Horizontal gene transfer and adaptive evolution in bacteria
Horizontal gene transfer (HGT) is arguably the most conspicuous feature of bacterial evolution. Evidence for HGT is found in most bacterial genomes. Although HGT can considerably alter bacterial genomes, not all transfer events may be biologically significant and may instead represent the outcome of...
Gespeichert in:
| Veröffentlicht in: | Nature reviews. Microbiology Jg. 20; H. 4; S. 206 - 218 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Nature Publishing Group
01.04.2022
|
| Schlagworte: | |
| ISSN: | 1740-1526, 1740-1534, 1740-1534 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Horizontal gene transfer (HGT) is arguably the most conspicuous feature of bacterial evolution. Evidence for HGT is found in most bacterial genomes. Although HGT can considerably alter bacterial genomes, not all transfer events may be biologically significant and may instead represent the outcome of an incessant evolutionary process that only occasionally has a beneficial purpose. When adaptive transfers occur, HGT and positive selection may result in specific, detectable signatures in genomes, such as gene-specific sweeps or increased transfer rates for genes that are ecologically relevant. In this Review, we first discuss the various mechanisms whereby HGT occurs, how the genetic signatures shape patterns of genomic variation and the distinct bioinformatic algorithms developed to detect these patterns. We then discuss the evolutionary theory behind HGT and positive selection in bacteria, and discuss the approaches developed over the past decade to detect transferred DNA that may be involved in adaptation to new environments. |
|---|---|
| AbstractList | Horizontal gene transfer (HGT) is arguably the most conspicuous feature of bacterial evolution. Evidence for HGT is found in most bacterial genomes. Although HGT can considerably alter bacterial genomes, not all transfer events may be biologically significant and may instead represent the outcome of an incessant evolutionary process that only occasionally has a beneficial purpose. When adaptive transfers occur, HGT and positive selection may result in specific, detectable signatures in genomes, such as gene-specific sweeps or increased transfer rates for genes that are ecologically relevant. In this Review, we first discuss the various mechanisms whereby HGT occurs, how the genetic signatures shape patterns of genomic variation and the distinct bioinformatic algorithms developed to detect these patterns. We then discuss the evolutionary theory behind HGT and positive selection in bacteria, and discuss the approaches developed over the past decade to detect transferred DNA that may be involved in adaptation to new environments. Horizontal gene transfer (HGT) is arguably the most conspicuous feature of bacterial evolution. Evidence for HGT is found in most bacterial genomes. Although HGT can considerably alter bacterial genomes, not all transfer events may be biologically significant and may instead represent the outcome of an incessant evolutionary process that only occasionally has a beneficial purpose. When adaptive transfers occur, HGT and positive selection may result in specific, detectable signatures in genomes, such as gene-specific sweeps or increased transfer rates for genes that are ecologically relevant. In this Review, we first discuss the various mechanisms whereby HGT occurs, how the genetic signatures shape patterns of genomic variation and the distinct bioinformatic algorithms developed to detect these patterns. We then discuss the evolutionary theory behind HGT and positive selection in bacteria, and discuss the approaches developed over the past decade to detect transferred DNA that may be involved in adaptation to new environments.Horizontal gene transfer (HGT) is arguably the most conspicuous feature of bacterial evolution. Evidence for HGT is found in most