A Novel Density-Based Clustering Framework by Using Level Set Method

In this paper, a new density-based clustering framework is proposed by adopting the assumption that the cluster centers in data space can be regarded as target objects in image space. First, the level set evolution is adopted to find an approximation of cluster centers by using a new initial boundar...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on knowledge and data engineering Ročník 21; číslo 11; s. 1515 - 1531
Hlavní autoři: WANG, Xiao-Feng, HUANG, De-Shuang
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.11.2009
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1041-4347, 1558-2191
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, a new density-based clustering framework is proposed by adopting the assumption that the cluster centers in data space can be regarded as target objects in image space. First, the level set evolution is adopted to find an approximation of cluster centers by using a new initial boundary formation scheme. Accordingly, three types of initial boundaries are defined so that each of them can evolve to approach the cluster centers in different ways. To avoid the long iteration time of level set evolution in data space, an efficient termination criterion is presented to stop the evolution process in the circumstance that no more cluster centers can be found. Then, a new effective density representation called level set density (LSD) is constructed from the evolution results. Finally, the valley seeking clustering is used to group data points into corresponding clusters based on the LSD. The experiments on some synthetic and real data sets have demonstrated the efficiency and effectiveness of the proposed clustering framework. The comparisons with DBSCAN method, OPTICS method, and valley seeking clustering method further show that the proposed framework can successfully avoid the overfitting phenomenon and solve the confusion problem of cluster boundary points and outliers.
AbstractList In this paper, a new density-based clustering framework is proposed by adopting the assumption that the cluster centers in data space can be regarded as target objects in image space. First, the level set evolution is adopted to find an approximation of cluster centers by using a new initial boundary formation scheme. Accordingly, three types of initial boundaries are defined so that each of them can evolve to approach the cluster centers in different ways. To avoid the long iteration time of level set evolution in data space, an efficient termination criterion is presented to stop the evolution process in the circumstance that no more cluster centers can be found. Then, a new effective density representation called level set density (LSD) is constructed from the evolution results. Finally, the valley seeking clustering is used to group data points into corresponding clusters based on the LSD. The experiments on some synthetic and real data sets have demonstrated the efficiency and effectiveness of the proposed clustering framework. The comparisons with DBSCAN method, OPTICS method, and valley seeking clustering method further show that the proposed framework can successfully avoid the overfitting phenomenon and solve the confusion problem of cluster boundary points and outliers.
[...] the valley seeking clustering is used to group data points into corresponding clusters based on the LSD.
Author Xiao-Feng Wang
De-Shuang Huang
Author_xml – sequence: 1
  givenname: Xiao-Feng
