Horizontal gene transfer and adaptive evolution in bacteria

Horizontal gene transfer (HGT) is arguably the most conspicuous feature of bacterial evolution. Evidence for HGT is found in most bacterial genomes. Although HGT can considerably alter bacterial genomes, not all transfer events may be biologically significant and may instead represent the outcome of...

Full description

Saved in:
Bibliographic Details
Published in:Nature reviews. Microbiology Vol. 20; no. 4; pp. 206 - 218
Main Authors: Arnold, Brian J., Huang, I-Ting, Hanage, William P.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01.04.2022
Nature Publishing Group
Subjects:
ISSN:1740-1526, 1740-1534, 1740-1534
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Horizontal gene transfer (HGT) is arguably the most conspicuous feature of bacterial evolution. Evidence for HGT is found in most bacterial genomes. Although HGT can considerably alter bacterial genomes, not all transfer events may be biologically significant and may instead represent the outcome of an incessant evolutionary process that only occasionally has a beneficial purpose. When adaptive transfers occur, HGT and positive selection may result in specific, detectable signatures in genomes, such as gene-specific sweeps or increased transfer rates for genes that are ecologically relevant. In this Review, we first discuss the various mechanisms whereby HGT occurs, how the genetic signatures shape patterns of genomic variation and the distinct bioinformatic algorithms developed to detect these patterns. We then discuss the evolutionary theory behind HGT and positive selection in bacteria, and discuss the approaches developed over the past decade to detect transferred DNA that may be involved in adaptation to new environments. Bacterial DNA transfers between cells in numerous ways and becomes integrated into the genome, with diverse consequences for bacterial genomes. In this Review, Arnold, Huang and Hanage discuss the underlying theory used to infer the selective forces acting on transferred DNA and how they shape patterns of genomic variation.
AbstractList Horizontal gene transfer (HGT) is arguably the most conspicuous feature of bacterial evolution. Evidence for HGT is found in most bacterial genomes. Although HGT can considerably alter bacterial genomes, not all transfer events may be biologically significant and may instead represent the outcome of an incessant evolutionary process that only occasionally has a beneficial purpose. When adaptive transfers occur, HGT and positive selection may result in specific, detectable signatures in genomes, such as gene-specific sweeps or increased transfer rates for genes that are ecologically relevant. In this Review, we first discuss the various mechanisms whereby HGT occurs, how the genetic signatures shape patterns of genomic variation and the distinct bioinformatic algorithms developed to detect these patterns. We then discuss the evolutionary theory behind HGT and positive selection in bacteria, and discuss the approaches developed over the past decade to detect transferred DNA that may be involved in adaptation to new environments.Bacterial DNA transfers between cells in numerous ways and becomes integrated into the genome, with diverse consequences for bacterial genomes. In this Review, Arnold, Huang and Hanage discuss the underlying theory used to infer the selective forces acting on transferred DNA and how they shape patterns of genomic variation.
Horizontal gene transfer (HGT) is arguably the most conspicuous feature of bacterial evolution. Evidence for HGT is found in most bacterial genomes. Although HGT can considerably alter bacterial genomes, not all transfer events may be biologically significant and may instead represent the outcome of an incessant evolutionary process that only occasionally has a beneficial purpose. When adaptive transfers occur, HGT and positive selection may result in specific, detectable signatures in genomes, such as gene-specific sweeps or increased transfer rates for genes that are ecologically relevant. In this Review, we first discuss the various mechanisms whereby HGT occurs, how the genetic signatures shape patterns of genomic variation and the distinct bioinformatic algorithms developed to detect these patterns. We then discuss the evolutionary theory behind HGT and positive selection in bacteria, and discuss the approaches developed over the past decade to detect transferred DNA that may be involved in adaptation to new environments.
Horizontal gene transfer (HGT) is arguably the most conspicuous feature of bacterial evolution. Evidence for HGT is found in most bacterial genomes. Although HGT can considerably alter bacterial genomes, not all transfer events may be biologically significant and may instead represent the outcome of an incessant evolutionary process that only occasionally has a beneficial purpose. When adaptive transfers occur, HGT and positive selection may result in specific, detectable signatures in genomes, such as gene-specific sweeps or increased transfer rates for genes that are ecologically relevant. In this Review, we first discuss the various mechanisms whereby HGT occurs, how the genetic signatures shape patterns of genomic variation and the distinct bioinformatic algorithms developed to detect these patterns. We then discuss the evolutionary theory behind HGT and positive selection in bacteria, and discuss the approaches developed over the past decade to detect transferred DNA that may be involved in adaptation to new environments.Horizontal gene transfer (HGT) is arguably the most conspicuous feature of bacterial evolution. Evidence for HGT is found in most bacterial genomes. Although HGT can considerably alter bacterial genomes, not all transfer events may be biologically significant and may instead represent the outcome of an incessant evolutionary process that only occasionally has a beneficial purpose. When adaptive transfers occur, HGT and positive selection may result in specific, detectable signatures in genomes, such as gene-specific sweeps or increased transfer rates for genes that are ecologically relevant. In this Review, we first discuss the various mechanisms whereby HGT occurs, how the genetic signatures shape patterns of genomic variation and the distinct bioinformatic algorithms developed to detect these patterns. We then discuss the evolutionary theory behind HGT and positive selection in bacteria, and discuss the approaches developed over the past decade to detect transferred DNA that may be involved in adaptation to new environments.
Horizontal gene transfer (HGT) is arguably the most conspicuous feature of bacterial evolution. Evidence for HGT is found in most bacterial genomes. Although HGT can considerably alter bacterial genomes, not all transfer events may be biologically significant and may instead represent the outcome of an incessant evolutionary process that only occasionally has a beneficial purpose. When adaptive transfers occur, HGT and positive selection may result in specific, detectable signatures in genomes, such as gene-specific sweeps or increased transfer rates for genes that are ecologically relevant. In this Review, we first discuss the various mechanisms whereby HGT occurs, how the genetic signatures shape patterns of genomic variation and the distinct bioinformatic algorithms developed to detect these patterns. We then discuss the evolutionary theory behind HGT and positive selection in bacteria, and discuss the approaches developed over the past decade to detect transferred DNA that may be involved in adaptation to new environments. Bacterial DNA transfers between cells in numerous ways and becomes integrated into the genome, with diverse consequences for bacterial genomes. In this Review, Arnold, Huang and Hanage discuss the underlying theory used to infer the selective forces acting on transferred DNA and how they shape patterns of genomic variation.
Author Arnold, Brian J.
Hanage, William P.
Huang, I-Ting
Author_xml – sequence: 1
  givenname: Brian J.
  orcidid: 0000-0002-8629-5465
  surname: Arnold
  fullname: Arnold, Brian J.
  email: brianjohnarnold@gmail.com
  organization: Department of Computer Science, Princeton University, Center for Statistics and Machine Learning, Princeton University
– sequence: 2
  givenname: I-Ting
  surname: Huang
  fullname: Huang, I-Ting
  organization: Department of Organismic and Evolutionary Biology, Harvard University
– sequence: 3
  givenname: William P.
  orcidid: 0000-0002-6319-7336
  surname: Hanage
  fullname: Hanage, William P.
  email: whanage@hsph.harvard.edu
  organization: Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34773098$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LAzEQhoNUtK3-AQ-y4MXL6uRrk8WTiF9Q8KLnkGazJWWb1GRX0F9vaquCB0-Zw_NMZuadoJEP3iJ0guECA5WXiWEu6hIILgEqDiXbQ2MsGJSYUzb6qUl1iCYpLQEI54IcoEPKhKBQyzG6egjRfQTf665YWG-LPmqfWhsL7ZtCN3rduzdb2LfQDb0LvnC-mGvT2-j0EdpvdZfs8e6dope72-ebh3L2dP94cz0rDRW8L7HFNWEwp6ZpsTENq1hLuARKJNPcGmOEMI2sKW2orGpRt5QKbaCVuayyN0Xn277rGF4Hm3q1csnYrtPehiEpwmvBATiDjJ79QZdhiD5Pp0jFoKokzv9M0emOGuYr26h1dCsd39X3WTIgt4CJIaVoW2Vcrzf75_O4TmFQmwTUNgGVE1BfCSiWVfJH_e7-r0S3UsqwX9j4O_Y_1idNQpY_
CitedBy_id crossref_primary_10_1016_j_jmb_2025_169403
crossref_primary_10_1007_s10142_023_01109_w
crossref_primary_10_1038_s41467_025_60116_6
crossref_primary_10_1099_jmm_0_001923
crossref_primary_10_1186_s12866_024_03391_5
crossref_primary_10_1016_j_micres_2025_128048
crossref_primary_10_1186_s40168_025_02065_2
crossref_primary_10_1016_j_algal_2024_103460
crossref_primary_10_1016_j_jhazmat_2025_138980
crossref_primary_10_1016_j_chemosphere_2023_139905
crossref_primary_10_1038_s41467_024_54408_6
crossref_primary_10_1186_s40793_024_00570_9
crossref_primary_10_1038_s41576_023_00688_5
crossref_primary_10_1016_j_chom_2024_05_017
crossref_primary_10_3390_genes13112071
crossref_primary_10_1016_j_chom_2024_05_015
crossref_primary_10_1080_03036758_2024_2345315
crossref_primary_10_1038_s41576_023_00620_x
crossref_primary_10_1093_femsle_fnae027
crossref_primary_10_1016_j_envres_2024_119153
crossref_primary_10_3389_fmicb_2022_889551
crossref_primary_10_1021_acs_jpcb_5c02436
crossref_primary_10_1128_msphere_01010_24
crossref_primary_10_3389_fmicb_2023_1271138
crossref_primary_10_3390_ncrna11030036
crossref_primary_10_3389_fmicb_2022_854792
crossref_primary_10_1038_s41467_022_33054_w
crossref_primary_10_1080_21505594_2024_2322961