bacterial genomes. Although HGT can considerably alter bacterial genomes, not all transfer events may be biologically significant and may instead represent the outcome of an incessant evolutionary process that only occasionally has a beneficial purpose. When adaptive transfers occur, HGT and positive selection may result in specific, detectable signatures in genomes, such as gene-specific sweeps or increased transfer rates for genes that are ecologically relevant. In this Review, we first discuss the various mechanisms whereby HGT occurs, how the genetic signatures shape patterns of genomic variation and the distinct bioinformatic algorithms developed to detect these patterns. We then discuss the evolutionary theory behind HGT and positive selection in bacteria, and discuss the approaches developed over the past decade to detect transferred DNA that may be involved in adaptation to new environments. Horizontal gene transfer (HGT) is arguably the most conspicuous feature of bacterial evolution. Evidence for HGT is found in most bacterial genomes. Although HGT can considerably alter bacterial genomes, not all transfer events may be biologically significant and may instead represent the outcome of an incessant evolutionary process that only occasionally has a beneficial purpose. When adaptive transfers occur, HGT and positive selection may result in specific, detectable signatures in genomes, such as gene-specific sweeps or increased transfer rates for genes that are ecologically relevant. In this Review, we first discuss the various mechanisms whereby HGT occurs, how the genetic signatures shape patterns of genomic variation and the distinct bioinformatic algorithms developed to detect these patterns. We then discuss the evolutionary theory behind HGT and positive selection in bacteria, and discuss the approaches developed over the past decade to detect transferred DNA that may be involved in adaptation to new environments.Bacterial DNA transfers between cells in numerous ways and becomes integrated into the genome, with diverse consequences for bacterial genomes. In this Review, Arnold, Huang and Hanage discuss the underlying theory used to infer the selective forces acting on transferred DNA and how they shape patterns of genomic variation. |
| Author | Arnold, Brian J Hanage, William P Huang, I-Ting |
| Author_xml | – sequence: 1 givenname: Brian J orcidid: 0000-0002-8629-5465 surname: Arnold fullname: Arnold, Brian J email: brianjohnarnold@gmail.com, brianjohnarnold@gmail.com organization: Center for Statistics and Machine Learning, Princeton University, Princeton, NJ, USA. brianjohnarnold@gmail.com – sequence: 2 givenname: I-Ting surname: Huang fullname: Huang, I-Ting organization: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA – sequence: 3 givenname: William P orcidid: 0000-0002-6319-7336 surname: Hanage fullname: Hanage, William P email: whanage@hsph.harvard.edu organization: Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, MA, USA. whanage@hsph.harvard.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34773098$$D View this record in MEDLINE/PubMed |
| BookMark | eNpdkEtLAzEYRYNUbK3-ARcScONm9Ms7gyspaoWCG10PaSYjKdOkJpmC_noHrC5c3bM434N7iiYhBofQBYEbAkzfZk6EqiugpAKQAip-hGZEcaiIYHzyx1RO0WnOGwAqhKInaMq4UgxqPUN3y5j8VwzF9PjdBYdLMiF3LmETWmxasyt-77Dbx34oPgbsA14bW1zy5gwdd6bP7vyQc_T2-PC6WFarl6fnxf2qskyJUhFHasphzWzbEWtbLnlHhQZGNTfCWWuVsq2uGWuZlrWqO8aUsdDpEeU4N0fXP3t3KX4MLpdm67N1fW-Ci0NuqKiVABAcRvXqn7qJQwrjdw2VHKTUZLwzR5cHa1hvXdvskt-a9Nn81sK-AVfWZPM |