  surname: WANG
  fullname: WANG, Xiao-Feng
  organization: Intelligent Computing Lab, Hefei Institute of Intelligent Machines, Chinese Academy of Sciences, PO Box 1130, Hefei Anhui 230031, China
– sequence: 2
  givenname: De-Shuang
  surname: HUANG
  fullname: HUANG, De-Shuang
  organization: Intelligent Computing Lab, Hefei Institute of Intelligent Machines, Chinese Academy of Sciences, PO Box 1130, Hefei Anhui 230031, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22015225$$DView record in Pascal Francis
BookMark eNp90cFu1DAQBmALFYm29MaNS4QEXMgyM46Jcyy7LSCW9tD2bDnOBFyycbGzoH17HG3hUAlOY1nfPx5rjsTBGEYW4hnCAhGat9efV2cLAmgWhI_EISqlS8IGD_IZKiwrWdVPxFFKtwCga42HYnVaXISfPBQrHpOfduV7m7grlsM2TRz9-LU4j3bDv0L8XrS74ibNV2ueE1c8FV94-ha6p-Jxb4fEJ_f1WNycn10vP5bryw-flqfr0slaTSWBki1DxUi9zJW4gQraRslO911t2x4lOs2d66R7p_OAJIG6WruOWqtYHovX-753MfzYcprMxifHw2BHDttkdK0Ac05l-eq_UirIvZEyfPEA3oZtHPMvTIMEkgBlRi_vkU3ODn20o_PJ3EW_sXFnKCNFNL9Ke-diSClyb5yf7OTDOEXrB4Ng5j2ZeU9m3pMhzKE3D0J_-v6DP99zz8x_aVUr0lTJ31Ssm5I
CODEN ITKEEH
CitedBy_id crossref_primary_10_1016_j_anucene_2020_107786
crossref_primary_10_1016_j_neucom_2014_03_089
crossref_primary_10_1016_j_cogsys_2018_01_003
crossref_primary_10_1007_s11276_021_02742_8
crossref_primary_10_1016_j_bspc_2018_09_017
crossref_primary_10_1016_j_neucom_2013_04_051
crossref_primary_10_1016_j_neucom_2019_08_110
crossref_primary_10_1016_j_neucom_2020_08_084
crossref_primary_10_1186_s12859_022_04611_3
crossref_primary_10_1016_j_neucom_2022_06_083
crossref_primary_10_1016_j_neucom_2012_02_045
crossref_primary_10_1016_j_neucom_2013_02_045
crossref_primary_10_1016_j_neucom_2019_01_079
crossref_primary_10_1049_joe_2018_8318
crossref_primary_10_1016_j_neucom_2014_03_088
crossref_primary_10_1007_s00500_018_3057_5
crossref_primary_10_1371_journal_pone_0269878
crossref_primary_10_3390_ijgi6110373
crossref_primary_10_1007_s10044_012_0304_8
crossref_primary_10_1016_j_neucom_2023_126627
crossref_primary_10_1016_j_neucom_2023_126626
crossref_primary_10_1016_j_neucom_2016_04_067
crossref_primary_10_1016_j_neucom_2019_06_112
crossref_primary_10_1186_s12864_021_08207_8
crossref_primary_10_1016_j_is_2021_101871
crossref_primary_10_1109_TCBB_2019_2957094
crossref_primary_10_1016_j_neucom_2011_10_045
crossref_primary_10_1016_j_neucom_2013_02_056
crossref_primary_10_1016_j_neucom_2016_04_068
crossref_primary_10_1016_j_neucom_2023_126633
crossref_primary_10_1016_j_neucom_2013_02_058
crossref_primary_10_1016_j_neucom_2019_08_109
crossref_primary_10_1080_21642583_2022_2048321
crossref_primary_10_1109_TAC_2016_2628158
crossref_primary_10_1016_j_neucom_2018_03_073
crossref_primary_10_1016_j_neucom_2016_09_093
crossref_primary_10_1016_j_catena_2023_107629
crossref_primary_10_1016_j_bspc_2021_102790
crossref_primary_10_1016_j_neucom_2022_10_047
crossref_primary_10_1016_j_neucom_2015_02_102
crossref_primary_10_1016_j_neucom_2011_12_065
crossref_primary_10_1016_j_neucom_2014_11_103
crossref_primary_10_1016_j_neucom_2018_01_091
crossref_primary_10_1016_j_neunet_2020_09_017
crossref_primary_10_1016_j_neucom_2018_01_092
crossref_primary_10_1109_TNNLS_2014_2326427
crossref_primary_10_1016_j_neucom_2014_11_106
crossref_primary_10_1016_j_neucom_2018_01_093
crossref_primary_10_1007_s43684_023_00055_5
crossref_primary_10_1016_j_neucom_2014_05_088
crossref_primary_10_1016_j_cogsys_2018_04_003
crossref_primary_10_1016_j_neucom_2021_08_159
crossref_primary_10_1016_j_neucom_2020_06_140
crossref_primary_10_1109_TETCI_2024_3452687
crossref_primary_10_1016_j_neucom_2021_08_152
crossref_primary_10_1016_j_neucom_2016_06_075