crossref_primary_10_3390_microorganisms13040908
crossref_primary_10_1007_s13752_024_00478_0
crossref_primary_10_1016_j_marpolbul_2024_116939
crossref_primary_10_1126_science_adl0799
crossref_primary_10_3390_agronomy14061295
crossref_primary_10_1007_s10142_023_01206_w
crossref_primary_10_1038_s41522_025_00793_9
crossref_primary_10_3389_fmicb_2025_1625724
crossref_primary_10_1093_molbev_msad028
crossref_primary_10_21105_joss_07773
crossref_primary_10_1016_j_cej_2025_159666
crossref_primary_10_1016_j_meegid_2024_105654
crossref_primary_10_1038_s41467_023_36086_y
crossref_primary_10_1093_femsle_fnae005
crossref_primary_10_1016_j_chemosphere_2024_142264
crossref_primary_10_1016_j_fochms_2024_100236
crossref_primary_10_1371_journal_pbio_3002632
crossref_primary_10_1128_aem_00095_24
crossref_primary_10_1128_msystems_00562_22
crossref_primary_10_1016_j_jare_2024_12_044
crossref_primary_10_1111_evo_14432
crossref_primary_10_3390_su162410922
crossref_primary_10_1111_1749_4877_12714
crossref_primary_10_1134_S2079086423060154
crossref_primary_10_1007_s13225_023_00530_7
crossref_primary_10_1111_mmi_15209
crossref_primary_10_1016_j_watres_2024_121855
crossref_primary_10_1038_s41564_023_01531_7
crossref_primary_10_1039_D4RA06117A
crossref_primary_10_1128_msystems_00365_24
crossref_primary_10_1128_jcm_00266_24
crossref_primary_10_1186_s13059_025_03634_2
crossref_primary_10_1038_s41467_025_61035_2
crossref_primary_10_1038_s42003_023_04753_x
crossref_primary_10_1093_molbev_msae272
crossref_primary_10_26599_NR_2025_94907821
crossref_primary_10_1038_s41586_024_07486_x
crossref_primary_10_3389_fmicb_2022_913662
crossref_primary_10_1016_j_biortech_2024_131306
crossref_primary_10_1093_molbev_msaf107
crossref_primary_10_1128_spectrum_00517_25
crossref_primary_10_2478_johr_2022_0009
crossref_primary_10_1016_j_jenvman_2024_122930
crossref_primary_10_1093_femsle_fnae068
crossref_primary_10_1002_adtp_202400412
crossref_primary_10_1016_j_jhazmat_2024_136359
crossref_primary_10_1007_s12602_023_10128_9
crossref_primary_10_1038_s41467_022_31858_4
crossref_primary_10_3390_ijms24021153
crossref_primary_10_1186_s12934_025_02759_0
crossref_primary_10_1016_j_envint_2023_108318
crossref_primary_10_3389_fmicb_2024_1460335
crossref_primary_10_1016_j_envres_2024_118172
crossref_primary_10_1016_j_algal_2023_103128
crossref_primary_10_1016_j_jenvman_2022_115944
crossref_primary_10_1111_1348_0421_13222
crossref_primary_10_1093_gbe_evaf079
crossref_primary_10_3389_fbioe_2025_1620652
crossref_primary_10_1038_s41559_025_02827_z
crossref_primary_10_1093_molbev_msaf128
crossref_primary_10_1016_j_tim_2023_12_008
crossref_primary_10_1111_cpr_13236
crossref_primary_10_1371_journal_pone_0315160
crossref_primary_10_1016_j_copbio_2022_102885
crossref_primary_10_1016_j_watres_2022_119060
crossref_primary_10_1016_j_watres_2022_119062
crossref_primary_10_1371_journal_pbio_3002796
crossref_primary_10_1016_j_envpol_2025_126686
crossref_primary_10_3390_ijms24031967
crossref_primary_10_1016_j_ecoenv_2022_114247
crossref_primary_10_1016_j_jhazmat_2025_139824
crossref_primary_10_1016_j_ejmech_2024_116840
crossref_primary_10_1016_j_fm_2025_104895
crossref_primary_10_1093_jambio_lxaf201
crossref_primary_10_3390_ijms241411761
crossref_primary_10_1111_ele_14447
crossref_primary_10_3389_fcell_2022_988866
crossref_primary_10_3390_microorganisms12112375
crossref_primary_10_1093_nar_gkaf932
crossref_primary_10_1016_j_scitotenv_2024_172251
crossref_primary_10_1080_22221751_2024_2352435
crossref_primary_10_1099_mgen_0_001021
crossref_primary_10_1038_s41579_024_01041_1
crossref_primary_10_1126_science_ade0705
crossref_primary_10_3390_microorganisms11112725
crossref_primary_10_1016_j_jhazmat_2025_137932
crossref_primary_10_1186_s43170_023_00201_2
crossref_primary_10_1007_s00284_025_04373_0
crossref_primary_10_1002_ps_70067
crossref_primary_10_1080_1040841X_2024_2423159
crossref_primary_10_1093_molbev_msaf166
crossref_primary_10_3390_microorganisms13040779
crossref_primary_10_1073_pnas_2205041119
crossref_primary_10_1128_msystems_00083_22
crossref_primary_10_1016_j_epidem_2025_100817
crossref_primary_10_3390_antibiotics12121708
crossref_primary_10_1002_1873_3468_14906
crossref_primary_10_1038_s41579_023_00890_6
crossref_primary_10_1099_mgen_0_001279
crossref_primary_10_1016_j_pt_2025_04_002
crossref_primary_10_1016_j_jece_2025_117915
crossref_primary_10_1099_mgen_0_001034
crossref_primary_10_1371_journal_pbio_3002460
crossref_primary_10_1016_j_microc_2023_109268
crossref_primary_10_1093_jambio_lxad127
crossref_primary_10_1002_ps_8638
crossref_primary_10_3390_v15071525
crossref_primary_10_1093_genetics_iyaf115
crossref_primary_10_1093_molbev_msae066
crossref_primary_10_1111_1462_2920_16311
crossref_primary_10_7554_eLife_78533
crossref_primary_10_1093_femsec_fiac103
crossref_primary_10_3389_fmicb_2022_939406
crossref_primary_10_1186_s12915_024_01937_7
crossref_primary_10_3389_fmicb_2023_1214081
crossref_primary_10_1016_j_envpol_2023_123067
crossref_primary_10_3389_fmicb_2023_1157888
crossref_primary_10_3390_microorganisms10051040
crossref_primary_10_3389_fcimb_2024_1343858
crossref_primary_10_1007_s00284_024_03648_2
crossref_primary_10_1093_molbev_msaf060
crossref_primary_10_1093_glycob_cwac069
crossref_primary_10_1128_jb_00066_25
crossref_primary_10_1146_annurev_micro_112723_083001
crossref_primary_10_1007_s00248_024_02390_3
crossref_primary_10_1038_s41467_024_45154_w
crossref_primary_10_5772_geet_21
crossref_primary_10_1038_s41467_024_55581_4
crossref_primary_10_1093_ismejo_wrae043
crossref_primary_10_1002_mlf2_12077
crossref_primary_10_1016_j_mib_2023_102424
crossref_primary_10_1093_ismejo_wrae167
crossref_primary_10_1093_ismejo_wraf014
crossref_primary_10_1021_acs_est_5c06928
crossref_primary_10_3390_microorganisms12091920
crossref_primary_10_1093_ismejo_wraf137
crossref_primary_10_1016_j_margen_2024_101083
crossref_primary_10_1155_jotm_7857069
crossref_primary_10_1016_j_envint_2025_109385
crossref_primary_10_4142_jvs_23265
crossref_primary_10_1007_s12602_022_10017_7
crossref_primary_10_1016_j_emcon_2025_100578
crossref_primary_10_1016_j_jhazmat_2024_134343
crossref_primary_10_1094_PHYTO_02_25_0042_FI
crossref_primary_10_3389_fcimb_2025_1526028
crossref_primary_10_1128_spectrum_00858_25
crossref_primary_10_3390_genes14040949
crossref_primary_10_3390_d17040220
crossref_primary_10_2478_aoas_2024_0111
crossref_primary_10_1007_s12672_024_01590_0
crossref_primary_10_1093_nar_gkae899
crossref_primary_10_1016_j_tim_2025_03_009
crossref_primary_10_1128_msystems_01538_24
crossref_primary_10_1021_acsestwater_5c00540
crossref_primary_10_1007_s00203_024_03850_7
crossref_primary_10_1371_journal_pcbi_1011532
crossref_primary_10_1016_j_aquaculture_2025_742524
crossref_primary_10_1002_mlf2_12132
crossref_primary_10_1093_nar_gkae1265
crossref_primary_10_1155_2022_3348695
crossref_primary_10_1093_nsr_nwaf128
crossref_primary_10_1021_acs_est_4c13010
crossref_primary_10_1016_j_envpol_2024_124592
crossref_primary_10_1128_cmr_00175_23
crossref_primary_10_1016_j_ecoenv_2023_115124
crossref_primary_10_1016_j_jwpe_2024_106636
crossref_primary_10_1128_spectrum_00917_25
crossref_primary_10_3390_d16050268
crossref_primary_10_1016_j_copbio_2023_102898
crossref_primary_10_3390_micro5020018
crossref_primary_10_1038_s41598_022_23690_z
crossref_primary_10_1360_SST_2024_0258
crossref_primary_10_1128_cmr_00118_23
crossref_primary_10_3390_microorganisms12112317
crossref_primary_10_1016_j_cej_2022_140195
crossref_primary_10_3390_antibiotics13070661
crossref_primary_10_3390_microorganisms11020407
crossref_primary_10_3389_fpls_2024_1435440
crossref_primary_10_1016_j_fm_2023_104327
crossref_primary_10_1016_j_scitotenv_2024_174466
crossref_primary_10_1093_evolinnean_kzae023
crossref_primary_10_1016_j_watres_2025_124357
crossref_primary_10_1093_plcell_koaf195
crossref_primary_10_1038_s41598_024_83952_w
crossref_primary_10_1371_journal_pone_0301172
crossref_primary_10_3389_fmicb_2024_1367490
crossref_primary_10_1186_s12864_023_09245_0
crossref_primary_10_1016_j_envres_2023_117739
crossref_primary_10_1101_gr_277340_122
crossref_primary_10_1111_tpj_17057
crossref_primary_10_1016_j_ympev_2025_108359
crossref_primary_10_3390_ijms26020621
crossref_primary_10_1080_10408398_2022_2081127
crossref_primary_10_1016_j_biortech_2025_132036
crossref_primary_10_1016_j_ympev_2024_108197
crossref_primary_10_1128_spectrum_03688_22
crossref_primary_10_1002_adma_202406910
crossref_primary_10_1111_nph_70329
crossref_primary_10_1093_femsre_fuaf045
crossref_primary_10_1021_acsabm_4c01872
crossref_primary_10_1128_msystems_00211_22
crossref_primary_10_1016_j_jhazmat_2024_135624
crossref_primary_10_1016_j_psep_2024_07_033
crossref_primary_10_1093_nargab_lqae061
crossref_primary_10_1007_s13225_025_00550_5
crossref_primary_10_1016_j_jhazmat_2023_132099
crossref_primary_10_1016_j_wasman_2024_04_048
crossref_primary_10_1016_j_envpol_2025_126817
crossref_primary_10_1016_j_envpol_2025_126938
crossref_primary_10_1186_s40168_024_01963_1
crossref_primary_10_1093_nar_gkad130
crossref_primary_10_3389_fbioe_2025_1612226
crossref_primary_10_1016_j_tibtech_2024_12_011
crossref_primary_10_1016_j_gde_2022_101950
crossref_primary_10_1016_j_mib_2024_102431
crossref_primary_10_3390_microorganisms12050986
crossref_primary_10_1111_1758_2229_70175
crossref_primary_10_3390_antibiotics12010024
crossref_primary_10_1016_j_tig_2024_02_001
crossref_primary_10_3390_antibiotics11121794
crossref_primary_10_3390_toxins17060311
crossref_primary_10_1016_j_cell_2024_08_008
crossref_primary_10_1016_j_ijantimicag_2024_107225
crossref_primary_10_1128_msystems_00887_24
crossref_primary_10_1016_j_tim_2024_02_002
crossref_primary_10_1080_10889868_2025_2510989
crossref_primary_10_1128_spectrum_02453_24
crossref_primary_10_1007_s00203_023_03557_1
crossref_primary_10_1016_j_watres_2024_122590
crossref_primary_10_1016_j_micpath_2024_107275
crossref_primary_10_1016_j_plaphy_2024_109359
crossref_primary_10_1128_aem_01220_22
crossref_primary_10_1016_j_ebiom_2023_104532
crossref_primary_10_1134_S0026261724606043
crossref_primary_10_3389_fmicb_2023_1148263
crossref_primary_10_1016_j_margen_2024_101122
crossref_primary_10_1016_j_tim_2023_07_009
crossref_primary_10_1038_s41559_024_02421_9
crossref_primary_10_1093_nar_gkad1172
crossref_primary_10_1073_pnas_2417628122
crossref_primary_10_1016_j_scitotenv_2023_168908
crossref_primary_10_3390_antibiotics14080843
crossref_primary_10_1091_mbc_E20_08_0564
crossref_primary_10_1016_j_jhazmat_2024_133774
crossref_primary_10_3390_microorganisms11010215