| CitedBy_id | crossref_primary_10_1016_j_jmb_2025_169403 crossref_primary_10_1007_s10142_023_01109_w crossref_primary_10_1038_s41467_025_60116_6 crossref_primary_10_1099_jmm_0_001923 crossref_primary_10_1186_s12866_024_03391_5 crossref_primary_10_1016_j_micres_2025_128048 crossref_primary_10_1186_s40168_025_02065_2 crossref_primary_10_1016_j_algal_2024_103460 crossref_primary_10_1016_j_jhazmat_2025_138980 crossref_primary_10_1016_j_chemosphere_2023_139905 crossref_primary_10_1038_s41467_024_54408_6 crossref_primary_10_1186_s40793_024_00570_9 crossref_primary_10_1038_s41576_023_00688_5 crossref_primary_10_1016_j_chom_2024_05_017 crossref_primary_10_3390_genes13112071 crossref_primary_10_1016_j_chom_2024_05_015 crossref_primary_10_1080_03036758_2024_2345315 crossref_primary_10_1038_s41576_023_00620_x crossref_primary_10_1093_femsle_fnae027 crossref_primary_10_1016_j_envres_2024_119153 crossref_primary_10_3389_fmicb_2022_889551 crossref_primary_10_1021_acs_jpcb_5c02436 crossref_primary_10_1128_msphere_01010_24 crossref_primary_10_3389_fmicb_2023_1271138 crossref_primary_10_3390_ncrna11030036 crossref_primary_10_3389_fmicb_2022_854792 crossref_primary_10_1038_s41467_022_33054_w crossref_primary_10_1080_21505594_2024_2322961 crossref_primary_10_3390_microorganisms13040908 crossref_primary_10_1007_s13752_024_00478_0 crossref_primary_10_1016_j_marpolbul_2024_116939 crossref_primary_10_1126_science_adl0799 crossref_primary_10_3390_agronomy14061295 crossref_primary_10_1007_s10142_023_01206_w crossref_primary_10_1038_s41522_025_00793_9 crossref_primary_10_3389_fmicb_2025_1625724 crossref_primary_10_1093_molbev_msad028 crossref_primary_10_21105_joss_07773 crossref_primary_10_1016_j_cej_2025_159666 crossref_primary_10_1016_j_meegid_2024_105654 crossref_primary_10_1038_s41467_023_36086_y crossref_primary_10_1093_femsle_fnae005 crossref_primary_10_1016_j_chemosphere_2024_142264 crossref_primary_10_1016_j_fochms_2024_100236 crossref_primary_10_1371_journal_pbio_3002632 crossref_primary_10_1128_aem_00095_24 crossref_primary_10_1128_msystems_00562_22 crossref_primary_10_1016_j_jare_2024_12_044 crossref_primary_10_1111_evo_14432 crossref_primary_10_3390_su162410922 crossref_primary_10_1111_1749_4877_12714 crossref_primary_10_1134_S2079086423060154 crossref_primary_10_1007_s13225_023_00530_7 crossref_primary_10_1111_mmi_15209 crossref_primary_10_1016_j_watres_2024_121855 crossref_primary_10_1038_s41564_023_01531_7 crossref_primary_10_1039_D4RA06117A crossref_primary_10_1128_msystems_00365_24 crossref_primary_10_1128_jcm_00266_24 crossref_primary_10_1186_s13059_025_03634_2 crossref_primary_10_1038_s41467_025_61035_2 crossref_primary_10_1038_s42003_023_04753_x crossref_primary_10_1093_molbev_msae272 crossref_primary_10_26599_NR_2025_94907821 crossref_primary_10_1038_s41586_024_07486_x crossref_primary_10_3389_fmicb_2022_913662 crossref_primary_10_1016_j_biortech_2024_131306 crossref_primary_10_1093_molbev_msaf107 crossref_primary_10_1128_spectrum_00517_25 crossref_primary_10_2478_johr_2022_0009 crossref_primary_10_1016_j_jenvman_2024_122930 crossref_primary_10_1093_femsle_fnae068 crossref_primary_10_1002_adtp_202400412 crossref_primary_10_1016_j_jhazmat_2024_136359 crossref_primary_10_1007_s12602_023_10128_9 crossref_primary_10_1038_s41467_022_31858_4 crossref_primary_10_3390_ijms24021153 crossref_primary_10_1186_s12934_025_02759_0 crossref_primary_10_1016_j_envint_2023_108318 crossref_primary_10_3389_fmicb_2024_1460335 crossref_primary_10_1016_j_envres_2024_118172 crossref_primary_10_1016_j_algal_2023_103128 crossref_primary_10_1016_j_jenvman_2022_115944 crossref_primary_10_1111_1348_0421_13222 crossref_primary_10_1093_gbe_evaf079 crossref_primary_10_3389_fbioe_2025_1620652 crossref_primary_10_1038_s41559_025_02827_z crossref_primary_10_1093_molbev_msaf128 crossref_primary_10_1016_j_tim_2023_12_008 crossref_primary_10_1111_cpr_13236 crossref_primary_10_1371_journal_pone_0315160 crossref_primary_10_1016_j_copbio_2022_102885 crossref_primary_10_1016_j_watres_2022_119060 crossref_primary_10_1016_j_watres_2022_119062 crossref_primary_10_1371_journal_pbio_3002796 crossref_primary_10_1016_j_envpol_2025_126686 crossref_primary_10_3390_ijms24031967 crossref_primary_10_1016_j_ecoenv_2022_114247 crossref_primary_10_1016_j_jhazmat_2025_139824 crossref_primary_10_1016_j_ejmech_2024_116840 crossref_primary_10_1016_j_fm_2025_104895 