crossref_primary_10_1007_s40846_020_00586_9
crossref_primary_10_1109_TFUZZ_2014_2322495
crossref_primary_10_1016_j_neucom_2014_09_107
crossref_primary_10_1007_s00500_013_1115_6
crossref_primary_10_1016_j_neucom_2022_09_004
crossref_primary_10_1080_21642583_2022_2057370
crossref_primary_10_1109_TNNLS_2014_2320293
crossref_primary_10_1016_j_neucom_2023_126895
crossref_primary_10_1049_iet_ipr_2017_0136
crossref_primary_10_1093_jxb_erv573
crossref_primary_10_1016_j_cmpb_2022_107106
crossref_primary_10_1016_j_apacoust_2014_09_025
crossref_primary_10_1109_LCOMM_2020_2997048
crossref_primary_10_1016_j_neucom_2014_10_113
crossref_primary_10_1155_2013_891428
crossref_primary_10_1016_j_cogsys_2020_09_004
crossref_primary_10_1016_j_neucom_2014_10_112
crossref_primary_10_1016_j_cogsys_2020_09_001
crossref_primary_10_1016_j_neucom_2022_07_004
crossref_primary_10_1016_j_neucom_2024_127258
crossref_primary_10_3390_fi11090198
crossref_primary_10_1016_j_neucom_2016_09_076
crossref_primary_10_1016_j_neucom_2022_07_087
crossref_primary_10_1016_j_cogsys_2018_04_006
crossref_primary_10_1016_j_neucom_2019_09_113
crossref_primary_10_1109_TCYB_2017_2695218
crossref_primary_10_1109_TFUZZ_2016_2637373
crossref_primary_10_1016_j_neucom_2016_09_079
crossref_primary_10_1016_j_neucom_2016_09_080
crossref_primary_10_1016_j_neucom_2019_07_115
crossref_primary_10_1016_j_cogsys_2019_09_008
crossref_primary_10_1016_j_neucom_2023_126946
crossref_primary_10_1016_j_neucom_2014_10_108
crossref_primary_10_1016_j_neucom_2014_10_109
crossref_primary_10_1145_3373358
crossref_primary_10_1155_2016_9063065
crossref_primary_10_1080_13658816_2014_955027
crossref_primary_10_1109_ACCESS_2017_2688477
crossref_primary_10_3390_rs14143446
crossref_primary_10_1016_j_neucom_2016_09_088
crossref_primary_10_1016_j_neucom_2021_09_080
crossref_primary_10_1007_s00138_020_01150_w
crossref_primary_10_1016_j_neucom_2016_09_087
crossref_primary_10_1007_s13571_025_00360_4
crossref_primary_10_1016_j_cogsys_2020_02_001
crossref_primary_10_1109_TIA_2022_3172391
crossref_primary_10_1016_j_neucom_2018_10_060
crossref_primary_10_1016_j_neucom_2018_09_091
crossref_primary_10_1016_j_neucom_2012_03_028
crossref_primary_10_1007_s00521_018_3746_0
crossref_primary_10_1016_j_neucom_2020_10_114
crossref_primary_10_1016_j_cogsys_2022_03_001
crossref_primary_10_1155_2012_894207
crossref_primary_10_1080_21642583_2022_2045645
crossref_primary_10_1016_j_cogsys_2019_05_004
crossref_primary_10_1016_j_neucom_2020_07_143
crossref_primary_10_1016_j_neucom_2020_07_144
crossref_primary_10_1109_TKDE_2012_100
crossref_primary_10_1016_j_neucom_2020_07_141
crossref_primary_10_4018_IJITSA_316935
crossref_primary_10_1049_cmu2_12169
crossref_primary_10_1016_j_neucom_2022_05_100
crossref_primary_10_1080_21642583_2022_2074168
crossref_primary_10_1016_j_neucom_2014_04_081
crossref_primary_10_1016_j_neucom_2021_10_125
crossref_primary_10_1016_j_neucom_2018_06_076
crossref_primary_10_1016_j_neucom_2014_04_085
crossref_primary_10_1016_j_neucom_2018_02_094
crossref_primary_10_1016_j_neucom_2018_04_085
crossref_primary_10_1016_j_neucom_2018_06_075
crossref_primary_10_1016_j_neucom_2021_10_122
crossref_primary_10_1016_j_neucom_2022_01_005
crossref_primary_10_1016_j_cogsys_2019_11_002
crossref_primary_10_1016_j_cogsys_2018_03_003
crossref_primary_10_1016_j_neucom_2018_06_079
crossref_primary_10_1016_j_neunet_2017_01_001
crossref_primary_10_1080_21642583_2022_2063201
Cites_doi 10.1145/331499.331504
10.1080/01621459.1969.10500990
10.1080/01621459.1967.10482890