crossref_primary_10_1128_spectrum_00915_24
crossref_primary_10_1016_j_jmb_2024_168924
crossref_primary_10_26508_lsa_202201833
crossref_primary_10_1128_spectrum_03265_24
crossref_primary_10_1093_nargab_lqae142
crossref_primary_10_1128_msystems_01089_24
crossref_primary_10_1016_j_watres_2024_122375
crossref_primary_10_1111_1462_2920_16630
crossref_primary_10_1093_nar_gkad138
crossref_primary_10_1073_pnas_2311127121
crossref_primary_10_1093_bfgp_elac051
crossref_primary_10_1038_s41467_025_57825_3
crossref_primary_10_1038_s43705_023_00317_6
crossref_primary_10_1016_j_jhazmat_2024_136824
crossref_primary_10_1128_mmbr_00041_23
crossref_primary_10_1016_j_jhazmat_2023_133238
crossref_primary_10_1186_s40793_024_00610_4
crossref_primary_10_1016_j_jhazmat_2024_134885
crossref_primary_10_1016_j_cub_2024_06_030
crossref_primary_10_1038_s41545_025_00446_6
crossref_primary_10_1016_j_watres_2024_121198
crossref_primary_10_1007_s00203_024_04152_8
crossref_primary_10_3390_genes13101895
crossref_primary_10_1093_bib_bbaf149
crossref_primary_10_1016_j_cell_2022_12_001
crossref_primary_10_1016_j_still_2025_106655
crossref_primary_10_1016_j_cell_2022_06_014
crossref_primary_10_1016_j_biocontrol_2025_105699
crossref_primary_10_1042_BST20221395
crossref_primary_10_1093_nargab_lqaf005
crossref_primary_10_1016_j_jgar_2024_11_003
crossref_primary_10_1016_j_soilbio_2024_109553
crossref_primary_10_1038_s41467_025_55834_w
crossref_primary_10_1038_s41522_024_00597_3
crossref_primary_10_1128_spectrum_00260_24
crossref_primary_10_1016_j_scitotenv_2024_174618
crossref_primary_10_1002_advs_202502193
crossref_primary_10_1186_s40793_025_00701_w
crossref_primary_10_1016_j_jclepro_2022_135371
crossref_primary_10_1371_journal_pbio_3002901
crossref_primary_10_3390_ijms26189193
crossref_primary_10_1186_s12864_022_08678_3
crossref_primary_10_1016_j_micres_2024_128041
crossref_primary_10_1093_femsre_fuae006
crossref_primary_10_3390_d14070502
crossref_primary_10_1016_j_colsurfb_2022_112833
crossref_primary_10_3389_fmicb_2025_1663069
crossref_primary_10_1016_j_ebiom_2025_105781
crossref_primary_10_1038_s41396_023_01463_4
crossref_primary_10_1016_j_fbio_2024_105405
crossref_primary_10_3390_microorganisms13081861
crossref_primary_10_1016_j_watres_2024_121887
crossref_primary_10_1016_j_ibiod_2025_106211
crossref_primary_10_1016_j_watres_2024_122730
crossref_primary_10_1016_j_watres_2024_122972
crossref_primary_10_3390_microorganisms10040700
crossref_primary_10_1016_j_jenvman_2023_118071
crossref_primary_10_1186_s42523_025_00442_8
crossref_primary_10_1111_1751_7915_14335
crossref_primary_10_1097_PXH_0000000000000019
crossref_primary_10_1128_msystems_00706_24
crossref_primary_10_1016_j_jhazmat_2024_134811
crossref_primary_10_1038_s41587_025_02639_3
crossref_primary_10_3201_eid3001_221927
crossref_primary_10_1016_j_tim_2024_04_014
crossref_primary_10_3390_w16111575
crossref_primary_10_1186_s12862_025_02360_4
crossref_primary_10_1016_j_jhazmat_2024_135902
crossref_primary_10_3389_fmicb_2023_1118264
crossref_primary_10_3390_microorganisms13081732
crossref_primary_10_3389_fmicb_2025_1541524
crossref_primary_10_1016_j_micres_2025_128340
crossref_primary_10_3390_vetsci12050484
crossref_primary_10_1016_j_envpol_2023_122766
crossref_primary_10_1016_j_ecoenv_2025_118991
crossref_primary_10_1038_s41564_025_02091_8
crossref_primary_10_1093_nar_gkaf488
crossref_primary_10_1073_pnas_2317182121
crossref_primary_10_1093_nar_gkae155
crossref_primary_10_1186_s13059_024_03443_z
crossref_primary_10_1186_s40793_023_00461_5
crossref_primary_10_1016_j_scib_2023_09_001
crossref_primary_10_1093_femsre_fuae019
crossref_primary_10_3390_ijms24032610
crossref_primary_10_1113_JP284410
crossref_primary_10_1016_j_micres_2025_128232
crossref_primary_10_1016_j_jclepro_2024_144177
crossref_primary_10_1016_j_marpolbul_2024_117059
crossref_primary_10_1016_j_micinf_2024_105462
crossref_primary_10_1002_chem_202401399
crossref_primary_10_1016_j_mib_2025_102628
crossref_primary_10_2147_IDR_S388354
crossref_primary_10_1099_mgen_0_000931
crossref_primary_10_1371_journal_pone_0301642
crossref_primary_10_1016_j_apsoil_2025_106013
crossref_primary_10_1016_j_apsoil_2025_106375
crossref_primary_10_1139_cjm_2024_0168
crossref_primary_10_1016_j_jhazmat_2025_137692
crossref_primary_10_1093_nargab_lqaf083
crossref_primary_10_1007_s00284_024_04044_6
crossref_primary_10_1080_1040841X_2025_2555938
crossref_primary_10_1073_pnas_2318160121
crossref_primary_10_1111_1751_7915_14408
crossref_primary_10_1146_annurev_earth_031621_070542
crossref_primary_10_1099_mgen_0_000939
crossref_primary_10_1016_j_jhazmat_2025_139638
crossref_primary_10_1038_s41522_024_00588_4
crossref_primary_10_1093_discim_kyad025
crossref_primary_10_1016_j_scitotenv_2024_171530
crossref_primary_10_1038_s41579_025_01157_y
crossref_primary_10_1016_j_envres_2025_120920
crossref_primary_10_1038_s41559_023_02269_5
crossref_primary_10_1016_j_cell_2024_07_028
crossref_primary_10_23902_trkjnat_1171052
crossref_primary_10_1016_j_chom_2024_06_002
crossref_primary_10_1016_j_foodres_2024_115299
crossref_primary_10_1016_j_jhazmat_2024_133922
crossref_primary_10_1186_s12862_023_02112_2
crossref_primary_10_1016_j_ijbiomac_2025_139980
crossref_primary_10_1128_msphere_00114_25
crossref_primary_10_54203_scil_2025_wvj22
crossref_primary_10_1038_s42003_023_05745_7
crossref_primary_10_1038_s41522_025_00773_z
crossref_primary_10_1016_j_tig_2024_01_007
crossref_primary_10_3389_fmicb_2025_1512923
crossref_primary_10_1007_s00210_025_04194_9
crossref_primary_10_1038_s41597_024_03908_7
crossref_primary_10_3389_fmicb_2025_1537073
crossref_primary_10_1016_j_watres_2024_122676
crossref_primary_10_3389_fmicb_2022_1034440
crossref_primary_10_1038_s41598_025_86098_5
crossref_primary_10_1186_s40168_023_01695_8
crossref_primary_10_3390_microbiolres16060118
crossref_primary_10_1038_s41467_023_39964_7
crossref_primary_10_1016_j_envpol_2025_126048
crossref_primary_10_1016_j_scitotenv_2024_178020
crossref_primary_10_1016_j_tim_2025_07_009
crossref_primary_10_1016_j_ijbiomac_2025_140979
crossref_primary_10_1128_spectrum_01466_24
crossref_primary_10_3390_foods14020216
crossref_primary_10_3389_fmars_2023_985514
crossref_primary_10_1016_j_ymben_2025_08_005
Cites_doi 10.1038/s41396-020-0655-x
10.1101/782573
10.1101/568709
10.1371/journal.pgen.1006508
10.1007/0-387-27651-3_7
10.1128/mBio.01033-18
10.1101/227413
10.1371/journal.pgen.1000601
10.1038/s41579-019-0311-5
10.1093/molbev/msz225
10.1371/journal.pgen.1000304
10.1007/978-94-007-2941-4_37
10.1128/mBio.02430-19
10.1371/journal.pgen.1003458
10.1016/j.tree.2013.08.003
10.1128/9781555819743.ch18
10.1038/s41564-017-0067-5
10.1371/journal.ppat.1002129
10.1038/nrg2526
10.1371/journal.pbio.0030130
10.3389/fmicb.2018.02365
10.3391/mbi.2017.8.1.01
10.1038/nature24287
10.1002/1521-1878(200012)22:12<1115::AID-BIES9>3.0.CO;2-R
10.1371/journal.pbio.3000878
10.1128/jb.173.22.7257-7268.1991
10.1371/journal.pgen.1002222
10.1016/j.cell.2019.06.033
10.1016/j.jtbi.2005.08.037
10.1016/S0168-9525(01)02447-7
10.1016/j.tim.2009.02.002
10.1146/annurev-micro-102215-095325
10.1128/mBio.01419-18
10.1093/molbev/msx309
10.1086/285644
10.1186/1471-2164-13-196
10.1098/rspb.2013.2609
10.1073/pnas.2005331117
10.1016/j.ymben.2012.07.004
10.1073/pnas.98.1.182
10.1073/pnas.95.21.12619
10.1038/nature10571
10.1371/journal.pcbi.1002735
10.1534/genetics.120.303401
10.1111/j.1574-6976.2012.00353.x
10.1371/journal.pbio.0050225
10.1093/gbe/evw077
10.3389/fmicb.2018.02980
10.1016/j.tim.2015.07.006
10.1038/ng1686
10.1016/S0923-2508(03)00071-8
10.1093/molbev/msv237
10.1073/pnas.1405336111
10.1093/genetics/143.4.1843
10.1073/pnas.0807339105
10.1016/j.cell.2011.01.015
10.1111/j.1574-6976.1997.tb00349.x
10.1371/journal.pbio.1002394
10.1093/molbev/mss163
10.1093/gbe/evp016
10.1093/molbev/msv009
10.1126/science.1218198
10.1126/science.aac5992
10.1073/pnas.90.10.4384
10.7554/eLife.08490
10.1093/molbev/msu082
10.1093/gbe/evs016
10.1093/molbev/mss279
10.1038/ismej.2017.36
10.1099/mgen.0.000184
10.1146/annurev.micro.60.080805.142300
10.1534/genetics.104.036939
10.1093/molbev/msu076
10.1073/pnas.1900570116
10.1128/MMBR.00038-08
10.1093/genetics/152.4.1459
10.1073/pnas.1906958116
10.1073/pnas.1614083113
10.1038/s41467-017-00808-w
10.1111/1574-6976.12067
10.1038/s41467-020-16669-9
10.1534/genetics.117.300662
10.1038/s41576-020-0244-x
10.1093/infdis/jis703
10.1371/journal.pgen.1007199
10.1371/journal.pcbi.1004041
10.1038/ismej.2016.88
10.1093/nar/gkz656
10.1126/science.285.5434.1745
10.1371/journal.pcbi.1006242
10.1038/s41564-017-0066-6
10.1016/j.cell.2021.01.029
10.1073/pnas.1119910109
10.1111/jeb.13132
10.1093/molbev/msx066
10.1073/pnas.94.18.9763
10.1038/nature08937
10.1016/j.resmic.2007.09.004
10.1093/nar/gkr928
10.1016/j.gde.2004.09.003
10.1038/ng1227
10.1016/j.chom.2019.10.022
10.1038/nature18927
10.1099/mgen.0.000338
10.3109/10409230903505596
10.1186/s12862-018-1272-4
10.1126/science.1086568
10.1093/gbe/evt002
10.1186/1471-2148-6-82
10.1186/s12915-015-0131-7
10.1016/j.cub.2007.03.032
10.1534/genetics.113.157172
10.1093/bib/bby042
10.1371/journal.pbio.3000102
10.1038/s41592-018-0293-7
10.1126/science.aaa4456
10.1101/gr.4746406
10.1038/ismej.2015.241
10.1242/jeb.114306
10.1038/nrmicro2235
10.1038/nrmicro3199
10.1128/JB.182.4.1016-1023.2000
10.1186/1741-7015-12-1
10.1126/science.283.5400.404
10.1073/pnas.0905137106
ContentType Journal Article
Copyright Springer Nature Limited 2021
2021. Springer Nature Limited.
Springer Nature Limited 2021.
Copyright_xml – notice: Springer Nature Limited 2021
– notice: 2021. Springer Nature Limited.
– notice: Springer Nature Limited 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7RV
7U9
7X7
7XB
88A
88E
88I
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB0
LK8
M0S
M1P
M2P
M7N
M7P
NAPCQ
P64
PCBAR
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
DOI 10.1038/s41579-021-00650-4
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Nursing & Allied Health Database
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1740-1534
EndPage 218
ExternalDocumentID 34773098
10_1038_s41579_021_00650_4
Genre Journal Article
Review
GroupedDBID ---
.55
0R~
123
29M
36B
39C
3V.
4.4
53G
70F
7RV
7X7
88A
88E
88I
8AO
8C1
8CJ
8FE
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ACGFO
ACGFS
ACMJI
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CS3
D1J
DB5
DU5
DWQXO
EAD
EAP
EAS
EBS
EE.
EJD
EMB
EMK
EMOBN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IH2
IHR
INH
INR
ITC
LGEZI
LK8
LOTEE
M0L
M1P
M2P
M7P
MM.