crossref_primary_10_1093_jambio_lxaf201 crossref_primary_10_3390_ijms241411761 crossref_primary_10_1111_ele_14447 crossref_primary_10_3389_fcell_2022_988866 crossref_primary_10_3390_microorganisms12112375 crossref_primary_10_1093_nar_gkaf932 crossref_primary_10_1016_j_scitotenv_2024_172251 crossref_primary_10_1080_22221751_2024_2352435 crossref_primary_10_1099_mgen_0_001021 crossref_primary_10_1038_s41579_024_01041_1 crossref_primary_10_1126_science_ade0705 crossref_primary_10_3390_microorganisms11112725 crossref_primary_10_1016_j_jhazmat_2025_137932 crossref_primary_10_1186_s43170_023_00201_2 crossref_primary_10_1007_s00284_025_04373_0 crossref_primary_10_1002_ps_70067 crossref_primary_10_1080_1040841X_2024_2423159 crossref_primary_10_1093_molbev_msaf166 crossref_primary_10_3390_microorganisms13040779 crossref_primary_10_1073_pnas_2205041119 crossref_primary_10_1128_msystems_00083_22 crossref_primary_10_1016_j_epidem_2025_100817 crossref_primary_10_3390_antibiotics12121708 crossref_primary_10_1002_1873_3468_14906 crossref_primary_10_1038_s41579_023_00890_6 crossref_primary_10_1099_mgen_0_001279 crossref_primary_10_1016_j_pt_2025_04_002 crossref_primary_10_1016_j_jece_2025_117915 crossref_primary_10_1099_mgen_0_001034 crossref_primary_10_1371_journal_pbio_3002460 crossref_primary_10_1016_j_microc_2023_109268 crossref_primary_10_1093_jambio_lxad127 crossref_primary_10_1002_ps_8638 crossref_primary_10_3390_v15071525 crossref_primary_10_1093_genetics_iyaf115 crossref_primary_10_1093_molbev_msae066 crossref_primary_10_1111_1462_2920_16311 crossref_primary_10_7554_eLife_78533 crossref_primary_10_1093_femsec_fiac103 crossref_primary_10_3389_fmicb_2022_939406 crossref_primary_10_1186_s12915_024_01937_7 crossref_primary_10_3389_fmicb_2023_1214081 crossref_primary_10_1016_j_envpol_2023_123067 crossref_primary_10_3389_fmicb_2023_1157888 crossref_primary_10_3390_microorganisms10051040 crossref_primary_10_3389_fcimb_2024_1343858 crossref_primary_10_1007_s00284_024_03648_2 crossref_primary_10_1093_molbev_msaf060 crossref_primary_10_1093_glycob_cwac069 crossref_primary_10_1128_jb_00066_25 crossref_primary_10_1146_annurev_micro_112723_083001 crossref_primary_10_1007_s00248_024_02390_3 crossref_primary_10_1038_s41467_024_45154_w crossref_primary_10_5772_geet_21 crossref_primary_10_1038_s41467_024_55581_4 crossref_primary_10_1093_ismejo_wrae043 crossref_primary_10_1002_mlf2_12077 crossref_primary_10_1016_j_mib_2023_102424 crossref_primary_10_1093_ismejo_wrae167 crossref_primary_10_1093_ismejo_wraf014 crossref_primary_10_1021_acs_est_5c06928 crossref_primary_10_3390_microorganisms12091920 crossref_primary_10_1093_ismejo_wraf137 crossref_primary_10_1016_j_margen_2024_101083 crossref_primary_10_1155_jotm_7857069 crossref_primary_10_1016_j_envint_2025_109385 crossref_primary_10_4142_jvs_23265 crossref_primary_10_1007_s12602_022_10017_7 crossref_primary_10_1016_j_emcon_2025_100578 crossref_primary_10_1016_j_jhazmat_2024_134343 crossref_primary_10_1094_PHYTO_02_25_0042_FI crossref_primary_10_3389_fcimb_2025_1526028 crossref_primary_10_1128_spectrum_00858_25 crossref_primary_10_3390_genes14040949 crossref_primary_10_3390_d17040220 crossref_primary_10_2478_aoas_2024_0111 crossref_primary_10_1007_s12672_024_01590_0 crossref_primary_10_1093_nar_gkae899 crossref_primary_10_1016_j_tim_2025_03_009 crossref_primary_10_1128_msystems_01538_24 crossref_primary_10_1021_acsestwater_5c00540 crossref_primary_10_1007_s00203_024_03850_7 crossref_primary_10_1371_journal_pcbi_1011532 crossref_primary_10_1016_j_aquaculture_2025_742524 crossref_primary_10_1002_mlf2_12132 crossref_primary_10_1093_nar_gkae1265 crossref_primary_10_1155_2022_3348695 crossref_primary_10_1093_nsr_nwaf128 crossref_primary_10_1021_acs_est_4c13010 crossref_primary_10_1016_j_envpol_2024_124592 crossref_primary_10_1128_cmr_00175_23 crossref_primary_10_1016_j_ecoenv_2023_115124 crossref_primary_10_1016_j_jwpe_2024_106636 crossref_primary_10_1128_spectrum_00917_25 