10.1109/TKDE.2002.1033770
10.1145/304182.304187
10.1007/BF00133570
10.1109/34.295913
10.1016/0031-3203(90)90103-r
10.1006/cviu.1996.0036
10.1109/34.87344
10.1016/1047-3203(90)90014-M
10.5555/3001460.3001507
10.1109/ICCV.2001.937500
10.1145/276304.276314
10.1109/ICIP.2001.959147
10.1145/1066157.1066211
10.1109/83.701170
10.1109/34.954598
10.1016/0021-9991(88)90002-2
10.1016/j.csda.2005.10.001
10.1007/BF01451741
10.1109/ICCV.1995.466871
10.1109/34.982897
10.1007/978-1-4899-3216-7
10.1006/jcph.2002.7028
10.1109/ICIP.2001.958053
10.1145/342009.335383
10.1109/69.991713
10.1023/A:1009745219419
10.1109/34.368173
ContentType Journal Article
Copyright 2009 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
Copyright_xml – notice: 2009 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TKDE.2009.21
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1558-2191
EndPage 1531
ExternalDocumentID 2543469781
22015225
10_1109_TKDE_2009_21
4752824
Genre orig-research
GroupedDBID -~X
.DC
0R~
1OL
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TAF
TN5
UHB
VH1
AAYXX
CITATION
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c375t-2053be04e12f3e042e9040b953d8fd7abf131c8edcd3c688782302d78cd2ba5e3
IEDL.DBID RIE
ISICitedReferencesCount 164
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000269851800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Sun Nov 23 09:50:56 EST 2025
Sun Sep 28 14:48:41 EDT 2025
Sun Nov 30 04:30:48 EST 2025
Mon Jul 21 09:17:21 EDT 2025
Sat Nov 29 08:10:12 EST 2025
Tue Nov 18 21:29:00 EST 2025
Wed Aug 27 02:52:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Cluster analysis
Termination problem
Contour line
Data center
initial boundary
Outlier
Image segmentation
level set density
valley seeking clustering
Classification
level set method
Computer center
Density-based clustering
Point group
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-2053be04e12f3e042e9040b953d8fd7abf131c8edcd3c688782302d78cd2ba5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 912032013
PQPubID 23500
PageCount 17
ParticipantIDs proquest_miscellaneous_35023012
crossref_primary_10_1109_TKDE_2009_21
proquest_journals_912032013
pascalfrancis_primary_22015225
crossref_citationtrail_10_1109_TKDE_2009_21
ieee_primary_4752824
proquest_miscellaneous_875018875
PublicationCentury 2000
PublicationDate 2009-11-01
PublicationDateYYYYMMDD 2009-11-01
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-11-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2009
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
Liao (ref8)
ref11
ref32
ref2
MacQueen (ref5); 1
ref39
ref38
Hinneburg (ref17)
ref19
Sethian (ref33) 1999
ref18
Sneath (ref3) 1973
Fukunaga (ref16) 1990
Wang (ref9)
Han (ref1) 2006
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Sheikholeslami (ref10)
ref28
ref27
ref29
ref7
ref4
Tsai (ref30) 2005
ref6
ref40
References_xml – ident: ref2
  doi: 10.1145/331499.331504
– start-page: 428
  volume-title: Proc. 1998 Conf. Very Large Databases
  ident: ref10
  article-title: WaveCluster: A Multi-Resolution Clustering Approach for Very Large Spatial Databases
– ident: ref6
  doi: 10.1080/01621459.1969.10500990
– start-page: 1
  year: 2005
  ident: ref30
  article-title: Total Variation and Level Set Based Methods in Image Science
  publication-title: Acta Numerica
– ident: ref4
  doi: 10.1080/01621459.1967.10482890
– ident: ref7
  doi: 10.1109/TKDE.2002.1033770
– ident: ref15
  doi: 10.1145/304182.304187
– ident: ref29
  doi: 10.1007/BF00133570
– volume-title: Numerical Taxonomy.
