Chem doi: 10.13005/ojc/320336 – volume: 10 year: 2022 ident: 10136_CR29 publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2022.805299 – volume: 21 start-page: 313 year: 2023 ident: 10136_CR34 publication-title: J Nanobiotechnol doi: 10.1186/s12951-023-02082-z |
| SSID | ssj0020723 |
| Score | 2.405762 |
| Snippet | Tissue regeneration is thought to have considerable promise with the use of scaffolds designed for tissue engineering. Although polymer-based scaffolds for... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 721 |
| SubjectTerms | Biocompatibility Biomedical and Life Sciences Biomedicine Cell Biology Detergents Electron microscopes Extracellular matrix Fourier transforms Full Length Paper Immunogenicity Infrared spectroscopy Kidneys Life Sciences Mechanical properties Scanning electron microscopy Sodium lauryl sulfate Tissue engineering Transplant Surgery |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SPXjxga9qlQjeNLCvbjZHUYunImqltyWbhxTLVtqtoL_emexDpSrodTebDfMlmXxJ5htCTlQkvMxXCYtkplikgLOKrrJMaysDqQPpWeuSTfB-PxkOxU0VFDarb7vXR5Jupv4U7Aa-noFPganDD2MGnGcZ3F2CCRtu7x4amuVxl9QNT-AY0PWwCpX5vo6v7mhhjblwPurcTm_9fw3eIGvVMpOel_1ikyyZfIsMLg3u0-PF09Gb0fRppHPzSpUEpjw2VM6opAVga5hGzf9Sr4POlLR2MtYUlre0cDjRqXl0ctWI6jYZ9K7uL65ZlVaBqZB3CwYkj0uhpIhthik_Y55xjjJ9KKwDhElGCtZUXFkjE-0H1kaxETqUNsy8LFEi3CGtfJKbPUIRVumbrmdUEmGUa8RjeMaFEkFmPN4mfm3dVFWa45j6Ypx-qCWjkVIwUuqMlPptctp881wqbvxaulODllajb5aGqL2cANEUbXLcvIZxg0aWuZnMsQzuKYrI99pktwS7-V2Ion9-As0_q5H9qPzntuz_rfgBWQ2wc7gtnQ5pFdO5OSQr6gWgnB65Pv0OPXju1g priority: 102 providerName: Springer Nature |
| Title | Decellularized kidney capsule as a three-dimensional scaffold for tissue regeneration |
| URI | https://link.springer.com/article/10.1007/s10561-024-10136-1 https://www.ncbi.nlm.nih.gov/pubmed/38671187 https://www.proquest.com/docview/3062781049 https://www.proquest.com/docview/3047939410 |
| Volume | 25 |
| WOSCitedRecordID | wos001208650800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1573-6814 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0020723 issn: 1389-9333 databaseCode: 7RV dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink Journals customDbUrl: eissn: 1573-6814 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020723 issn: 1389-9333 databaseCode: RSV dateStart: 