N9A
NADUK
NAPCQ
NNMJJ
NXXTH
O9-
ODYON
P2P
PCBAR
PQQKQ
PROAC
PSQYO
Q2X
QF4
QM4
QN7
QO4
RNR
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
WOW
X7M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AGSTI
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c375t-1e19240b3cdf1ccd464f25803284a5eccc77cd8933d386979f337ac0f879f60b3
IEDL.DBID M2P
ISICitedReferencesCount 492
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000717903600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1740-1526
1740-1534
IngestDate Sun Nov 09 13:47:05 EST 2025
Sun Nov 30 04:03:49 EST 2025
Wed Feb 19 02:24:41 EST 2025
Tue Nov 18 22:11:21 EST 2025
Sat Nov 29 03:06:05 EST 2025
Fri Feb 21 02:38:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 2021. Springer Nature Limited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-1e19240b3cdf1ccd464f25803284a5eccc77cd8933d386979f337ac0f879f60b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6319-7336
0000-0002-8629-5465
PMID 34773098
PQID 2640668193
PQPubID 27584
PageCount 13
ParticipantIDs proquest_miscellaneous_2597500540
proquest_journals_2640668193
pubmed_primary_34773098
crossref_citationtrail_10_1038_s41579_021_00650_4
crossref_primary_10_1038_s41579_021_00650_4
springer_journals_10_1038_s41579_021_00650_4
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature reviews. Microbiology
PublicationTitleAbbrev Nat Rev Microbiol
PublicationTitleAlternate Nat Rev Microbiol
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Redfield (CR28) 2006; 6
Lozupone (CR9) 2008; 105
Chu, Sprouffske, Wagner (CR62) 2017; 30
Shapiro, David, Friedman, Alm (CR67) 2009; 17
Johnsborg, Eldholm, Håvarstein (CR15) 2007; 158
Hasegawa, Suzuki, Maeda (CR24) 2018; 9
Pál, Papp, Lercher (CR118) 2005; 37
Engelstädter, Moradigaravand (CR65) 2014; 281
Wall (CR26) 2016; 70
Garud, Good, Hallatschek, Pollard (CR2) 2019; 17
Messer, Petrov (CR87) 2013
Hao, Golding (CR101) 2006; 16
Castillo-Ramírez (CR132) 2011
Good, Rouzine, Balick, Hallatschek, Desai (CR76) 2012; 109
Cui (CR88) 2015; 32
Vos (CR55) 2015; 23
Haegeman, Weitz (CR98) 2012; 13
Maddamsetti, Lenski (CR94) 2018; 14
Hughes (CR99) 2005; 169
Vos, Eyre-walker (CR14) 2017
Bendall (CR70) 2016; 10
Croucher (CR41) 2016; 14
Rajeev, Malanowska, Gardner (CR36) 2009; 73
Cain (CR115) 2020; 21
Dubey, Ben-Yehuda (CR21) 2011; 144
Waterworth (CR54) 2020
Arnold (CR63) 2019
Shapiro (CR13) 2017; 2
Didelot, Wilson (CR122) 2015; 11
Bradley, Nayfach, Pollard (CR10) 2018; 14
Guglielmini, Quintais, Garcillán-Barcia, de la Cruz, Rocha (CR20) 2011; 7
Frye, Nilsen, Tønjum, Ambur (CR27) 2013
Cohan (CR85) 1994; 143
Durrant, Li, Siranosian, Montgomery, Bhatt (CR35) 2020; 27
Puigbò, Lobkovsky, Kristensen, Wolf, Koonin (CR110) 2014; 12
Dillon, Thakur, Almeida, Guttman (CR134) 2019
Crits-Christoph, Olm, Diamond, Bouma-Gregson, Banfield (CR72) 2020
Lobkovsky, Wolf, Koonin (CR103) 2013; 5
Daubin, Szollosi (CR127) 2016
Bertelli, Tilley, Brinkman (CR128) 2019; 20
Yahara, Didelot, Ansari, Sheppard, Falush (CR125) 2014; 31
CR131
Miralles, Gerrish, Moya, Elena (CR74) 1999; 285
Lawrence, Roth (CR45) 1996; 143
Marttinen (CR121) 2012; 40
Bárdy (CR23) 2020; 11
Hallet, Sherratt (CR34) 1997; 21
Moradigaravand, Engelstädter (CR59) 2012; 8
Domingo-Sananes, McInerney (CR107) 2019
Parkhill (CR51) 2003; 35
Kryazhimskiy, Plotkin (CR130) 2008
Evans (CR114) 2015; 218
Johnston, Martin, Fichant, Polard, Claverys (CR16) 2014; 12
Brito (CR113) 2016; 535
Hickman, Chandler, Dyda (CR37) 2010; 45
Campbell (CR47) 2003; 154
Dykhuizen, Green (CR5) 1991; 173
Wyres (CR33) 2013; 207
Pensar (CR90) 2019; 47
Wadsworth, Arnold, Sater, Grad (CR39) 2018; 9
Azarian (CR108) 2020; 18
Camarillo-Guerrero (CR19) 2021; 184
Mira, Ochman, Moran (CR43) 2001; 17
Smith, Smith, O’Rourke, Spratt (CR4) 1993; 90
Mcinerney, Mcnally, Connell (CR12) 2017; 2
Skwark (CR89) 2016
Frazão, Sousa, Lässig, Gordo (CR3) 2019; 116
Arnold (CR58) 2018; 208
Cohan (CR83) 2017
Kuo, Ochman (CR44) 2009; 1
Siguier, Gourbeyre, Chandler (CR30) 2014; 38
Bobay, Touchon, Rocha (CR109) 2014; 111
Cohan, Perry (CR106) 2007; 17
Yahara (CR64) 2016; 33
Rodriguez-Valera (CR79) 2009; 7
Collins, Higgs (CR96) 2012; 29
Slomka (CR93) 2020; 216
Baumdicker, Hess, Pfaffelhuber (CR97) 2012; 4
Dion, Oechslin, Moineau (CR29) 2020
Whelan, Rusilowicz, McInerney (CR92) 2020; 6
Charlesworth (CR105) 2009
Cohen, Kessler, Levine (CR56) 2005; 94
Fondi (CR84) 2016; 8
Poulsen (CR117) 2019; 116
Chu (CR48) 2017; 8
Majewski (CR32) 2000; 182
Corander (CR78) 2018; 2017
Woods (CR73) 2020; 117
Hendry (CR53) 2018
Ansari, Didelot (CR119) 2014; 196
Pimentel, Zhang (CR17) 2018; 9
Cooper (CR60) 2007; 5
Moran, Plague (CR52) 2004; 14
Maynard Smith, Feil, Smith (CR1) 2000; 22
Andreani, Hesse, Vos (CR11) 2017; 11
Shapiro (CR68) 2012; 336
CR123
Apagyi, Fraser, Croucher (CR42) 2018; 35
Majewski, Cohan (CR86) 1999; 152
Ramiro, Durão, Bank, Gordo (CR81) 2020
Rocha (CR129) 2006; 239
Arevalo, VanInsberghe, Elsherbini, Gore, Polz (CR40) 2019; 178
Winkler, Kao (CR61) 2012; 14
Holt (CR82) 2009; 106
Cohan (CR66) 2007
Roux, Hallam, Woyke, Sullivan (CR18) 2015; 4
Lee, Doak, Popodi, Foster, Tang (CR50) 2016; 44
Porter, Chang, Conow, Dunham, Friesen (CR71) 2017; 11
Oliveira, Touchon, Cury, Rocha (CR38) 2017; 8
Rosen, Davison, Bhaya, Fisher (CR69) 2015; 348
Abe, Nomura, Suzuki (CR22) 2020; 96
Feil (CR6) 2001; 98
Van Passel, Marri, Ochman (CR100) 2008; 4
Lin, Kussell (CR120) 2019; 16
Seitz, Blokesch (CR25) 2013; 37
Sela, Wolf, Koonin (CR104) 2016; 113
Good, McDonald, Barrick, Lenski, Desai (CR80) 2017; 551
Vulić, Dionisio, Taddei, Radman (CR31) 1997; 94
Daubin, Moran, Ochman (CR126) 2003; 301
David (CR133) 2017; 13
Hehemann (CR46) 2010; 464
De Visser, Zeyl, Gerrish, Blanchard, Lenski (CR75) 1999; 283
Knöppel, Lind, Lustig, Näsvall, Andersson (CR95) 2014; 31
Bobay, Ochman (CR112) 2018; 18
Mostowy (CR124) 2017; 34
CR102
Lynch (CR111) 2006; 60
Smillie (CR8) 2011; 480
Takeuchi, Cordero, Koonin, Kaneko (CR77) 2015; 13
Levin, Cornejo (CR57) 2009
Bobay, Rocha, Touchon (CR49) 2013; 30
Puranen (CR91) 2018; 4
Wu (CR116) 2015; 350
Suerbaum (CR7) 1998; 95
S Puranen (650_CR91) 2018; 4
P Bárdy (650_CR23) 2020; 11
M Fondi (650_CR84) 2016; 8
FM Cohan (650_CR85) 1994; 143
BJ Shapiro (650_CR67) 2009; 17
LM Bobay (650_CR109) 2014; 111
S Castillo-Ramírez (650_CR132) 2011
P Seitz (650_CR25) 2013; 37
P Marttinen (650_CR121) 2012; 40
NA Moran (650_CR52) 2004; 14
RJ Redfield (650_CR28) 2006; 6
C Pál (650_CR118) 2005; 37
J Winkler (650_CR61) 2012; 14
K Yahara (650_CR64) 2016; 33
MR Domingo-Sananes (650_CR107) 2019
V Daubin (650_CR127) 2016
J Corander (650_CR78) 2018; 2017
JO Mcinerney (650_CR12) 2017; 2
RS Ramiro (650_CR81) 2020
E Cohen (650_CR56) 2005; 94
B Charlesworth (650_CR105) 2009
A Knöppel (650_CR95) 2014; 31
TG Evans (650_CR114) 2015; 218
BE Poulsen (650_CR117) 2019; 116
FM Cohan (650_CR83) 2017
BJ Shapiro (650_CR68) 2012; 336
SC Waterworth (650_CR54) 2020
D Wall (650_CR26) 2016; 70
LM Bobay (650_CR49) 2013; 30
T Hendry (650_CR53) 2018
650_CR131
ZT Pimentel (650_CR17) 2018; 9
S Suerbaum (650_CR7) 1998; 95
AB Hickman (650_CR37) 2010; 45
L Rajeev (650_CR36) 2009; 73
BH Good (650_CR80) 2017; 551
P Puigbò (650_CR110) 2014; 12
S David (650_CR133) 2017; 13
PW Messer (650_CR87) 2013
GP Dubey (650_CR21) 2011; 144
MG Durrant (650_CR35) 2020; 27
M Dillon (650_CR134) 2019
JH Hehemann (650_CR46) 2010; 464
RD Holt (650_CR82) 2009; 106
B Hallet (650_CR34) 1997; 21
X Didelot (650_CR122) 2015; 11
J Guglielmini (650_CR20) 2011; 7
M Vulić (650_CR31) 1997; 94
CB Wadsworth (650_CR39) 2018; 9
MWJ Van Passel (650_CR100) 2008; 4
FM Cohan (650_CR66) 2007
BJ Arnold (650_CR58) 2018; 208
PH Bradley (650_CR10) 2018; 14
RE Collins (650_CR96) 2012; 29
F Baumdicker (650_CR97) 2012; 4
H Hasegawa (650_CR24) 2018; 9
ND Chu (650_CR48) 2017; 8
FM Cohan (650_CR106) 2007; 17
J Pensar (650_CR90) 2019; 47
O Johnsborg (650_CR15) 2007; 158
K Abe (650_CR22) 2020; 96
HY Chu (650_CR62) 2017; 30
P Siguier (650_CR30) 2014; 38
S Roux (650_CR18) 2015; 4
JG Lawrence (650_CR45) 1996; 143
TF Cooper (650_CR60) 2007; 5
M Lynch (650_CR111) 2006; 60
A Ansari (650_CR119) 2014; 196
CS Smillie (650_CR8) 2011; 480
M Vos (650_CR55) 2015; 23
J Engelstädter (650_CR65) 2014; 281
H Lee (650_CR50) 2016; 44
AL Hughes (650_CR99) 2005; 169
A Crits-Christoph (650_CR72) 2020
AK Cain (650_CR115) 2020; 21
J Majewski (650_CR32) 2000; 182
M Lin (650_CR120) 2019; 16
K Yahara (650_CR125) 2014; 31
NA Andreani (650_CR11) 2017; 11
EPC Rocha (650_CR129) 2006; 239
M Vos (650_CR14) 2017
C Johnston (650_CR16) 2014; 12
SS Porter (650_CR71) 2017; 11
650_CR102
DE Dykhuizen (650_CR5) 1991; 173
IL Brito (650_CR113) 2016; 535
CA Lozupone (650_CR9) 2008; 105
D Moradigaravand (650_CR59) 2012; 8
S Slomka (650_CR93) 2020; 216
C-H Kuo (650_CR44) 2009; 1
R Miralles (650_CR74) 1999; 285
A Campbell (650_CR47) 2003; 154
N Frazão (650_CR3) 2019; 116
JM Smith (650_CR4) 1993; 90
C Bertelli (650_CR128) 2019; 20
J Majewski (650_CR86) 1999; 152
KJ Apagyi (650_CR42) 2018; 35
JAGM De Visser (650_CR75) 1999; 283
J Maynard Smith (650_CR1) 2000; 22
Y Cui (650_CR88) 2015; 32
BJ Shapiro (650_CR13) 2017; 2
R Mostowy (650_CR124) 2017; 34
I Sela (650_CR104) 2016; 113
KL Wyres (650_CR33) 2013; 207
A Mira (650_CR43) 2001; 17
MB Dion (650_CR29) 2020
M Skwark (650_CR89) 2016
NJ Croucher (650_CR41) 2016; 14
NR Garud (650_CR2) 2019; 17
S Kryazhimskiy (650_CR130) 2008
EJ Feil (650_CR6) 2001; 98
AE Lobkovsky (650_CR103) 2013; 5
ML Bendall (650_CR70) 2016; 10
N Takeuchi (650_CR77) 2015; 13
L Bobay (650_CR112) 2018; 18
W Hao (650_CR101) 2006; 16
650_CR123
LF Camarillo-Guerrero (650_CR19) 2021; 184
J Parkhill (650_CR51) 2003; 35
M Wu (650_CR116) 2015; 350
R Maddamsetti (650_CR94) 2018; 14
BH Good (650_CR76) 2012; 109
PH Oliveira (650_CR38) 2017; 8
B Haegeman (650_CR98) 2012; 13
V Daubin (650_CR126) 2003; 301
SA Frye (650_CR27) 2013
P Arevalo (650_CR40) 2019; 178
B Arnold (650_CR63) 2019
BR Levin (650_CR57) 2009
M Rosen (650_CR69) 2015; 348
T Azarian (650_CR108) 2020; 18
LC Woods (650_CR73) 2020; 117
F Rodriguez-Valera (650_CR79) 2009; 7
FJ Whelan (650_CR92) 2020; 6
References_xml – volume: 27
  start-page: 140
  year: 2020
  end-page: 153.e9
  ident: CR35
  article-title: A bioinformatic analysis of integrative mobile genetic elements highlights their role in bacterial adaptation
  publication-title: Cell Host Microbe
– volume: 47
  start-page: e112
  year: 2019
  end-page: e112
  ident: CR90
  article-title: Genome-wide epistasis and co-selection study using mutual information
  publication-title: Nucleic Acids Res.