crossref_primary_10_3390_d16050268 crossref_primary_10_1016_j_copbio_2023_102898 crossref_primary_10_3390_micro5020018 crossref_primary_10_1038_s41598_022_23690_z crossref_primary_10_1360_SST_2024_0258 crossref_primary_10_1128_cmr_00118_23 crossref_primary_10_3390_microorganisms12112317 crossref_primary_10_1016_j_cej_2022_140195 crossref_primary_10_3390_antibiotics13070661 crossref_primary_10_3390_microorganisms11020407 crossref_primary_10_3389_fpls_2024_1435440 crossref_primary_10_1016_j_fm_2023_104327 crossref_primary_10_1016_j_scitotenv_2024_174466 crossref_primary_10_1093_evolinnean_kzae023 crossref_primary_10_1016_j_watres_2025_124357 crossref_primary_10_1093_plcell_koaf195 crossref_primary_10_1038_s41598_024_83952_w crossref_primary_10_1371_journal_pone_0301172 crossref_primary_10_3389_fmicb_2024_1367490 crossref_primary_10_1186_s12864_023_09245_0 crossref_primary_10_1016_j_envres_2023_117739 crossref_primary_10_1101_gr_277340_122 crossref_primary_10_1111_tpj_17057 crossref_primary_10_1016_j_ympev_2025_108359 crossref_primary_10_3390_ijms26020621 crossref_primary_10_1080_10408398_2022_2081127 crossref_primary_10_1016_j_biortech_2025_132036 crossref_primary_10_1016_j_ympev_2024_108197 crossref_primary_10_1128_spectrum_03688_22 crossref_primary_10_1002_adma_202406910 crossref_primary_10_1111_nph_70329 crossref_primary_10_1093_femsre_fuaf045 crossref_primary_10_1021_acsabm_4c01872 crossref_primary_10_1128_msystems_00211_22 crossref_primary_10_1016_j_jhazmat_2024_135624 crossref_primary_10_1016_j_psep_2024_07_033 crossref_primary_10_1093_nargab_lqae061 crossref_primary_10_1007_s13225_025_00550_5 crossref_primary_10_1016_j_jhazmat_2023_132099 crossref_primary_10_1016_j_wasman_2024_04_048 crossref_primary_10_1016_j_envpol_2025_126817 crossref_primary_10_1016_j_envpol_2025_126938 crossref_primary_10_1186_s40168_024_01963_1 crossref_primary_10_1093_nar_gkad130 crossref_primary_10_3389_fbioe_2025_1612226 crossref_primary_10_1016_j_tibtech_2024_12_011 crossref_primary_10_1016_j_gde_2022_101950 crossref_primary_10_1016_j_mib_2024_102431 crossref_primary_10_3390_microorganisms12050986 crossref_primary_10_1111_1758_2229_70175 crossref_primary_10_3390_antibiotics12010024 crossref_primary_10_1016_j_tig_2024_02_001 crossref_primary_10_3390_antibiotics11121794 crossref_primary_10_3390_toxins17060311 crossref_primary_10_1016_j_cell_2024_08_008 crossref_primary_10_1016_j_ijantimicag_2024_107225 crossref_primary_10_1128_msystems_00887_24 crossref_primary_10_1016_j_tim_2024_02_002 crossref_primary_10_1080_10889868_2025_2510989 crossref_primary_10_1128_spectrum_02453_24 crossref_primary_10_1007_s00203_023_03557_1 crossref_primary_10_1016_j_watres_2024_122590 crossref_primary_10_1016_j_micpath_2024_107275 crossref_primary_10_1016_j_plaphy_2024_109359 crossref_primary_10_1128_aem_01220_22 crossref_primary_10_1016_j_ebiom_2023_104532 crossref_primary_10_1134_S0026261724606043 crossref_primary_10_3389_fmicb_2023_1148263 crossref_primary_10_1016_j_margen_2024_101122 crossref_primary_10_1016_j_tim_2023_07_009 crossref_primary_10_1038_s41559_024_02421_9 crossref_primary_10_1093_nar_gkad1172 crossref_primary_10_1073_pnas_2417628122 crossref_primary_10_1016_j_scitotenv_2023_168908 crossref_primary_10_3390_antibiotics14080843 crossref_primary_10_1091_mbc_E20_08_0564 crossref_primary_10_1016_j_jhazmat_2024_133774 crossref_primary_10_3390_microorganisms11010215 crossref_primary_10_1128_spectrum_00915_24 crossref_primary_10_1016_j_jmb_2024_168924 crossref_primary_10_26508_lsa_202201833 crossref_primary_10_1128_spectrum_03265_24 crossref_primary_10_1093_nargab_lqae142 crossref_primary_10_1128_msystems_01089_24 crossref_primary_10_1016_j_watres_2024_122375 crossref_primary_10_1111_1462_2920_16630 crossref_primary_10_1093_nar_gkad138 crossref_primary_10_1073_pnas_2311127121 crossref_primary_10_1093_bfgp_elac051 crossref_primary_10_1038_s41467_025_57825_3 crossref_primary_10_1038_s43705_023_00317_6 crossref_primary_10_1016_j_jhazmat_2024_136824 crossref_primary_10_1128_mmbr_00041_23 crossref_primary_10_1016_j_jhazmat_2023_133238 crossref_primary_10_1186_s40793_024_00610_4 crossref_primary_10_1016_j_jhazmat_2024_134885 crossref_primary_10_1016_j_cub_2024_06_030 crossref_primary_10_1038_s41545_025_00446_6 crossref_primary_10_1016_j_watres_2024_121198 crossref_primary_10_1007_s00203_024_04152_8 crossref_primary_10_3390_genes13101895 crossref_primary_10_1093_bib_bbaf149 crossref_primary_10_1016_j_cell_2022_12_001 crossref_primary_10_1016_j_still_2025_106655 crossref_primary_10_1016_j_cell_2022_06_014 crossref_primary_10_1016_j_biocontrol_2025_105699 crossref_primary_10_1042_BST20221395 crossref_primary_10_1093_nargab_lqaf005 crossref_primary_10_1016_j_jgar_2024_11_003 crossref_primary_10_1016_j_soilbio_2024_109553 crossref_primary_10_1038_s41467_025_55834_w crossref_primary_10_1038_s41522_024_00597_3 crossref_primary_10_1128_spectrum_00260_24 crossref_primary_10_1016_j_scitotenv_2024_174618 crossref_primary_10_1002_advs_202502193 crossref_primary_10_1186_s40793_025_00701_w crossref_primary_10_1016_j_jclepro_2022_135371 crossref_primary_10_1371_journal_pbio_3002901 crossref_primary_10_3390_ijms26189193 crossref_primary_10_1186_s12864_022_08678_3 crossref_primary_10_1016_j_micres_2024_128041 crossref_primary_10_1093_femsre_fuae006 crossref_primary_10_3390_d14070502 crossref_primary_10_1016_j_colsurfb_2022_112833 crossref_primary_10_3389_fmicb_2025_1663069 crossref_primary_10_1016_j_ebiom_2025_105781 crossref_primary_10_1038_s41396_023_01463_4 crossref_primary_10_1016_j_fbio_2024_105405 crossref_primary_10_3390_microorganisms13081861 crossref_primary_10_1016_j_watres_2024_121887 crossref_primary_10_1016_j_ibiod_2025_106211 crossref_primary_10_1016_j_watres_2024_122730 crossref_primary_10_1016_j_watres_2024_122972 crossref_primary_10_3390_microorganisms10040700 crossref_primary_10_1016_j_jenvman_2023_118071 crossref_primary_10_1186_s42523_025_00442_8 crossref_primary_10_1111_1751_7915_14335 crossref_primary_10_1097_PXH_0000000000000019 crossref_primary_10_1128_msystems_00706_24 crossref_primary_10_1016_j_jhazmat_2024_134811 crossref_primary_10_1038_s41587_025_02639_3 crossref_primary_10_3201_eid3001_221927 crossref_primary_10_1016_j_tim_2024_04_014 crossref_primary_10_3390_w16111575 crossref_primary_10_1186_s12862_025_02360_4 crossref_primary_10_1016_j_jhazmat_2024_135902 crossref_primary_10_3389_fmicb_2023_1118264 crossref_primary_10_3390_microorganisms13081732 crossref_primary_10_3389_fmicb_2025_1541524 crossref_primary_10_1016_j_micres_2025_128340 crossref_primary_10_3390_vetsci12050484 crossref_primary_10_1016_j_envpol_2023_122766 crossref_primary_10_1016_j_ecoenv_2025_118991 crossref_primary_10_1038_s41564_025_02091_8 crossref_primary_10_1093_nar_gkaf488 crossref_primary_10_1073_pnas_2317182121 crossref_primary_10_1093_nar_gkae155 crossref_primary_10_1186_s13059_024_03443_z crossref_primary_10_1186_s40793_023_00461_5 crossref_primary_10_1016_j_scib_2023_09_001 crossref_primary_10_1093_femsre_fuae019 crossref_primary_10_3390_ijms24032610 crossref_primary_10_1113_JP284410 crossref_primary_10_1016_j_micres_2025_128232 crossref_primary_10_1016_j_jclepro_2024_144177 crossref_primary_10_1016_j_marpolbul_2024_117059 crossref_primary_10_1016_j_micinf_2024_105462 crossref_primary_10_1002_chem_202401399 crossref_primary_10_1016_j_mib_2025_102628 crossref_primary_10_2147_IDR_S388354 crossref_primary_10_1099_mgen_0_000931 crossref_primary_10_1371_journal_pone_0301642 crossref_primary_10_1016_j_apsoil_2025_106013 crossref_primary_10_1016_j_apsoil_2025_106375 crossref_primary_10_1139_cjm_2024_0168 crossref_primary_10_1016_j_jhazmat_2025_137692 crossref_primary_10_1093_nargab_lqaf083 crossref_primary_10_1007_s00284_024_04044_6 crossref_primary_10_1080_1040841X_2025_2555938 crossref_primary_10_1073_pnas_2318160121 crossref_primary_10_1111_1751_7915_14408 crossref_primary_10_1146_annurev_earth_031621_070542 crossref_primary_10_1099_mgen_0_000939 crossref_primary_10_1016_j_jhazmat_2025_139638 crossref_primary_10_1038_s41522_024_00588_4 crossref_primary_10_1093_discim_kyad025 crossref_primary_10_1016_j_scitotenv_2024_171530 crossref_primary_10_1038_s41579_025_01157_y crossref_primary_10_1016_j_envres_2025_120920 crossref_primary_10_1038_s41559_023_02269_5 crossref_primary_10_1016_j_cell_2024_07_028 crossref_primary_10_23902_trkjnat_1171052 crossref_primary_10_1016_j_chom_2024_06_002 crossref_primary_10_1016_j_foodres_2024_115299 crossref_primary_10_1016_j_jhazmat_2024_133922 crossref_primary_10_1186_s12862_023_02112_2 crossref_primary_10_1016_j_ijbiomac_2025_139980 crossref_primary_10_1128_msphere_00114_25 crossref_primary_10_54203_scil_2025_wvj22 crossref_primary_10_1038_s42003_023_05745_7 crossref_primary_10_1038_s41522_025_00773_z crossref_primary_10_1016_j_tig_2024_01_007 crossref_primary_10_3389_fmicb_2025_1512923 crossref_primary_10_1007_s00210_025_04194_9 crossref_primary_10_1038_s41597_024_03908_7 crossref_primary_10_3389_fmicb_2025_1537073 crossref_primary_10_1016_j_watres_2024_122676 crossref_primary_10_3389_fmicb_2022_1034440 crossref_primary_10_1038_s41598_025_86098_5 crossref_primary_10_1186_s40168_023_01695_8 crossref_primary_10_3390_microbiolres16060118 crossref_primary_10_1038_s41467_023_39964_7 crossref_primary_10_1016_j_envpol_2025_126048 crossref_primary_10_1016_j_scitotenv_2024_178020 crossref_primary_10_1016_j_tim_2025_07_009 crossref_primary_10_1016_j_ijbiomac_2025_140979 crossref_primary_10_1128_spectrum_01466_24 crossref_primary_10_3390_foods14020216 crossref_primary_10_3389_fmars_2023_985514 crossref_primary_10_1016_j_ymben_2025_08_005 |
| ContentType | Journal Article |
| Copyright | 2021. Springer Nature Limited. Springer Nature Limited 2021. |
| Copyright_xml | – notice: 2021. Springer Nature Limited. – notice: Springer Nature Limited 2021. |
| DBID | CGR CUY CVF ECM EIF NPM 3V. 7QL 7RV 7U9 7X7 7XB 88A 88E 88I 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI BKSAR C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB0 LK8 M0S M1P M2P M7N M7P NAPCQ P64 PCBAR PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 |
| DOI | 10.1038/s41579-021-00650-4 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Nursing & Allied Health Database Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1740-1534 |
| EndPage | 218 |
| ExternalDocumentID | 34773098 |
| Genre | Journal Article Review |
| GroupedDBID | --- .55 0R~ 123 29M 36B 39C 3V. 4.4 53G 70F 7RV 7X7 88A 88E 88I 8AO 8C1 8CJ 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAWYQ AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ACGFO ACGFS ACMJI ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFRAH AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BBNVY BENPR BHPHI BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CGR CS3 CUY CVF D1J DB5 DU5 DWQXO EAD EAP EAS EBS ECM EE. EIF EJD EMB EMK EMOBN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ IAO IH2 IHR INH INR ITC LGEZI LK8 LOTEE M0L M1P M2P M7P MM. N9A NADUK NAPCQ NNMJJ NPM NXXTH O9- ODYON P2P PCBAR PQQKQ PROAC PSQYO Q2X QF4 QM4 QN7 QO4 RNR RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP WOW X7M 7QL 7U9 7XB 8FD 8FK ABFSG ACSTC AEZWR AFANA AFHIU AGSTI AHWEU AIXLP ALPWD ATHPR C1K FR3 H94 K9. M7N P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 7X8 |
| ID | FETCH-LOGICAL-c375t-1e19240b3cdf1ccd464f25803284a5eccc77cd8933d386979f337ac0f879f60b3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 492 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000717903600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1740-1526 1740-1534 |
| IngestDate | Sun Nov 09 13:47:05 EST 2025 Sun Nov 30 04:03:49 EST 2025 Wed Feb 19 02:24:41 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | 2021. Springer Nature Limited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c375t-1e19240b3cdf1ccd464f25803284a5eccc77cd8933d386979f337ac0f879f60b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-8629-5465 0000-0002-6319-7336 |