20000301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH4aGwcu_BAbK4zKk7iBRZykcXxC_NjEqaoKm3qLnGcbTavSre2Q4K_nPddtNU3bhYsPiZNY_l7s957t7wN4h6XJWoW1LG2LskSKWc0Ag3Qu2Ny63GYhRLEJPRzWk4kZpYTbIm2rXI-JcaB2M-Qc-ceC-XRrCh7Mp6tryapRvLqaJDQewZ5i35jsWY_PNwFXpqO8G6_FSQrci3RoJh2dI89B0gxFA5EqKqluT0x3vM07K6VxAjp99r9Nfw5Pk-spPq9s5QXs-O4lnH3znLvnzagXf70Tlxeu838EWoqep17YhbBiSXh76VgHYMXhIRZoQ5hNnSCXVywjdmLuf0UKa0Z6H85OT35-_S6T1ILEQg-WkgI_bQ1aU4WWZUAr3WrN1H1MtkNBlC2R_CyNwdvaqTyEsvLGFTYUbdbWaIoD2O1mnT8EwVBb5QeZx7rkk6-lruiaNmjy1me6B2rdzw0mHnKWw5g2WwZlxqYhbJqITaN68H7zzNWKhePB2kdrHJr0Ry6aLQg9ON7cpn-JO9l2fnbDdTjPaEqV9eDVCvbN5womAlQ1Nf_D2g62L7-_La8fbssbeJKzDca0zhHsLuc3_i08xt8E3bwfrZnLiY5l3Ye9LyfD0bjPW1RHVI5_nP8DqLj-lw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQkuFMRraQtGghNYxHE2jg-oQpSqVcuKQyvtLTh-VBWr7LLZBZUfxW9kxkl2hSp664Fr4iSO5_N4xuP5BuCVzXRSCVvwzFSWZxZ9Vj20gTsXTGpcapIQYrEJNRoV47H-sgG_-1wYOlbZ68SoqN3U0h75O0l8ugU6D3pv9p1T1SiKrvYlNFpYHPvLn-iyNe-P9lG-r9P04NPpx0PeVRXgVqrhgqOPo4y2RuehooqXuaqUIpY64pVBf8FkFk0KZYM3hRNpCFnutZMmyCqpCkvkS6jyb6EeV-TsqfHawUtULCdHsT-upZRdkk6XqoeWCscVERWfkDkXfy-EV6zbK5HZuOAdbP1vQ3Uf7nWmNfvQzoUHsOHrh3C27yk2QYdtL355x75duNpfMmtmzXLimWmYYQvEs-eO6hy0HCWssSaE6cQxNOnZImKTzf15pOgmJD-Csxv5k8ewWU9r_xQYQdkIP0y8LTLK7M1UjteUtjqtfKIGIHq5lrbjWadyH5NyzRBNWCgRC2XEQikG8Gb1zKxlGbm29U4v97LTOE25FvoAXq5uo66gQTa1ny6pDe2j6kwkA3jSwmz1OUlEh6LA7r_tcbd--b_78uz6vryAO4enn0_Kk6PR8TbcTQn_cQtrBzYX86Xfhdv2B4px_jzOJAZfbxqPfwCIJlSY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD6aOoR44SIuKwwwEjyBtThO4_hhmoCuYhqqKsSkvQXHFzRRpaVpQeOn7dftnFxaoYm97YHXxEkc-_PxOT729wG8tomOCmEznpjC8sRizKoHNnDngomNi00UQi02ocbj7PRUT7bgojsLQ9sqO5tYG2o3s7RGvieJTzfD4EHvhXZbxGQ4Opj_5KQgRZnWTk6jgcixP_-N4Vu1fzTEvn4Tx6PDrx8_8VZhgFupBkuO8Y4y2hqdhoLUL1NVKEWMdcQxg7GDSSy6F8oGbzIn4hCS1GsnTZBFVGSWiJjQ_G8rdDKSHmx_OBxPvqzDvUjV4nKUCeRaStke2WkP7qHfwnF-RDMoZMrF39PiFV_3Sp62nv5G9_7nhrsPd1unm71vRskD2PLlQzgZespa0Dbcsz_esR9nrvTnzJp5tZp6Zipm2BKR7rkjBYSGvYRV1oQwmzqGzj5b1qhlC_-9Ju8mjD-Ckxv5k8fQK2el3wFGIDfCDyJvs4TO_CYqxWtKWx0XPlJ9EF0f57ZlYCchkGm-4Y4mXOSIi7zGRS768Hb9zLzhH7m29G6Hgby1RVW-AUAfXq1voxWhRjaln62oDK2w6kREfXjSQG79OUkUiCLD6r_rMLh5-b_r8vT6uryE2wjD_PPR-PgZ3IlpKNRrW7vQWy5W_jncsr-wFxcv2mHF4NtNA_ISRcJeuA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decellularized+kidney+capsule+as+a+three-dimensional+scaffold+for+tissue+regeneration&rft.jtitle=Cell+and+tissue+banking&rft.au=Khazaei%2C+Mohammad+Rasool&rft.au=Ibrahim%2C+Rawa&rft.au=Faris%2C+Rayan&rft.au=Bozorgi%2C+Azam&rft.date=2024-06-01&rft.issn=1573-6814&rft.eissn=1573-6814&rft.volume=25&rft.issue=2&rft.spage=721&rft_id=info:doi/10.1007%2Fs10561-024-10136-1&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-9333&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-9333&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-9333&client=summon |