– volume: 106
  start-page: 19659
  year: 2009
  end-page: 19665
  ident: CR82
  article-title: Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 11
  start-page: 248
  year: 2017
  end-page: 262
  ident: CR71
  article-title: Association mapping reveals novel serpentine adaptation gene clusters in a population of symbiotic Mesorhizobium
  publication-title: ISME J.
– volume: 143
  start-page: 965
  year: 1994
  end-page: 986
  ident: CR85
  article-title: The effects of rare but promiscuous genetic exchange on evolutionary divergence in prokaryotes
  publication-title: Am. Nat.
– year: 2020
  ident: CR72
  article-title: Soil bacterial populations are shaped by recombination and gene-specific selection across a grassland meadow
  publication-title: ISME J.
  doi: 10.1038/s41396-020-0655-x
– year: 2019
  ident: CR107
  article-title: Selection-based model of prokaryote pangenomes
  publication-title: bioRxiv
  doi: 10.1101/782573
– volume: 94
  start-page: 1
  year: 2005
  end-page: 4
  ident: CR56
  article-title: Recombination dramatically speeds up evolution of finite populations
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 1
  year: 2017
  end-page: 10
  ident: CR38
  article-title: The chromosomal organization of horizontal gene transfer in bacteria
  publication-title: Nat. Commun.
– volume: 31
  start-page: 1593
  year: 2014
  end-page: 1605
  ident: CR125
  article-title: Efficient inference of recombination hot regions in bacterial genomes
  publication-title: Mol. Biol. Evol.
– year: 2020
  ident: CR81
  article-title: Low mutational load allows for high mutation rate variation in gut commensal bacteria
  publication-title: PLoS Biol.
  doi: 10.1101/568709
– volume: 116
  start-page: 17906
  year: 2019
  end-page: 17915
  ident: CR3
  article-title: Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 12
  start-page: 1
  year: 2014
  end-page: 19
  ident: CR110
  article-title: Genomes in turmoil: quantification of genome dynamics in prokaryote supergenomes
  publication-title: BMC Med.
– volume: 34
  start-page: 1167
  year: 2017
  end-page: 1182
  ident: CR124
  article-title: Efficient inference of recent and ancestral recombination within bacterial populations
  publication-title: Mol. Biol. Evol.
– volume: 6
  year: 2020
  ident: CR92
  article-title: Coinfinder: detecting significant associations and dissociations in pangenomes
  publication-title: Microb. Genomics
– volume: 208
  start-page: 1247
  year: 2018
  end-page: 1260
  ident: CR58
  article-title: Weak epistasis may drive adaptation in recombining bacteria
  publication-title: Genetics
– volume: 21
  start-page: 526
  year: 2020
  end-page: 540
  ident: CR115
  article-title: A decade of advances in transposon-insertion sequencing
  publication-title: Nat. Rev. Genet.
– volume: 2
  start-page: 1
  year: 2017
  end-page: 5
  ident: CR12
  article-title: Why prokaryotes have pangenomes
  publication-title: Nat. Publ. Gr.
– volume: 17
  start-page: 589
  year: 2001
  end-page: 596
  ident: CR43
  article-title: Deletional bias and the evolution of bacterial genomes
  publication-title: Trends Genet.
– year: 2016
  ident: CR89
  article-title: Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1006508
– year: 2007
  ident: CR66
  article-title: Periodic selection and ecological diversity in bacteria
  publication-title: Selective Sweep
  doi: 10.1007/0-387-27651-3_7
– volume: 33
  start-page: 456
  year: 2016
  end-page: 471
  ident: CR64
  article-title: The landscape of realized homologous recombination in pathogenic bacteria
  publication-title: Mol. Biol. Evol.
– volume: 9
  start-page: 1
  year: 2018
  end-page: 10
  ident: CR17
  article-title: Evolution of the natural transformation protein, ComEC, in Bacteria
  publication-title: Front. Microbiol.
– year: 2018
  ident: CR53
  article-title: Ongoing transposon-mediated genome reduction in the luminous bacterial symbionts of deep-sea ceratioid anglerfishes
  publication-title: mBio
  doi: 10.1128/mBio.01033-18
– volume: 29
  start-page: 3413
  year: 2012
  end-page: 3425
  ident: CR96
  article-title: Testing the infinitely many genes model for the evolution of the bacterial core genome and pangenome
  publication-title: Mol. Biol. Evol.
– volume: 60
  start-page: 327
  year: 2006
  end-page: 349
  ident: CR111
  article-title: Streamlining and simplification of microbial genome architecture
  publication-title: Annu.Rev.Microbiol.
– year: 2019
  ident: CR134
  article-title: Recombination of ecologically and evolutionarily significant loci maintains genetic cohesion in the Pseudomonas syringae species complex
  publication-title: Genome Biol.
  doi: 10.1101/227413
– volume: 14
  start-page: 487
  year: 2012
  end-page: 495
  ident: CR61
  article-title: Harnessing recombination to speed adaptive evolution in Escherichia coli
  publication-title: Metab. Eng.
– year: 2009
  ident: CR57
  article-title: The population and evolutionary dynamics of homologous gene recombination in bacteria
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000601
– volume: 40
  start-page: 1
  year: 2012
  end-page: 12
  ident: CR121
  article-title: Detection of recombination events in bacterial genomes from large population samples
  publication-title: Nucleic Acids Res.
– volume: 169
  start-page: 533
  year: 2005
  end-page: 538
  ident: CR99
  article-title: Evidence for abundant slightly deleterious polymorphisms in bacterial populations
  publication-title: Genetics
– volume: 8
  start-page: 35
  year: 2012
  end-page: 37
  ident: CR59
  article-title: The effect of bacterial recombination on adaptation on fitness landscapes with limited peak accessibility
  publication-title: PLoS Comput. Biol.
– year: 2020
  ident: CR29
  article-title: Phage diversity, genomics and phylogeny
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-019-0311-5
– volume: 7
  start-page: 828
  year: 2009
  end-page: 836
  ident: CR79
  article-title: Explaining microbial population genomics through phage predation
  publication-title: Nat. Rev. Microbiol.
– volume: 152
  start-page: 1459
  year: 1999
  end-page: 1474
  ident: CR86
  article-title: Adapt globally, act locally: the effect of selective sweeps on bacterial sequence diversity
  publication-title: Genetics
– volume: 218
  start-page: 1925
  year: 2015
  end-page: 1935
  ident: CR114
  article-title: Considerations for the use of transcriptomics in identifying the ‘genes that matter’ for environmental adaptation
  publication-title: J. Exp. Biol.
– volume: 9
  start-page: 1
  year: 2018
  end-page: 6
  ident: CR24
  article-title: Horizontal plasmid transfer by transformation in Escherichia coli: environmental factors and possible mechanisms
  publication-title: Front. Microbiol.
– volume: 6
  start-page: 1
  year: 2006
  end-page: 15
  ident: CR28
  article-title: Evolution of competence and DNA uptake specificity in the Pasteurellaceae
  publication-title: BMC Evol. Biol.
– volume: 464
  start-page: 908
  year: 2010
  end-page: 912
  ident: CR46
  article-title: Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota
  publication-title: Nature
– volume: 18
  start-page: 15
  year: 2018
  ident: CR112
  article-title: Factors driving effective population size and pan-genome evolution in bacteria
  publication-title: BMC Evol. Biol.
– ident: CR123
– volume: 12
  start-page: 181
  year: 2014
  end-page: 196
  ident: CR16
  article-title: Bacterial transformation: distribution, shared mechanisms and divergent control
  publication-title: Nat. Rev. Microbiol.
– volume: 17
  year: 2019
  ident: CR2
  article-title: Evolutionary dynamics of bacteria in the gut microbiome within and across hosts
  publication-title: PLoS Biol.
– volume: 90
  start-page: 4384
  year: 1993
  end-page: 4388
  ident: CR4
  article-title: How clonal are bacteria?
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 13
  start-page: 1
  year: 2015
  end-page: 11
  ident: CR77
  article-title: Gene-specific selective sweeps in bacteria and archaea caused by negative frequency-dependent selection
  publication-title: BMC Biol.
– volume: 13
  start-page: 1
  year: 2017
  end-page: 21
  ident: CR133
  article-title: Dynamics and impact of homologous recombination on the evolution of Legionella pneumophila
  publication-title: PLoS Genet.
– volume: 158
  start-page: 767
  year: 2007
  end-page: 778
  ident: CR15
  article-title: Natural genetic transformation: prevalence, mechanisms and function
  publication-title: Res. Microbiol.
– volume: 178
  start-page: 820
  year: 2019
  end-page: 834.e14
  ident: CR40
  article-title: A reverse ecology approach based on a biological definition of microbial populations
  publication-title: Cell
– volume: 154
  start-page: 277
  year: 2003
  end-page: 282
  ident: CR47
  article-title: Prophage insertion sites
  publication-title: Res. Microbiol.
– volume: 2
  start-page: 1005860
  year: 2017
  ident: CR13
  article-title: The population genetics of pangenomes
  publication-title: Nat. Microbiol.
– volume: 285
  start-page: 1745
  year: 1999
  end-page: 1747
  ident: CR74
  article-title: Clonal interference and the evolution of RNA viruses
  publication-title: Science
– volume: 70
  start-page: 143
  year: 2016
  end-page: 160
  ident: CR26
  article-title: Kin recognition in bacteria
  publication-title: Annu. Rev. Microbiol.
– year: 2019
  ident: CR63
  article-title: Fine-scale haplotype structure reveals strong signatures of positive selection in a recombining bacterial pathogen
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msz225
– volume: 283
  start-page: 404
  year: 1999
  end-page: 406
  ident: CR75
  article-title: Diminishing returns from mutation supply rate in asexual populations
  publication-title: Science
– volume: 143
  start-page: 1843
  year: 1996
  end-page: 1860
  ident: CR45
  article-title: Selfish operons: horizontal transfer may drive the evolution of gene clusters
  publication-title: Genetics
– volume: 14
  start-page: 627
  year: 2004
  end-page: 633
  ident: CR52
  article-title: Genomic changes following host restriction in bacteria
  publication-title: Curr. Opin. Genet. Dev.