| PMID | 34773098 |
| PQID | 2640668193 |
| PQPubID | 27584 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2597500540 proquest_journals_2640668193 pubmed_primary_34773098 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: London |
| PublicationTitle | Nature reviews. Microbiology |
| PublicationTitleAlternate | Nat Rev Microbiol |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group |
| SSID | ssj0025572 |
| Score | 2.7349708 |
| SecondaryResourceType | review_article |
| Snippet | Horizontal gene transfer (HGT) is arguably the most conspicuous feature of bacterial evolution. Evidence for HGT is found in most bacterial genomes. Although... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 206 |
| SubjectTerms | Algorithms Bacteria Bacteria - genetics Computational Biology Deoxyribonucleic acid DNA Evolution Evolution & development Evolution, Molecular Gene transfer Gene Transfer, Horizontal Genome, Bacterial - genetics Genomes Genomics Horizontal transfer Phylogeny Positive selection Signatures |
| Title | Horizontal gene transfer and adaptive evolution in bacteria |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34773098 https://www.proquest.com/docview/2640668193 https://www.proquest.com/docview/2597500540 |
| Volume | 20 |
| WOSCitedRecordID | wos000717903600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7cVcGL78f6WCJ4DbZN26R4EF0ULy5lUdnb0k5S2Eu77gv01ztJ63rSi5ehpU0pyWS-b5LJDMCVQZEHdsPdYIY8zKKQk58VE5HLiwKT2I-xLjYh-301HCZps-A2a8Iqv22iM9S6QrtGfk3ATehI-CVuJ-_cVo2yu6tNCY0WrNssCcKF7qUrhyuKXPEmIt0eJ5yKm0MznlDXMwIumXAboOBYCg9_p5gOah53_vuTu7DdkEx2V2vFHqyZch8267KTHwdw80RtPit7DpKR_hg2d-zVTFlWapbpbGJtIDPLRi3ZuGR5ndU5O4TXx4eX3hNviihwFDKac99YF8vLBerCR9RhHBZBpGwaPRoZGkCUEjWxFqGFihOZFELIDL1C0WVM7Y6gXValOQGWIE1u9OJEKz_UXk7gJgoVFGQXtEJlOnD-3SujZibMRj9d0oHL1WPSYbsxkZWmWtA75NVEjjx24Lju-dGkTrYxEqEkI5So078_fgZbgT2Y4GJqzqE9ny7MBWzgcj6eTbvQkoM3K4fSSUVS9fwurN8_9NMB3T0HadcpD8l--vwFgSTFvA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2VTXBhXwoFjARHiyROYkcIIcSiIqBCCBC3kIwdiUta2lJUPopvZJykcIIbB26RssjJeN6biWf8AHYNitSzC-4GE-R-Evic8qyQArk0yzAK3RBLsQnZaqnHx-imBh-jXhhbVjnCxAKodRvtP_J9Im5iR-IvcdR54VY1yq6ujiQ0ymlxaYZvlLL1Di9Oyb57nnd-dnfS5JWqAEchgz53jc05nFSgzlxE7Yd-5gXK7itHQ6U3QilRWxV6LVQYySgTQiboZIoOQ7qPnjsGE4Tjri0hk7cPXwleEBRiURTkO5x4MayadByh9ntElDLitiCiiIq4_3NIW1Db-dx_-yjzMFsF0ey4nPULUDP5IkyVsprDJTho0hjf27bPk5F_GNYvonPTZUmuWaKTjsV4ZgaV27HnnKXlrtXJMtz_ychXYDxv52YNWIQEXuiEkVaur52UyFtkyssI97RCZerQGFkhrjy9F3-boA47X6fJR-3CS5Kb9itdQ1lbUATHdVgtLR13ys1EYuFLAtlIrf_-8G2Ybt5dX8VXF63LDZjxbBNGUT_UgPF-99VswiQO-s-97lYxJRk8_bW5PwH4NhsG |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2VsogL-1JWI8HRahqnsSOEEAIqEKjqASRuIRnbEpe0tKUIPo2vY5yk5QS3HrhFyiIn43nzJp7xAzg2KFLfLbgbTJAHSTPglGeFRORSazEKGyEWYhOy3VZPT1GnAl_jXhhXVjnGxByodRfdP_I6BW6KjhS_RN2WZRGdq9Z575U7BSm30jqW0yimyJ35eKf0bXB2e0W2PvH91vXD5Q0vFQY4Ctkc8oZx-YeXCtS2gaiDMLB-U7k95mjY9HYoJWqnSK-FCiMZWSFkgp5VdBjSffTcGZiVgmax61K_nJSXEFPPhaOI8HucYmRYNux4QtUHFDRlxF1xRM6QePA7vc3DXGv5P3-gFVgqyTW7KLxhFSomW4P5Qm7zYx1Ob2iMn13X_8nIbwwb5qzd9FmSaZbopOewn5lR6Y7sJWNpsZt1sgGPUxn5JlSzbma2gUVIoIZeGGnVCLSXUlAXVvmW8FArVKYGe2OLxCUCDOIfc9TgaHKafNctyCSZ6b7RNZTNNXPSXIOtwupxr9hkJBaBJPCN1M7fDz-EBbJyfH_bvtuFRd_1ZuRlRXtQHfbfzD7M4Wj4Mugf5LOTwfO0rf0N2ugjYQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Horizontal+gene+transfer+and+adaptive+evolution+in+bacteria&rft.jtitle=Nature+reviews.+Microbiology&rft.au=Arnold%2C+Brian+J&rft.au=I-Ting%2C+Huang&rft.au=Hanage%2C+William+P&rft.date=2022-04-01&rft.pub=Nature+Publishing+Group&rft.issn=1740-1526&rft.eissn=1740-1534&rft.volume=20&rft.issue=4&rft.spage=206&rft.epage=218&rft_id=info:doi/10.1038%2Fs41579-021-00650-4&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1740-1526&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1740-1526&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1740-1526&client=summon |