  year: 1973
  ident: ref3
– start-page: 61
  volume-title: Proc. Seventh Workshop Mining Scientific and Eng. Datasets
  ident: ref8
  article-title: A Grid-Based Clustering Algorithm Using Adaptive Mesh Refinement
– ident: ref24
  doi: 10.1109/34.295913
– volume-title: Data Mining Concepts and Techniques
  year: 2006
  ident: ref1
– ident: ref21
  doi: 10.1016/0031-3203(90)90103-r
– start-page: 186
  volume-title: Proc. 23rd Conf. Very Large Databases
  ident: ref9
  article-title: STING: A Statistical Information Grid Approach to Spatial Data Mining
– ident: ref22
  doi: 10.1006/cviu.1996.0036
– ident: ref27
  doi: 10.1109/34.87344
– ident: ref26
  doi: 10.1016/1047-3203(90)90014-M
– volume-title: Introduction to Statistical Pattern Recognition
  year: 1990
  ident: ref16
– ident: ref13
  doi: 10.5555/3001460.3001507
– ident: ref35
  doi: 10.1109/ICCV.2001.937500
– ident: ref11
  doi: 10.1145/276304.276314
– ident: ref18
  doi: 10.1109/ICIP.2001.959147
– ident: ref39
  doi: 10.1145/1066157.1066211
– ident: ref25
  doi: 10.1109/83.701170
– ident: ref19
  doi: 10.1109/34.954598
– ident: ref28
  doi: 10.1016/0021-9991(88)90002-2
– ident: ref12
  doi: 10.1016/j.csda.2005.10.001
– volume: 1
  start-page: 281
  volume-title: Proc. Fifth Berkeley Symp. Math. Statistics and Probability
  ident: ref5
  article-title: Some Methods for Classification and Analysis of Multivariate Observations
– ident: ref34
  doi: 10.1007/BF01451741
– start-page: 58
  volume-title: Proc. Int’l Conf. Knowledge Discovery and Data Mining
  ident: ref17
  article-title: An Efficient Approach to Clustering in Large Multimedia Databases with Noise
– ident: ref31
  doi: 10.1109/ICCV.1995.466871
– ident: ref37
  doi: 10.1109/34.982897
– ident: ref23
  doi: 10.1007/978-1-4899-3216-7
– ident: ref36
  doi: 10.1006/jcph.2002.7028
– ident: ref20
  doi: 10.1109/ICIP.2001.958053
– ident: ref38
  doi: 10.1145/342009.335383
– ident: ref40
  doi: 10.1109/69.991713
– ident: ref14
  doi: 10.1023/A:1009745219419
– ident: ref32
  doi: 10.1109/34.368173
– volume-title: Level Set Methods and Fast Marching Methods.
  year: 1999
  ident: ref33
SSID ssj0008781
Score 2.4058685
Snippet In this paper, a new density-based clustering framework is proposed by adopting the assumption that the cluster centers in data space can be regarded as target...
[...] the valley seeking clustering is used to group data points into corresponding clusters based on the LSD.