– volume: 8
  start-page: 1388
  year: 2016
  end-page: 1400
  ident: CR84
  article-title: “Every gene is everywhere but the environment selects”: global geolocalization of gene sharing in environmental samples through network analysis
  publication-title: Genome Biol. Evol.
– volume: 96
  start-page: 1
  year: 2020
  end-page: 12
  ident: CR22
  article-title: Biofilms: hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism
  publication-title: FEMS Microbiol. Ecol.
– volume: 23
  start-page: 598
  year: 2015
  end-page: 605
  ident: CR55
  article-title: Rates of lateral gene transfer in prokaryotes: high but why?
  publication-title: Trends Microbiol.
– volume: 196
  start-page: 253
  year: 2014
  end-page: 265
  ident: CR119
  article-title: Inference of the properties of the recombination process from whole bacterial genomes
  publication-title: Genetics
– year: 2008
  ident: CR130
  article-title: The population genetics of dN/dS
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000304
– volume: 105
  start-page: 15076
  year: 2008
  end-page: 15081
  ident: CR9
  article-title: The convergence of carbohydrate active gene repertoires in human gut microbes
  publication-title: Proc. Natl Acad. Sci. USA
– ident: CR102
– year: 2016
  ident: CR127
  article-title: Horizontal gene transfer and the tree of life
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1007/978-94-007-2941-4_37
– volume: 109
  start-page: 4950
  year: 2012
  end-page: 4955
  ident: CR76
  article-title: Distribution of fixed beneficial mutations and the rate of adaptation in asexual populations
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 11
  start-page: 1
  year: 2015
  end-page: 18
  ident: CR122
  article-title: ClonalFrameML: efficient inference of recombination in whole bacterial genomes
  publication-title: PLoS Comput. Biol.
– volume: 348
  start-page: 1019
  year: 2015
  end-page: 1024
  ident: CR69
  article-title: Fine-scale diversity and extensive recombination in a quasisexual bacterial population occupying a broad niche
  publication-title: Science
– volume: 4
  year: 2018
  ident: CR91
  article-title: SuperDCA for genome-wide epistasis analysis
  publication-title: Microb. Genomics
– ident: CR131
– year: 2020
  ident: CR54
  article-title: Horizontal gene transfer to a defensive symbiont with a reduced genome in a multipartite beetle microbiome
  publication-title: mBio
  doi: 10.1128/mBio.02430-19
– volume: 9
  start-page: 1
  year: 2018
  end-page: 17
  ident: CR39
  article-title: Azithromycin resistance through interspecific acquisition of an epistasis-dependent efflux pump component and transcriptional regulator in Neisseria gonorrhoeae
  publication-title: mBio
– volume: 8
  start-page: 1
  year: 2017
  end-page: 13
  ident: CR48
  article-title: A mobile element in mutS drives hypermutation in a marine Vibrio
  publication-title: mBio
– volume: 21
  start-page: 157
  year: 1997
  end-page: 178
  ident: CR34
  article-title: Transposition and site-specific recombination: adapting DNA cut-and-paste mechanisms to a variety of genetic rearrangements
  publication-title: FEMS Microbiol. Rev.
– volume: 1
  start-page: 145
  year: 2009
  end-page: 152
  ident: CR44
  article-title: Deletional bias across the three domains of life
  publication-title: Genome Biol. Evol.
– volume: 5
  start-page: 1899
  year: 2007
  end-page: 1905
  ident: CR60
  article-title: Recombination speeds adaptation by reducing competition between beneficial mutations in populations of Escherichia coli
  publication-title: PLoS Biol.
– volume: 216
  start-page: 543
  year: 2020
  end-page: 558
  ident: CR93
  article-title: Experimental evolution of bacillus subtilis reveals the evolutionary dynamics of horizontal gene transfer and suggests adaptive and neutral effects
  publication-title: Genetics
– year: 2013
  ident: CR27
  article-title: Dialects of the DNA uptake sequence in Neisseriaceae
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003458
– volume: 31
  start-page: 1220
  year: 2014
  end-page: 1227
  ident: CR95
  article-title: Minor fitness costs in an experimental model of horizontal gene transfer in bacteria
  publication-title: Mol. Biol. Evol.
– volume: 144
  start-page: 590
  year: 2011
  end-page: 600
  ident: CR21
  article-title: Intercellular nanotubes mediate bacterial communication
  publication-title: Cell
– volume: 22
  start-page: 1115
  year: 2000
  end-page: 1122
  ident: CR1
  article-title: Population structure and evolutionary dynamics of pathogenic bacteria
  publication-title: Bioessays
– volume: 4
  start-page: 443
  year: 2012
  end-page: 456
  ident: CR97
  article-title: The infinitely many genes model for the distributed genome of bacteria
  publication-title: Genome Biol. Evol.
– volume: 98
  start-page: 182
  year: 2001
  end-page: 187
  ident: CR6
  article-title: Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 13
  year: 2012
  ident: CR98
  article-title: A neutral theory of genome evolution and the frequency distribution of genes
  publication-title: BMC Genomics
– volume: 5
  start-page: 233
  year: 2013
  end-page: 242
  ident: CR103
  article-title: Gene frequency distributions reject a neutral model of genome evolution
  publication-title: Genome Biol. Evol.
– volume: 4
  year: 2008
  ident: CR100
  article-title: The emergence and fate of horizontally acquired genes in Escherichia coli
  publication-title: PLoS Comput. Biol.
– volume: 11
  year: 2020
  ident: CR23
  article-title: Structure and mechanism of DNA delivery of a gene transfer agent
  publication-title: Nat. Commun.
– year: 2013
  ident: CR87
  article-title: Population genomics of rapid adaptation by soft selective sweeps
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2013.08.003
– volume: 17
  start-page: 196
  year: 2009
  end-page: 204
  ident: CR67
  article-title: Looking for Darwin’s footprints in the microbial world
  publication-title: Trends Microbiol.
– volume: 95
  start-page: 12619
  year: 1998
  end-page: 12624
  ident: CR7
  article-title: Free recombination within Helicobacter pylori
  publication-title: PNAS
– volume: 336
  start-page: 48
  year: 2012
  end-page: 51
  ident: CR68
  article-title: Population genomics of early events in the ecological differentiation of bacteria
  publication-title: Science
– year: 2017
  ident: CR83
  article-title: Transmission in the origins of bacterial diversity, from ecotypes to phyla
  publication-title: Microbiol. Spectr.
  doi: 10.1128/9781555819743.ch18
– volume: 30
  start-page: 737
  year: 2013
  end-page: 751
  ident: CR49
  article-title: The adaptation of temperate bacteriophages to their host genomes
  publication-title: Mol. Biol. Evol.
– volume: 182
  start-page: 1016
  year: 2000
  end-page: 1023
  ident: CR32
  article-title: Barriers to genetic exchange between bacterial species: transformation
  publication-title: J. Bacteriol.
– volume: 32
  start-page: 1396
  year: 2015
  end-page: 1410
  ident: CR88
  article-title: Epidemic clones, oceanic gene pools, and Eco-LD in the free living marine pathogen Vibrio parahaemolyticus
  publication-title: Mol. Biol. Evol.
– volume: 350
  start-page: aac5992
  year: 2015
  ident: CR116
  article-title: Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut Bacteroides
  publication-title: Science (80-.)
– volume: 35
  start-page: 575
  year: 2018
  end-page: 581
  ident: CR42
  article-title: Transformation asymmetry and the evolution of the bacterial accessory genome
  publication-title: Mol. Biol. Evol.
– volume: 17
  start-page: 373
  year: 2007
  end-page: 386
  ident: CR106
  article-title: A systematics for discovering the fundamental units of bacterial diversity
  publication-title: Curr. Biol.
– volume: 111
  start-page: 12127
  year: 2014
  end-page: 12132
  ident: CR109
  article-title: Pervasive domestication of defective prophages by bacteria
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 37
  start-page: 336
  year: 2013
  end-page: 363
  ident: CR25
  article-title: Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria
  publication-title: FEMS Microbiol. Rev.
– volume: 480
  start-page: 241
  year: 2011
  end-page: 244
  ident: CR8
  article-title: Ecology drives a global network of gene exchange connecting the human microbiome
  publication-title: Nature
– volume: 16
  start-page: 199
  year: 2019
  end-page: 204
  ident: CR120
  article-title: Inferring bacterial recombination rates from large-scale sequencing datasets
  publication-title: Nat. Methods
– volume: 173
  start-page: 7257
  year: 1991
  end-page: 7268
  ident: CR5
  article-title: Recombination in Escherichia coli and the definition of biological species
  publication-title: J. Bacteriol.
– volume: 535
  start-page: 435
  year: 2016
  end-page: 439
  ident: CR113
  article-title: Mobile genes in the human microbiome are structured from global to individual scales
  publication-title: Nature
– volume: 4
  start-page: 1
  year: 2015
  end-page: 20
  ident: CR18
  article-title: Viral dark matter and virus–host interactions resolved from publicly available microbial genomes
  publication-title: eLife
– volume: 207
  start-page: 439
  year: 2013
  end-page: 449
  ident: CR33
  article-title: Pneumococcal capsular switching: a historical perspective
  publication-title: J. Infect. Dis.
– volume: 94
  start-page: 9763
  year: 1997
  end-page: 9767
  ident: CR31
  article-title: Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 7
  year: 2011
  ident: CR20
  article-title: The repertoire of ice in prokaryotes underscores the unity, diversity, and ubiquity of conjugation
  publication-title: PLoS Genet.
– volume: 301
  start-page: 829
  year: 2003
  end-page: 832
  ident: CR126
  article-title: Phylogenetics and the cohesion of bacterial genomes
  publication-title: Science
– volume: 117
  start-page: 26868
  year: 2020
  end-page: 26875
  ident: CR73
  article-title: Horizontal gene transfer potentiates adaptation by reducing selective constraints on the spread of genetic variation
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 45
  start-page: 50
  year: 2010
  end-page: 69
  ident: CR37
  article-title: Integrating prokaryotes and eukaryotes: DNA transposases in light of structure
  publication-title: Crit. Rev. Biochem. Mol. Biol.
– volume: 44
  start-page: 7109
  year: 2016
  end-page: 7119
  ident: CR50
  article-title: Insertion sequence-caused large-scale rearrangements in the genome of Escherichia coli
  publication-title: Nucleic Acids Res.
– volume: 10
  start-page: 1589
  year: 2016
  end-page: 1601
  ident: CR70
  article-title: Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations
  publication-title: ISME J.
– year: 2017
  ident: CR14
  article-title: Are pangenomes adaptive or not?
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-017-0067-5
– volume: 551
  start-page: 45
  year: 2017
  end-page: 50
  ident: CR80
  article-title: The dynamics of molecular evolution over 60,000 generations
  publication-title: Nature
– volume: 14
  start-page: 1
  year: 2018
  end-page: 30
  ident: CR94
  article-title: Analysis of bacterial genomes from an evolution experiment with horizontal gene transfer shows that recombination can sometimes overwhelm selection
  publication-title: PLoS Genet.
– volume: 281
  start-page: 20132609
  year: 2014
  ident: CR65
  article-title: Adaptation through genetic time travel? Fluctuating selection can drive the evolution of bacterial transformation
  publication-title: Proc. R. Soc. B Biol. Sci.
– volume: 73
  start-page: 300
  year: 2009
  end-page: 309
  ident: CR36
  article-title: Challenging a paradigm: the role of DNA homology in tyrosine recombinase reactions
  publication-title: Microbiol. Mol. Biol. Rev.
– volume: 14
  start-page: 1
  year: 2016
  end-page: 42
  ident: CR41
  article-title: Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict
  publication-title: PLoS Biol.
– volume: 14
  year: 2018
  ident: CR10
  article-title: Phylogeny-corrected identification of microbial gene families relevant to human gut colonization
  publication-title: PLoS Computational Biol.
– volume: 18
  year: 2020
  ident: CR108
  article-title: Frequency-dependent selection can forecast evolution in Streptococcus pneumoniae
  publication-title: PLoS Biol.
– volume: 239
  start-page: 226
  year: 2006
  end-page: 235
  ident: CR129
  article-title: Comparisons of dN/dS are time dependent for closely related bacterial genomes
  publication-title: J. Theor. Biol.
– volume: 38
  start-page: 865
  year: 2014
  end-page: 891
  ident: CR30
  article-title: Bacterial insertion sequences: their genomic impact and diversity
  publication-title: FEMS Microbiol. Rev.
– year: 2011
  ident: CR132
  article-title: The impact of recombination on dN/dS within recently emerged bacterial clones
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002129
– volume: 37
  start-page: 1372
  year: 2005
  end-page: 1375
  ident: CR118
  article-title: Adaptive evolution of bacterial metabolic networks by horizontal gene transfer
  publication-title: Nat. Genet.
– volume: 116
  start-page: 10072
  year: 2019
  end-page: 10080
  ident: CR117
  article-title: Defining the core essential genome of Pseudomonas aeruginosa
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 16
  start-page: 636
  year: 2006
  end-page: 643
  ident: CR101
  article-title: The fate of laterally transferred genes: life in the fast lane to adaptation or death
  publication-title: Genome Res.
– volume: 35
  start-page: 32
  year: 2003
  end-page: 40
  ident: CR51
  article-title: Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica
  publication-title: Nat. Genet.
– volume: 2017
  start-page: 1950
  year: 2018
  end-page: 1960
  ident: CR78
  article-title: Frequency-dependent selection in vaccine-associated pneumococcal population dynamics
  publication-title: Nat. Ecol. Evol.
– year: 2009
  ident: CR105
  article-title: Effective population size and patterns of molecular evolution and variation
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2526
– volume: 20
  start-page: 1685
  year: 2019
  end-page: 1698
  ident: CR128
  article-title: Microbial genomic island discovery, visualization and analysis
  publication-title: Brief. Bioinform.
– volume: 11
  start-page: 1719
  year: 2017
  end-page: 1721
  ident: CR11
  article-title: Prokaryote genome fluidity is dependent on effective population size
  publication-title: ISME J.
– volume: 184
  start-page: 1098
  year: 2021
  end-page: 1109.e9
  ident: CR19
  article-title: Massive expansion of human gut bacteriophage diversity
  publication-title: Cell
– volume: 113
  start-page: 11399
  year: 2016
  end-page: 11407
  ident: CR104
  article-title: Theory of prokaryotic genome evolution
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 30
  start-page: 1692
  year: 2017
  end-page: 1711
  ident: CR62
  article-title: The role of recombination in evolutionary adaptation of Escherichia coli to a novel nutrient
  publication-title: J. Evol. Biol.
– ident: 650_CR102
  doi: 10.1371/journal.pbio.0030130
– year: 2013
  ident: 650_CR27
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003458
– volume: 9
  start-page: 1
  year: 2018
  ident: 650_CR24
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.02365
– volume: 2017
  start-page: 1950
  year: 2018
  ident: 650_CR78
  publication-title: Nat. Ecol. Evol.
– volume: 8
  start-page: 1
  year: 2017
  ident: 650_CR48
  publication-title: mBio
  doi: 10.3391/mbi.2017.8.1.01
– volume: 551
  start-page: 45
  year: 2017
  ident: 650_CR80
  publication-title: Nature
  doi: 10.1038/nature24287
– volume: 22
  start-page: 1115
  year: 2000
  ident: 650_CR1
  publication-title: Bioessays
  doi: 10.1002/1521-1878(200012)22:12<1115::AID-BIES9>3.0.CO;2-R
– volume: 18
  year: 2020
  ident: 650_CR108
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3000878
– volume: 173
  start-page: 7257
  year: 1991
  ident: 650_CR5
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.173.22.7257-7268.1991
– volume: 7
  year: 2011
  ident: 650_CR20
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002222
– volume: 178
  start-page: 820
  year: 2019
  ident: 650_CR40
  publication-title: Cell
  doi: 10.1016/j.cell.2019.06.033
– volume: 239
  start-page: 226
  year: 2006
  ident: 650_CR129
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2005.08.037
– year: 2020
  ident: 650_CR54
  publication-title: mBio
  doi: 10.1128/mBio.02430-19
– year: 2009
  ident: 650_CR57
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000601
– volume: 17
  start-page: 589
  year: 2001
  ident: 650_CR43
  publication-title: Trends Genet.
  doi: 10.1016/S0168-9525(01)02447-7
– volume: 17
  start-page: 196
  year: 2009
  ident: 650_CR67
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2009.02.002
– volume: 70
  start-page: 143
  year: 2016
  ident: 650_CR26
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev-micro-102215-095325
– volume: 9
  start-page: 1
  year: 2018
  ident: 650_CR39
  publication-title: mBio
  doi: 10.1128/mBio.01419-18
– year: 2019
  ident: 650_CR107
  publication-title: bioRxiv
  doi: 10.1101/782573
– volume: 2
  start-page: 1
  year: 2017
  ident: 650_CR12
  publication-title: Nat. Publ. Gr.
– volume: 35
  start-page: 575
  year: 2018
  ident: 650_CR42
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msx309
– volume: 143
  start-page: 965
  year: 1994
  ident: 650_CR85
  publication-title: Am. Nat.
  doi: 10.1086/285644
– volume: 13
  year: 2012
  ident: 650_CR98
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-13-196
– volume: 281
  start-page: 20132609
  year: 2014
  ident: 650_CR65
  publication-title: Proc. R. Soc. B Biol. Sci.
  doi: 10.1098/rspb.2013.2609
– volume: 117
  start-page: 26868
  year: 2020
  ident: 650_CR73
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2005331117
– volume: 14
  start-page: 487
  year: 2012
  ident: 650_CR61
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2012.07.004
– year: 2007
  ident: 650_CR66
  publication-title: Selective Sweep
  doi: 10.1007/0-387-27651-3_7
– year: 2011
  ident: 650_CR132
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002129
– volume: 13
  start-page: 1
  year: 2017
  ident: 650_CR133
  publication-title: PLoS Genet.
– volume: 98
  start-page: 182
  year: 2001
  ident: 650_CR6
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.98.1.182
– volume: 95
  start-page: 12619
  year: 1998
  ident: 650_CR7
  publication-title: PNAS
  doi: 10.1073/pnas.95.21.12619
– volume: 480
  start-page: 241
  year: 2011
  ident: 650_CR8
  publication-title: Nature
  doi: 10.1038/nature10571
– volume: 8
  start-page: 35
  year: 2012
  ident: 650_CR59
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002735
– volume: 216
  start-page: 543
  year: 2020
  ident: 650_CR93
  publication-title: Genetics
  doi: 10.1534/genetics.120.303401
– volume: 37
  start-page: 336
  year: 2013
  ident: 650_CR25
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.2012.00353.x
– volume: 5
  start-page: 1899
  year: 2007
  ident: 650_CR60
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0050225
– year: 2008
  ident: 650_CR130
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000304
– volume: 8
  start-page: 1388
  year: 2016
  ident: 650_CR84
  publication-title: Genome Biol. Evol.
  doi: 10.1093/gbe/evw077
– volume: 9
  start-page: 1
  year: 2018
  ident: 650_CR17
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.02980
– volume: 23
  start-page: 598
  year: 2015
  ident: 650_CR55
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2015.07.006
– volume: 37
  start-page: 1372
  year: 2005
  ident: 650_CR118
  publication-title: Nat. Genet.
  doi: 10.1038/ng1686
– volume: 154
  start-page: 277
  year: 2003
  ident: 650_CR47
  publication-title: Res. Microbiol.
  doi: 10.1016/S0923-2508(03)00071-8
– volume: 33
  start-page: 456
  year: 2016
  ident: 650_CR64
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msv237
– volume: 44
  start-page: 7109
  year: 2016
  ident: 650_CR50
  publication-title: Nucleic Acids Res.
– volume: 111
  start-page: 12127
  year: 2014
  ident: 650_CR109
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1405336111
– volume: 143
  start-page: 1843
  year: 1996
  ident: 650_CR45
  publication-title: Genetics
  doi: 10.1093/genetics/143.4.1843
– volume: 96
  start-page: 1
  year: 2020
  ident: 650_CR22
  publication-title: FEMS Microbiol. Ecol.
– volume: 105
  start-page: 15076
  year: 2008
  ident: 650_CR9
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0807339105
– volume: 144
  start-page: 590
  year: 2011
  ident: 650_CR21
  publication-title: Cell
  doi: 10.1016/j.cell.2011.01.015
– volume: 21
  start-page: 157
  year: 1997
  ident: 650_CR34
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.1997.tb00349.x
– volume: 14
  start-page: 1
  year: 2016
  ident: 650_CR41
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1002394
– year: 2013
  ident: 650_CR87
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2013.08.003
– volume: 29
  start-page: 3413
  year: 2012
  ident: 650_CR96
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/mss163
– year: 2020
  ident: 650_CR29
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-019-0311-5
– volume: 1
  start-page: 145
  year: 2009
  ident: 650_CR44
  publication-title: Genome Biol. Evol.
  doi: 10.1093/gbe/evp016
– volume: 4
  year: 2008
  ident: 650_CR100
  publication-title: PLoS Comput. Biol.
– volume: 32
  start-page: 1396
  year: 2015
  ident: 650_CR88
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msv009
– volume: 336
  start-page: 48
  year: 2012
  ident: 650_CR68
  publication-title: Science
  doi: 10.1126/science.1218198
– volume: 350
  start-page: aac5992
  year: 2015
  ident: 650_CR116
  publication-title: Science (80-.)
  doi: 10.1126/science.aac5992
– volume: 90
  start-page: 4384
  year: 1993
  ident: 650_CR4
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.90.10.4384
– volume: 4
  start-page: 1
  year: 2015
  ident: 650_CR18
  publication-title: eLife
  doi: 10.7554/eLife.08490
– volume: 31
  start-page: 1593
  year: 2014
  ident: 650_CR125
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msu082
– volume: 4
  start-page: 443
  year: 2012
  ident: 650_CR97
  publication-title: Genome Biol. Evol.
  doi: 10.1093/gbe/evs016
– volume: 30
  start-page: 737
  year: 2013
  ident: 650_CR49
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/mss279
– volume: 11
  start-page: 1719
  year: 2017
  ident: 650_CR11
  publication-title: ISME J.
  doi: 10.1038/ismej.2017.36
– volume: 4
  year: 2018
  ident: 650_CR91
  publication-title: Microb. Genomics
  doi: 10.1099/mgen.0.000184
– volume: 60
  start-page: 327
  year: 2006
  ident: 650_CR111
  publication-title: Annu.Rev.Microbiol.
  doi: 10.1146/annurev.micro.60.080805.142300
– volume: 169
  start-page: 533
  year: 2005
  ident: 650_CR99
  publication-title: Genetics
  doi: 10.1534/genetics.104.036939
– volume: 31
  start-page: 1220
  year: 2014
  ident: 650_CR95
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msu076
– volume: 116
  start-page: 10072
  year: 2019
  ident: 650_CR117
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1900570116
– year: 2016
  ident: 650_CR127
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1007/978-94-007-2941-4_37
– volume: 73
  start-page: 300
  year: 2009
  ident: 650_CR36
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.00038-08
– volume: 152
  start-page: 1459
  year: 1999
  ident: 650_CR86
  publication-title: Genetics
  doi: 10.1093/genetics/152.4.1459
– volume: 116
  start-page: 17906
  year: 2019
  ident: 650_CR3
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1906958116
– volume: 113
  start-page: 11399
  year: 2016
  ident: 650_CR104
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1614083113
– ident: 650_CR131
– volume: 8
  start-page: 1
  year: 2017
  ident: 650_CR38
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00808-w
– volume: 38
  start-page: 865
  year: 2014
  ident: 650_CR30
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/1574-6976.12067
– volume: 11
  year: 2020
  ident: 650_CR23
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16669-9
– volume: 208
  start-page: 1247
  year: 2018
  ident: 650_CR58
  publication-title: Genetics
  doi: 10.1534/genetics.117.300662
– volume: 21
  start-page: 526
  year: 2020
  ident: 650_CR115
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-020-0244-x
– volume: 207
  start-page: 439
  year: 2013
  ident: 650_CR33
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jis703
– volume: 14
  start-page: 1
  year: 2018
  ident: 650_CR94
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1007199
– volume: 11
  start-page: 1
  year: 2015
  ident: 650_CR122
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004041
– year: 2020
  ident: 650_CR72
  publication-title: ISME J.
  doi: 10.1038/s41396-020-0655-x
– volume: 11
  start-page: 248
  year: 2017
  ident: 650_CR71
  publication-title: ISME J.
  doi: 10.1038/ismej.2016.88
– volume: 47
  start-page: e112
  year: 2019
  ident: 650_CR90
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz656
– volume: 285
  start-page: 1745
  year: 1999
  ident: 650_CR74
  publication-title: Science
  doi: 10.1126/science.285.5434.1745
– volume: 14
  year: 2018
  ident: 650_CR10
  publication-title: PLoS Computational Biol.
  doi: 10.1371/journal.pcbi.1006242
– volume: 2
  start-page: 1005860
  year: 2017
  ident: 650_CR13
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-017-0066-6
– volume: 184
  start-page: 1098
  year: 2021
  ident: 650_CR19
  publication-title: Cell
  doi: 10.1016/j.cell.2021.01.029
– volume: 109
  start-page: 4950
  year: 2012
  ident: 650_CR76
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1119910109
– volume: 30
  start-page: 1692
  year: 2017
  ident: 650_CR62
  publication-title: J. Evol. Biol.
  doi: 10.1111/jeb.13132
– volume: 34
  start-page: 1167
  year: 2017
  ident: 650_CR124
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msx066
– year: 2019
  ident: 650_CR134
  publication-title: Genome Biol.
  doi: 10.1101/227413
– volume: 94
  start-page: 9763
  year: 1997
  ident: 650_CR31
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.94.18.9763
– volume: 464
  start-page: 908
  year: 2010
  ident: 650_CR46
  publication-title: Nature
  doi: 10.1038/nature08937
– volume: 158
  start-page: 767
  year: 2007
  ident: 650_CR15
  publication-title: Res. Microbiol.
  doi: 10.1016/j.resmic.2007.09.004
– volume: 40
  start-page: 1
  year: 2012
  ident: 650_CR121
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr928
– volume: 14
  start-page: 627
  year: 2004
  ident: 650_CR52
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2004.09.003
– volume: 35
  start-page: 32
  year: 2003
  ident: 650_CR51
  publication-title: Nat. Genet.
  doi: 10.1038/ng1227
– volume: 27
  start-page: 140
  year: 2020
  ident: 650_CR35
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2019.10.022
– volume: 535
  start-page: 435
  year: 2016
  ident: 650_CR113
  publication-title: Nature
  doi: 10.1038/nature18927
– volume: 6
  year: 2020
  ident: 650_CR92
  publication-title: Microb. Genomics
  doi: 10.1099/mgen.0.000338
– year: 2016
  ident: 650_CR89
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1006508
– volume: 45
  start-page: 50
  year: 2010
  ident: 650_CR37
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.3109/10409230903505596
– ident: 650_CR123
  doi: 10.1371/journal.pcbi.1004041
– volume: 18
  start-page: 15
  year: 2018
  ident: 650_CR112
  publication-title: BMC Evol. Biol.
  doi: 10.1186/s12862-018-1272-4
– volume: 301
  start-page: 829
  year: 2003
  ident: 650_CR126
  publication-title: Science
  doi: 10.1126/science.1086568
– volume: 5
  start-page: 233
  year: 2013
  ident: 650_CR103
  publication-title: Genome Biol. Evol.
  doi: 10.1093/gbe/evt002
– volume: 6
  start-page: 1
  year: 2006
  ident: 650_CR28
  publication-title: BMC Evol. Biol.
  doi: 10.1186/1471-2148-6-82
– volume: 13
  start-page: 1
  year: 2015
  ident: 650_CR77
  publication-title: BMC Biol.
  doi: 10.1186/s12915-015-0131-7
– volume: 17
  start-page: 373
  year: 2007
  ident: 650_CR106
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2007.03.032
– year: 2018
  ident: 650_CR53
  publication-title: mBio
  doi: 10.1128/mBio.01033-18
– volume: 196
  start-page: 253
  year: 2014
  ident: 650_CR119
  publication-title: Genetics
  doi: 10.1534/genetics.113.157172
– volume: 94
  start-page: 1
  year: 2005
  ident: 650_CR56
  publication-title: Phys. Rev. Lett.
– volume: 20
  start-page: 1685
  year: 2019
  ident: 650_CR128
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bby042
– volume: 17
  year: 2019
  ident: 650_CR2
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3000102
– year: 2009
  ident: 650_CR105
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2526
– volume: 16
  start-page: 199
  year: 2019
  ident: 650_CR120
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0293-7
– volume: 348
  start-page: 1019
  year: 2015
  ident: 650_CR69
  publication-title: Science
  doi: 10.1126/science.aaa4456
– volume: 16
  start-page: 636
  year: 2006
  ident: 650_CR101
  publication-title: Genome Res.
  doi: 10.1101/gr.4746406
– volume: 10
  start-page: 1589
  year: 2016
  ident: 650_CR70
  publication-title: ISME J.
  doi: 10.1038/ismej.2015.241
– year: 2017
  ident: 650_CR14
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-017-0067-5
– year: 2017
  ident: 650_CR83
  publication-title: Microbiol. Spectr.
  doi: 10.1128/9781555819743.ch18
– volume: 218
  start-page: 1925
  year: 2015
  ident: 650_CR114
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.114306
– volume: 7
  start-page: 828
  year: 2009
  ident: 650_CR79
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2235
– volume: 12
  start-page: 181
  year: 2014
  ident: 650_CR16
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3199
– volume: 182
  start-page: 1016
  year: 2000
  ident: 650_CR32
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.182.4.1016-1023.2000
– year: 2019
  ident: 650_CR63
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msz225
– volume: 12
  start-page: 1
  year: 2014
  ident: 650_CR110
  publication-title: BMC Med.
  doi: 10.1186/1741-7015-12-1
– volume: 283
  start-page: 404
  year: 1999
  ident: 650_CR75
  publication-title: Science
  doi: 10.1126/science.283.5400.404
– volume: 106
  start-page: 19659
  year: 2009
  ident: 650_CR82
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0905137106
– year: 2020
  ident: 650_CR81
  publication-title: PLoS Biol.
  doi: 10.1101/568709
SSID ssj0025572
Score 2.734448
SecondaryResourceType review_article
Snippet Horizontal gene transfer (HGT) is arguably the most conspicuous feature of bacterial evolution. Evidence for HGT is found in most bacterial genomes. Although...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 206
SubjectTerms 631/158/855
631/326/41/2529
631/326/41/2530
631/326/41/2537
Algorithms
Bacteria
Bacteria - genetics
Biomedical and Life Sciences
Computational Biology
Deoxyribonucleic acid
DNA
Evolution
Evolution & development
Evolution, Molecular
Gene transfer
Gene Transfer, Horizontal
Genome, Bacterial - genetics
Genomes
Genomics
Horizontal transfer
Infectious Diseases
Life Sciences
Medical Microbiology
Microbiology
Parasitology
Phylogeny
Positive selection
Review Article
Signatures
Virology
Title Horizontal gene transfer and adaptive evolution in bacteria
URI https://link.springer.com/article/10.1038/s41579-021-00650-4
https://www.ncbi.nlm.nih.gov/pubmed/34773098
https://www.proquest.com/docview/2640668193
https://www.proquest.com/docview/2597500540
Volume 20
WOSCitedRecordID wos000717903600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1740-1534
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0025572
  issn: 1740-1526
  databaseCode: 7RV
  dateStart: 20031001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_6NdjL1o9185YGFfq2itqWbUn0oaylIQ9tCKEreTOyJEOhOGmSFra_fidZSSllfenLIbBki7vz3U866Q7gSMWpNprltEo4o1lVGSpkXVBulJCZsKrwufRur_hgIMZjOQwbbvNwrHJpE72hNhPt9shP0HGjd0T_xc6mD9RVjXLR1VBCYx02Edkk7kjXdTpcLbjy3BdvQtAdU_RTRbg0EzNxMkfHxSV1BxQ8SqHZS8f0Cm2-ipR6B9T7_N6pb8OnAD3Jr1ZXdmDNNrvwoS1G-WcPTvs45u_E3Y4kqFWWLDymtTOiGkOUUVNnGYl9CspK7hpStbme1Rf43bu8uejTUFqBasbzBU2sW3jFFdOmTrQ2WZHVaS5ccr1M5ShWzbk2iGWYYaKQXNaMcaXjWmCzwHH7sNFMGvsNCBM8LYQsrK6Qz7JGSCF0pXDVbbGhVQTJkq-lDnnHXfmL-9LHv5koW1mUKIvSy6LMIvi5GjNts2682buz5HsZ_sB5-cz0CA5Xj_HfcQER1djJI_bB1VTuQWsEX1sxrz7HMo7GT4oIjpdyf375_-fy_e25_ICPqbs_4Y_-dGBjMXu0B7ClnxZ381kX1vno1tEx91QgFRdJFzbPLwfDUddrt6N8-A_gEPfn
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3JbtQw9KkUEL2wdgkUMBKcwGomdrwIIYSAaqoOox4K6s04tiNVQpnpzLSofBTfyLOTTIUqeuuBW6TYzkvenrcBvLR54bxjJa0GklFeVZ4qXQsqvVWaq2BF6qX3bSTHY3V0pA9W4HdfCxPTKnuZmAS1n7j4j3wHFTdqR9Rf7P30hMapUTG62o_QaMliP5z_RJdt_m7vE-L3VVHsfj78OKTdVAHqmCwXdBCiz5FXzPl64JzngtdFqWJfOW5LfCMnpfNxCr1nSmipa8akdXmt8FLgPjz3BtzksbNYTBUsDpYOXlmmYVFo5OcU9aLoinRypnbmqCilpjEhIllFlP-tCC9Zt5cis0nh7d773z7VfbjbmdbkQ8sLD2AlNA_hdjts8_wRvB0ijL8msfqTINcEskg2e5gR23hivZ1GyU_CWceM5LghVdvL2q7D12uBfANWm0kTtoAwJQuhtAiuQrzqGk0m5SordB7wwtkMBj0ejev6qsfxHj9Miu8zZVrcG8S9Sbg3PIPXyz3TtqvIlau3ezybTsLMzQWSM3ixvI2yIQZ8bBMmp7gGvcUyGeUZbLZktXwc4xKFu1YZvOnp7OLwf8Py-GpYnsOd4eGXkRntjfefwFoRa0VSmtM2rC5mp-Ep3HJni-P57FniHALfr5v-_gApG04X
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3batRA9FC3Kr54t8ZWHUGf7LDZTDIXShG1XVpalkVU-jZOZiZQKNl1d1upn-bX9cwk2SLFvvXBt0BmJic595wbwFuTZtZZVtByIBjNy9JRqSpOhTNS5dIbHnvpfT8Uo5E8OlLjFfjT1cKEtMpOJkZB7SY2_CPvo-JG7Yj6i_WrNi1ivDP8MP1JwwSpEGntxmk0JHLgz3-h-zbf3t9BXL_LsuHu1897tJ0wQC0TxYIOfPA_0pJZVw2sdTnPq6yQocdcbgp8OyuEdWEivWOSK6EqxoSxaSXxkuM-PPcWrAo0MvIerH7aHY2_LN29ooijo9DkTylqSd6W7KRM9ueoNoWiIT0i2kg0_1stXrF1r8Rpo_obPvifP9xDuN8a3eRjwyWPYMXXj-FOM4bz_Als7SGMvyehLpQgP3myiNa8nxFTO2KcmQadQPxZy6bkuCZl0-XaPIVvNwL5M-jVk9o_B8KkyLhU3NsScawqNKakLQ1XqccLaxIYdDjVtu24HgZ_nOgY-WdSN3SgkQ50pAOdJ_B-uWfa9Bu5dvVGh3Pdyp65vkR4Am-Wt1FqhFCQqf3kFNegH1lEcz2BtYbElo9juUCxr2QCmx3NXR7-b1heXA_La7iLZKcP90cH63AvC0UkMf9pA3qL2al_Cbft2eJ4PnvVshGBHzdNgBc58Vgx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Horizontal+gene+transfer+and+adaptive+evolution+in+bacteria&rft.jtitle=Nature+reviews.+Microbiology&rft.au=Arnold%2C+Brian+J&rft.au=I-Ting%2C+Huang&rft.au=Hanage%2C+William+P&rft.date=2022-04-01&rft.pub=Nature+Publishing+Group&rft.issn=1740-1526&rft.eissn=1740-1534&rft.volume=20&rft.issue=4&rft.spage=206&rft.epage=218&rft_id=info:doi/10.1038%2Fs41579-021-00650-4&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1740-1526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1740-1526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1740-1526&client=summon