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1515
SubjectTerms Applied sciences
Artificial intelligence
Boundaries
Clustering
Clustering algorithms
Clustering methods
Clusters
Computer science; control theory; systems
Computer systems and distributed systems. User interface
Costs
Data mining
Data processing. List processing. Character string processing
Density
Density-based clustering
Evolution
Exact sciences and technology
Image retrieval
Image segmentation
Information retrieval
initial boundary
Labeling
Level set
level set density
level set method
LSD
Memory organisation. Data processing
Pattern classification
Pattern recognition. Digital image processing. Computational geometry
Software
Studies
valley seeking clustering
Valleys
Title A Novel Density-Based Clustering Framework by Using Level Set Method
URI https://ieeexplore.ieee.org/document/4752824
https://www.proquest.com/docview/912032013
https://www.proquest.com/docview/35023012
https://www.proquest.com/docview/875018875
Volume 21
WOSCitedRecordID wos000269851800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4B4gCHUqCIlBZ8aE-QEttxnBwpywqpdFWpVOIWOfZYQlrtVmwWiX_fsZONigqHnmLJc7BmPK_MeD6AT6RfRVFxkVJ0btO8ITtoXJmlytgmFwKl8FHSN3oyKe_uqh9rcDa8hUHE2HyGX8Iy1vLd3C7Dr7LzXCvKEPJ1WNe66N5qDVa31BGQlLILyolkrocm9-r89tvoqptMKfgz9xPxVEI3pFkQQ3yHZPGPUY6eZrzzf2d8C2_6iJJddFdgF9Zwtgc7K7QG1ivvHmz_NXpwH0YXbDJ_xCkbhQ729in9Su7MscvpMkxOIBI2XrVtseaJxc4CdhM6jNhPbNn3CDz9Dn6Nr24vr9MeUSG1UquWVELJBrMcufCSvgIrUuKmUtKV3mnTeC65LdFZJ21B9ieU4YTTpXWiMQrlAWzM5jM8BGbI1VtTWu-szbWTlc-kkZ6yPyy8MjKB0xWja9uPGw-oF9M6ph1ZVQexBBTMqhY8gc8D9e9uzMYrdPuB5QNNz-0Ejp_JcNgXFN9QhKkSOFoJte6VdFHTFQ3w8ZzOejLsknaFkomZ4Xy5qKUKORoXCbBXKCjfyzhxSr1_-WhHsBULUPH54gfYaB-W-BE27WN7v3g4jnf4Dyyz7tM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9RAEJ8gmggPoiCxoLAP-qSV7te1fUSOC4bjYuKZ8NZsd2cTkssd4Xok_PfObnuNRHnwqZvsPGxmdr46s_MD-Ej6NRiUXKQUndtU1WQHjSuyVBtbKyFQCh8lPc4nk-L6uvyxAV_6tzCIGJvP8GtYxlq-W9hV-FV2onJNGYJ6Bs-1UiJrX2v1drfIIyQp5ReUFUmV923u5cn0cnjezqYU_JEDiogqoR_SLIklvsWy-MssR18z2vm_U76GV11MyU7bS_AGNnC-CztrvAbWqe8ubP8xfHAPhqdssrjHGRuGHvbmIf1GDs2xs9kqzE4gEjZaN26x-oHF3gI2Dj1G7Cc27CpCT7-FX6Pz6dlF2mEqpFbmuiGl0LLGTCEXXtJXYElqXJdausK73NSeS24LdNZJOyALFApxwuWFdaI2GuU-bM4Xc3wHzJCzt6aw3lmrcidLn0kjPeV_OPDayAQ-rxld2W7geMC9mFUx8cjKKogl4GCWleAJfOqpb9tBG0_Q7QWW9zQdtxM4eiTDfl9QhEMxpk7gcC3UqlPTZUWXNADIczrrcb9L-hWKJmaOi9WykjpkaVwkwJ6goIwv48QpffDvox3Dy4vp1bgaf59cHsJWLEfFx4zvYbO5W-EHeGHvm5vl3VG8z78BuX_yGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Density-Based+Clustering+Framework+by+Using+Level+Set+Method&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Xiao-Feng+Wang&rft.au=De-Shuang+Huang&rft.date=2009-11-01&rft.issn=1041-4347&rft.volume=21&rft.issue=11&rft.spage=1515&rft.epage=1531&rft_id=info:doi/10.1109%2FTKDE.2009.21&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2009_21
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon