Multi-objective optimization of an industrial fluidized-bed catalytic cracking unit (FCCU) using genetic algorithm (GA) with the jumping genes operator
The multi-objective optimization of industrial operations using genetic algorithm and its variants, often requires inordinately large amounts of computational (CPU) time. Any adaptation to speed up the solution procedure is, thus, desirable. An adaptation is developed in this study that is inspired...
Gespeichert in:
| Veröffentlicht in: | Computers & chemical engineering Jg. 27; H. 12; S. 1785 - 1800 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
15.12.2003
|
| Schlagworte: | |
| ISSN: | 0098-1354, 1873-4375 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The multi-objective optimization of industrial operations using genetic algorithm and its variants, often requires inordinately large amounts of computational (CPU) time. Any adaptation to speed up the solution procedure is, thus, desirable. An adaptation is developed in this study that is inspired from natural genetics. It is based on the concept of jumping genes (JG; transposons). The binary-coded elitist non-dominated sorting genetic algorithm (NSGA-II) is adapted, and the new code, NSGA-II-JG, is used to obtain solutions for the multi-objective optimization of an industrial fluidized-bed catalytic cracking unit (FCCU). This unit is associated with a complex model that is highly compute-intense. The CPU time required for this problem is found to reduce fivefold when NSGA-II-JG is used, as compared to when NSGA-II is used. Solutions of similar two-objective optimization problems for the FCCU are compared. NSGA-II-JG also gives improved convergence characteristics and spread of the optimal Pareto points for two simpler multi-objective optimization problems studied here. Indeed, in one problem, where several optimal Pareto fronts exist, the new code gives the correct,
global optimal Pareto set, while the original code (binary-coded NSGA-II) converges to local Paretos. The JG operator is associated with some kind of macro–macro-mutation and introduces higher exploratory capabilities, counteracting the effect of elitism in NSGA-II. We, thus, have a better algorithm incorporating the advantages of elitism. This adaptation can prove to be of considerable value for solving other compute-intense problems in chemical engineering. |
|---|---|
| AbstractList | The multi-objective optimization of industrial operations using genetic algorithm and its variants, often requires inordinately large amounts of computational (CPU) time. Any adaptation to speed up the solution procedure is, thus, desirable. An adaptation is developed in this study that is inspired from natural genetics. It is based on the concept of jumping genes (JG; transposons). The binary-coded elitist non-dominated sorting genetic algorithm (NSGA-II) is adapted, and the new code, NSGA-II-JG, is used to obtain solutions for the multi-objective optimization of an industrial fluidized-bed catalytic cracking unit (FCCU). This unit is associated with a complex model that is highly compute-intense. The CPU time required for this problem is found to reduce fivefold when NSGA-II-JG is used, as compared to when NSGA-II is used. Solutions of similar two-objective optimization problems for the FCCU are compared. NSGA- II-JG also gives improved convergence characteristics and spread of the optimal Pareto points for two simpler multi-objective optimization problems studied here. Indeed, in one problem, where several optimal Pareto fronts exist, the new code gives the correct, global optimal Pareto set, while the original code (binary-coded NSGA-II) converges to local Paretos. The JG operator is associated with some kind of macro-macro-mutation and introduces higher exploratory capabilities, counteracting the effect of elitism in NSGA-II. We, thus, have a better algorithm incorporating the advantages of elitism. This adaptation can prove to be of considerable value for solving other compute-intense problems in chemical engineering. The multi-objective optimization of industrial operations using genetic algorithm and its variants, often requires inordinately large amounts of computational (CPU) time. Any adaptation to speed up the solution procedure is, thus, desirable. An adaptation is developed in this study that is inspired from natural genetics. It is based on the concept of jumping genes (JG; transposons). The binary-coded elitist non-dominated sorting genetic algorithm (NSGA-II) is adapted, and the new code, NSGA-II-JG, is used to obtain solutions for the multi-objective optimization of an industrial fluidized-bed catalytic cracking unit (FCCU). This unit is associated with a complex model that is highly compute-intense. The CPU time required for this problem is found to reduce fivefold when NSGA-II-JG is used, as compared to when NSGA-II is used. Solutions of similar two-objective optimization problems for the FCCU are compared. NSGA-II-JG also gives improved convergence characteristics and spread of the optimal Pareto points for two simpler multi-objective optimization problems studied here. Indeed, in one problem, where several optimal Pareto fronts exist, the new code gives the correct, global optimal Pareto set, while the original code (binary-coded NSGA-II) converges to local Paretos. The JG operator is associated with some kind of macro–macro-mutation and introduces higher exploratory capabilities, counteracting the effect of elitism in NSGA-II. We, thus, have a better algorithm incorporating the advantages of elitism. This adaptation can prove to be of considerable value for solving other compute-intense problems in chemical engineering. |
| Author | Kasat, Rahul B. Gupta, Santosh K. |
| Author_xml | – sequence: 1 givenname: Rahul B. surname: Kasat fullname: Kasat, Rahul B. – sequence: 2 givenname: Santosh K. surname: Gupta fullname: Gupta, Santosh K. email: skgupta@iitk.ac.in |
| BookMark | eNqFkUFv1DAQhS1UJLaFn4DkE9o9hNpxsk7EAVUrWpCKOEDPlmNPtrM49mI7rdo_wt8l2aUcuPTkkfW9N5r3TsmJDx4IecvZe874-vw7Y21TcFFXSyZWjPFaFNULsuCNnAYh6xOy-Ie8Iqcp7RhjZdU0C_L76-gyFqHbgcl4BzTsMw74qDMGT0NPtafo7ZhyRO1o70a0-Ai26MBSo7N2DxkNNVGbn-i3dPSY6fJys7lZ0THNP1vwMCPabUPEfDvQ5dXFit5PI823QHfjsH_i0rQeos4hviYve-0SvPn7npGby08_Np-L629XXzYX14WZ7soFt1BZDmturOxZLdha1rptZVMDF1J2tpJG8HotJAhTalu3wggtTW_bsuvKSpyRd0fffQy_RkhZDZgMOKc9hDGpcrKaQp7BD0fQxJBShF4ZzIeUctToFGdqLkMdylBz0ooJdShDzer6P_U-4qDjw7O6j0cdTBncIUSVDII3YDFOhSkb8BmHP4SHpc4 |
| CitedBy_id | crossref_primary_10_1016_j_jprocont_2015_01_001 crossref_primary_10_1007_s11270_014_1892_2 crossref_primary_10_1016_j_cep_2012_07_012 crossref_primary_10_1016_j_jtice_2019_03_004 crossref_primary_10_1080_03052151003739598 crossref_primary_10_1016_j_proche_2014_10_003 crossref_primary_10_1007_s00521_017_3057_x crossref_primary_10_1016_j_bej_2004_05_007 crossref_primary_10_1109_TEVC_2007_895269 crossref_primary_10_1016_j_fuproc_2006_08_009 crossref_primary_10_1080_01496390500526854 crossref_primary_10_1016_j_procbio_2012_01_020 crossref_primary_10_1002_cite_201200050 crossref_primary_10_1002_jssc_201400089 crossref_primary_10_1016_j_jiec_2016_12_015 crossref_primary_10_1007_BF03402538 crossref_primary_10_1016_j_cej_2023_143990 crossref_primary_10_1002_pen_21165 crossref_primary_10_1016_j_seppur_2006_03_002 crossref_primary_10_1016_j_seppur_2020_118298 crossref_primary_10_1016_j_cherd_2008_03_012 crossref_primary_10_1080_10826070802225320 crossref_primary_10_1515_cppm_2022_0018 crossref_primary_10_1016_j_ces_2009_08_036 crossref_primary_10_1016_j_scitotenv_2023_164988 crossref_primary_10_1002_bit_22328 crossref_primary_10_1016_j_chroma_2006_07_052 crossref_primary_10_1515_cppm_2015_0062 crossref_primary_10_1515_psr_2015_0017 crossref_primary_10_3390_jmse8090699 crossref_primary_10_1016_j_ces_2007_01_030 crossref_primary_10_1016_j_asoc_2017_05_062 crossref_primary_10_1016_j_seppur_2025_133043 crossref_primary_10_1016_j_ces_2009_06_016 crossref_primary_10_1016_j_procbio_2010_04_016 crossref_primary_10_1016_j_compchemeng_2019_106684 crossref_primary_10_1016_j_chroma_2018_10_029 crossref_primary_10_1016_j_chroma_2015_06_044 crossref_primary_10_1016_j_seppur_2021_118604 crossref_primary_10_1080_00194506_2012_713543 crossref_primary_10_1016_j_ins_2016_12_003 crossref_primary_10_1016_j_jiec_2017_09_029 crossref_primary_10_1016_j_procbio_2008_08_011 crossref_primary_10_1016_j_minpro_2005_06_003 crossref_primary_10_1016_j_seppur_2024_129217 crossref_primary_10_1002_er_4587 crossref_primary_10_1016_j_procbio_2011_01_015 crossref_primary_10_1016_j_ces_2015_09_035 crossref_primary_10_1016_j_cherd_2010_02_021 crossref_primary_10_1016_j_asoc_2022_109339 crossref_primary_10_1016_j_jiec_2022_11_006 crossref_primary_10_1080_10826076_2011_575976 crossref_primary_10_1016_j_fuel_2010_12_043 crossref_primary_10_1016_j_ins_2015_07_033 crossref_primary_10_1002_jssc_201200322 crossref_primary_10_1016_j_jiec_2019_08_046 crossref_primary_10_1016_j_chroma_2016_12_052 crossref_primary_10_1016_j_seppur_2024_128593 crossref_primary_10_1002_aic_11691 crossref_primary_10_2478_s11532_011_0096_5 crossref_primary_10_1002_mats_200500013 crossref_primary_10_1016_j_chroma_2012_07_091 crossref_primary_10_1109_TIE_2010_2062479 crossref_primary_10_1007_s13369_023_08227_4 crossref_primary_10_1016_j_cie_2011_01_011 crossref_primary_10_1016_j_jngse_2021_104207 crossref_primary_10_1007_s11063_020_10300_0 crossref_primary_10_1002_cjce_5450850608 crossref_primary_10_1080_10426910802540612 crossref_primary_10_1016_j_seppur_2020_116922 crossref_primary_10_1016_j_compchemeng_2005_05_002 crossref_primary_10_1016_j_ces_2009_07_030 crossref_primary_10_1016_j_procbio_2013_10_021 crossref_primary_10_1016_j_seppur_2018_12_020 crossref_primary_10_1016_j_chroma_2016_05_016 crossref_primary_10_1016_j_minpro_2006_01_008 crossref_primary_10_1002_aic_11604 crossref_primary_10_1016_j_procbio_2012_09_027 crossref_primary_10_1080_10826070802022354 crossref_primary_10_1002_cjce_20663 crossref_primary_10_1016_j_cej_2023_144884 crossref_primary_10_1016_j_chroma_2010_12_102 crossref_primary_10_1016_j_chroma_2016_01_013 crossref_primary_10_1016_j_chroma_2019_460394 crossref_primary_10_1016_j_seppur_2019_116357 crossref_primary_10_1016_j_chroma_2016_08_063 crossref_primary_10_1088_1742_6596_622_1_012044 crossref_primary_10_1016_j_chroma_2017_02_040 crossref_primary_10_1016_j_ins_2006_07_019 crossref_primary_10_26634_jfet_10_2_3094 crossref_primary_10_1002_apj_4 crossref_primary_10_1016_j_minpro_2013_12_001 crossref_primary_10_3390_w15193523 crossref_primary_10_1016_j_chroma_2018_09_025 crossref_primary_10_1016_j_jiec_2017_07_011 crossref_primary_10_1016_j_cej_2004_12_034 crossref_primary_10_1016_j_compchemeng_2006_12_012 crossref_primary_10_1007_s10462_022_10219_z crossref_primary_10_1016_j_procbio_2025_05_003 crossref_primary_10_1016_j_jiec_2021_11_015 crossref_primary_10_1016_j_cherd_2020_10_011 crossref_primary_10_1016_j_chroma_2014_03_038 crossref_primary_10_1016_j_jclepro_2024_144307 crossref_primary_10_1016_j_seppur_2008_10_050 crossref_primary_10_1016_j_procbio_2011_11_011 crossref_primary_10_1016_j_compchemeng_2006_01_002 crossref_primary_10_1016_j_chroma_2019_06_010 crossref_primary_10_1016_j_compchemeng_2013_09_014 crossref_primary_10_1016_j_fuel_2018_03_087 crossref_primary_10_1016_j_jiec_2021_02_018 crossref_primary_10_1002_mats_200350033 crossref_primary_10_1016_j_compchemeng_2019_106636 crossref_primary_10_1016_j_bej_2007_01_026 crossref_primary_10_1016_j_chroma_2014_05_036 crossref_primary_10_1016_j_compchemeng_2022_107823 crossref_primary_10_1016_j_cherd_2017_02_033 crossref_primary_10_1016_j_chroma_2011_09_015 crossref_primary_10_1016_j_compchemeng_2010_08_004 crossref_primary_10_1002_fft2_70056 crossref_primary_10_1016_j_chroma_2010_09_014 crossref_primary_10_1016_j_ces_2004_07_120 crossref_primary_10_1155_2007_10672 crossref_primary_10_1080_00986445_2017_1390455 crossref_primary_10_1016_j_compchemeng_2011_05_002 crossref_primary_10_1016_j_jngse_2010_11_001 crossref_primary_10_1002_advs_202502702 crossref_primary_10_1016_j_powtec_2009_07_009 crossref_primary_10_1002_cjce_21700 crossref_primary_10_1016_j_cherd_2007_11_005 crossref_primary_10_1016_j_chroma_2010_08_049 crossref_primary_10_1016_j_cej_2022_134887 crossref_primary_10_1016_j_procbio_2021_05_018 crossref_primary_10_1007_s10450_006_0566_9 crossref_primary_10_1016_j_cherd_2009_04_010 crossref_primary_10_1080_10826070802548523 crossref_primary_10_1007_s10489_007_0095_6 crossref_primary_10_1080_10826076_2011_647195 crossref_primary_10_1016_j_chroma_2014_09_005 crossref_primary_10_1016_j_jlp_2010_08_009 crossref_primary_10_1016_j_chroma_2012_01_081 crossref_primary_10_1007_s11814_016_0027_4 |
| Cites_doi | 10.1016/0009-2509(88)87048-9 10.1016/0009-2509(94)00499-H 10.1021/i260031a015 10.1162/evco.1994.2.3.221 10.1016/0009-2509(90)87042-Q 10.1016/0009-2509(79)85017-4 10.1162/106365600568167 10.1016/S0019-0578(98)00028-7 10.1021/ie00102a001 10.1007/BF01743536 10.1002/cjce.5450570210 10.1016/0009-2509(73)80048-X 10.1016/0009-2509(80)85129-3 10.1515/REVCE.2000.16.1.1 10.1021/ie020087s 10.1021/ie00043a027 10.1016/S0926-860X(98)00262-2 10.1016/0009-2509(93)80311-D 10.1016/S0098-1354(00)00306-9 10.1177/003754979506400605 10.1016/S0098-1354(00)00453-1 10.1002/cjce.5450780116 10.1162/106365600568202 10.1002/aic.690220412 10.1007/3-540-61723-X_1014 10.1002/cjce.5450590424 10.1002/aic.690440914 10.1021/ie00096a015 10.1109/4235.996017 10.1016/0098-1354(94)00110-3 10.1016/0009-2509(94)00178-T |
| ContentType | Journal Article |
| Copyright | 2003 Elsevier Ltd |
| Copyright_xml | – notice: 2003 Elsevier Ltd |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/S0098-1354(03)00153-4 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-4375 |
| EndPage | 1800 |
| ExternalDocumentID | 10_1016_S0098_1354_03_00153_4 S0098135403001534 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCE SDF SDG SDP SES SEW SPC SPCBC SSG SST SSZ T5K VH1 WUQ ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c375t-1de4d1e61cd7f0530675a99785e1377bd47c315637e3c2ad593c3a7cfd92bb243 |
| ISICitedReferencesCount | 183 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000186564200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0098-1354 |
| IngestDate | Sat Sep 27 17:54:39 EDT 2025 Sat Nov 29 05:10:36 EST 2025 Tue Nov 18 22:32:51 EST 2025 Fri Feb 23 02:24:15 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Pareto sets FCC units Transposons Genetic algorithm Multi-objective function optimization Jumping genes Fluidized-bed catalytic crackers |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c375t-1de4d1e61cd7f0530675a99785e1377bd47c315637e3c2ad593c3a7cfd92bb243 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 27851014 |
| PQPubID | 23500 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_27851014 crossref_citationtrail_10_1016_S0098_1354_03_00153_4 crossref_primary_10_1016_S0098_1354_03_00153_4 elsevier_sciencedirect_doi_10_1016_S0098_1354_03_00153_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2003-12-15 |
| PublicationDateYYYYMMDD | 2003-12-15 |
| PublicationDate_xml | – month: 12 year: 2003 text: 2003-12-15 day: 15 |
| PublicationDecade | 2000 |
| PublicationTitle | Computers & chemical engineering |
| PublicationYear | 2003 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Hajela, P., Lee E., & Lin, C.Y., Genetic algorithms in structural topology optimization. In Proceedings of the NATO Advanced Research Workshop on Topology Design of Structures, Sesimbra, Portugal, (1992). pp. 117–134. Khandalekar, Riggs (BIB34) 1995; 19 Han, Chung, Riggs (BIB29) 2000; 24 Rhemann, H., Schwarz, G., Badgwell, T.A., Darby, M.L., & White, D.C., On-line FCCU advanced control and optimization. Hydrocarbon Processing, June, 64 (1989). Osyczka, Kundu (BIB44) 1995; 10 Deb (BIB12) 1995 Zitzler, Deb, Thiele (BIB56) 2000; 8 Deb, Pratap, Agarwal, Meyarivan (BIB14) 2002; 6 Srinivas, Deb (BIB49) 1994; 2 Errazu, de-Lasa, Sarti (BIB25) 1979; 57 Ellis, Li, Riggs (BIB17) 1998; 44 Deb (BIB13) 2001 Murata, T., Genetic algorithms for multi-objective optimization. Ph. D. Thesis, Osaka Prefecture University, Osaka, Japan, (1997). De Lasa, Errazu, Barreiro, Solioz (BIB11) 1981; 59 Nandasana, A., Ray, A.K., & Gupta, S.K., Dynamic simulation of industrial steam reactors: an improved model. Industrial and Engineering Chemistry Research, 00, 0000, (2003). Elshishini, Elnashaie (BIB24) 1990; 45 Carlos, van Veldhuizen, Lamont (BIB6) 2002 Elnashaie, El-Hennawi (BIB19) 1979; 34 Rudolph, G., Evolutionary search under partially ordered fitness sets. In Proceedings of the International Symposium on Information Science Innovations in Engineering of Natural and Artificial Intelligent Systems (ISI 2001), Dubai, UAE, (2001). pp. 818–822. Iscol, L., The dynamics and stability of a fluid catalytic cracker. Proceedings of the American Control Conference, Atlanta; (1970). Paper 23B. Elnashaie, Elshishini (BIB21) 1993; 48 Kasat, Kunzru, Saraf, Gupta (BIB33) 2002; 41 Dave, Saraf (BIB9) 2003; 45 Weekman (BIB53) 1969; 8 Webb, Lutter, Hair (BIB52) 1978; 74 Ramasubramanian, S., Luus, R., & Woo, S.S., Optimization of a fluidized catalytic cracking unit. 50th Canadian Chemical Engineering Conference, Montreal, Canada, (2000). Edgar, Himmelblau, Lasdon (BIB15) 2001 Jacob, Gross, Voltz, Weekman (BIB32) 1976; 22 Zhao, Chen, Hu (BIB54) 2000; 24 Chankong, Haimes (BIB7) 1983 Edwards, Kim (BIB16) 1988; 43 Elnashaie, Elbialy (BIB20) 1980; 35 Kursawe, F., A Variant of evolution strategies for vector optimization. In Parallel Problem Solving From Nature, I (PPSN-I), Dortmund, Germany, (1990). pp. 193–197. McKlintock, B., The discovery and characterization of transposable elements. In The Collected Papers of Barbara McClintock, New York: Garland, (1987). Kunii, Levenspiel (BIB38) 1969 Bhaskar, Gupta, Ray (BIB5) 2000; 16 van Veldhuizen, D., Multiobjective evolutionary algorithms: classifications, analyses and new innovation. Ph. D. Thesis, Air Force Institute of Technology, WPAFB, OH, (1999). Fogel (BIB26) 1995; 64 Schaffer, J.D., Some experiments in machine learning using vector evaluated genetic algorithms. Ph. D. Thesis, Vanderbilt University, Nashville, TN, (1984). Elnashaie, Abasaeed, Elshishini (BIB22) 1995; 50 Stryer (BIB50) 2000 Ancheyta, Lopez, Aguilar (BIB1) 1999; 177 Davis, Griffin, Webb (BIB10) 1974; 70 Horn, J., & Nafploitis, N., Multiobjective optimization using the niched Pareto genetic algorithm. Technical Report 93005, IlliGAL, University of Illinois, Urbana-Champaign. (1993). Krishna, Parkin (BIB37) 1985; 81 Zitzler, E., & Thiele, L., An evolutionary algorithm for multiobjective optimization: The strength Pareto approach. Technical Report 43, Swiss Federal Institute of Technology, Zurich, Switzerland, (1998). Chitnis, Corripio (BIB8) 1998; 37 Elnashaie, Yates (BIB18) 1973; 28 Arandes, Azkoiti, Bilbao, de Lasa (BIB2) 2000; 78 Arbel, Huang, Rinard, Shinnar, Sapre (BIB3) 1995; 34 Elnashaie, Abashar, Teymour (BIB23) 1995; 50 Knowles, Corne (BIB36) 2000; 8 Kita, H., Yabumoto, Y., Mori, N., & Nishikawa, Y., Multi-objective optimization by means of thermodynamical genetic algorithm. In Processing of Parallel Problem Solving from Nature IV (PPSN-IV), Berlin, (1996). pp. 504–512. Fonseca, C.M., & Fleming, P.J., Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, CA: Morgan Kaufmann, (1993). pp. 416–423. Avidan, Shinnar (BIB4) 1990; 29 McFarlane, Bacon (BIB40) 1989; 28 Elnashaie (10.1016/S0098-1354(03)00153-4_BIB22) 1995; 50 Osyczka (10.1016/S0098-1354(03)00153-4_BIB44) 1995; 10 10.1016/S0098-1354(03)00153-4_BIB27 10.1016/S0098-1354(03)00153-4_BIB28 Ancheyta (10.1016/S0098-1354(03)00153-4_BIB1) 1999; 177 10.1016/S0098-1354(03)00153-4_BIB35 Dave (10.1016/S0098-1354(03)00153-4_BIB9) 2003; 45 Elnashaie (10.1016/S0098-1354(03)00153-4_BIB19) 1979; 34 10.1016/S0098-1354(03)00153-4_BIB30 10.1016/S0098-1354(03)00153-4_BIB31 Srinivas (10.1016/S0098-1354(03)00153-4_BIB49) 1994; 2 Elnashaie (10.1016/S0098-1354(03)00153-4_BIB20) 1980; 35 Stryer (10.1016/S0098-1354(03)00153-4_BIB50) 2000 De Lasa (10.1016/S0098-1354(03)00153-4_BIB11) 1981; 59 Deb (10.1016/S0098-1354(03)00153-4_BIB14) 2002; 6 Elnashaie (10.1016/S0098-1354(03)00153-4_BIB21) 1993; 48 Elnashaie (10.1016/S0098-1354(03)00153-4_BIB23) 1995; 50 Knowles (10.1016/S0098-1354(03)00153-4_BIB36) 2000; 8 Errazu (10.1016/S0098-1354(03)00153-4_BIB25) 1979; 57 Krishna (10.1016/S0098-1354(03)00153-4_BIB37) 1985; 81 Kunii (10.1016/S0098-1354(03)00153-4_BIB38) 1969 Kasat (10.1016/S0098-1354(03)00153-4_BIB33) 2002; 41 Carlos (10.1016/S0098-1354(03)00153-4_BIB6) 2002 Deb (10.1016/S0098-1354(03)00153-4_BIB12) 1995 Edgar (10.1016/S0098-1354(03)00153-4_BIB15) 2001 Bhaskar (10.1016/S0098-1354(03)00153-4_BIB5) 2000; 16 Elnashaie (10.1016/S0098-1354(03)00153-4_BIB18) 1973; 28 Fogel (10.1016/S0098-1354(03)00153-4_BIB26) 1995; 64 Arandes (10.1016/S0098-1354(03)00153-4_BIB2) 2000; 78 Ellis (10.1016/S0098-1354(03)00153-4_BIB17) 1998; 44 Edwards (10.1016/S0098-1354(03)00153-4_BIB16) 1988; 43 Zitzler (10.1016/S0098-1354(03)00153-4_BIB56) 2000; 8 Zhao (10.1016/S0098-1354(03)00153-4_BIB54) 2000; 24 Deb (10.1016/S0098-1354(03)00153-4_BIB13) 2001 10.1016/S0098-1354(03)00153-4_BIB48 Weekman (10.1016/S0098-1354(03)00153-4_BIB53) 1969; 8 Webb (10.1016/S0098-1354(03)00153-4_BIB52) 1978; 74 10.1016/S0098-1354(03)00153-4_BIB55 Arbel (10.1016/S0098-1354(03)00153-4_BIB3) 1995; 34 10.1016/S0098-1354(03)00153-4_BIB51 McFarlane (10.1016/S0098-1354(03)00153-4_BIB40) 1989; 28 Davis (10.1016/S0098-1354(03)00153-4_BIB10) 1974; 70 Avidan (10.1016/S0098-1354(03)00153-4_BIB4) 1990; 29 Elshishini (10.1016/S0098-1354(03)00153-4_BIB24) 1990; 45 Chankong (10.1016/S0098-1354(03)00153-4_BIB7) 1983 10.1016/S0098-1354(03)00153-4_BIB39 Khandalekar (10.1016/S0098-1354(03)00153-4_BIB34) 1995; 19 10.1016/S0098-1354(03)00153-4_BIB45 10.1016/S0098-1354(03)00153-4_BIB46 10.1016/S0098-1354(03)00153-4_BIB47 10.1016/S0098-1354(03)00153-4_BIB41 Jacob (10.1016/S0098-1354(03)00153-4_BIB32) 1976; 22 10.1016/S0098-1354(03)00153-4_BIB42 Han (10.1016/S0098-1354(03)00153-4_BIB29) 2000; 24 10.1016/S0098-1354(03)00153-4_BIB43 Chitnis (10.1016/S0098-1354(03)00153-4_BIB8) 1998; 37 |
| References_xml | – year: 2000 ident: BIB50 publication-title: Biochemistry – year: 2001 ident: BIB13 publication-title: Multi-objective optimization using evolutionary algorithms – reference: Horn, J., & Nafploitis, N., Multiobjective optimization using the niched Pareto genetic algorithm. Technical Report 93005, IlliGAL, University of Illinois, Urbana-Champaign. (1993). – volume: 24 start-page: 61 year: 2000 ident: BIB54 article-title: Optimizing operating conditions based on ANN and modified GAs publication-title: Computers and Chemical Engineering – volume: 64 start-page: 397 year: 1995 ident: BIB26 article-title: A comparison of evolutionary programming and genetic algorithms on selected constrained optimization problems publication-title: Simulation – reference: Fonseca, C.M., & Fleming, P.J., Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, CA: Morgan Kaufmann, (1993). pp. 416–423. – year: 1983 ident: BIB7 publication-title: Multiobjective decision making—Theory and methodology – volume: 43 start-page: 1825 year: 1988 ident: BIB16 article-title: Multiple steady states in FCC unit operations publication-title: Chemical Engineering Science – volume: 177 start-page: 227 year: 1999 ident: BIB1 article-title: 5-lump kinetic model for gas oil catalytic cracking publication-title: Applied Catalysis A – reference: Rhemann, H., Schwarz, G., Badgwell, T.A., Darby, M.L., & White, D.C., On-line FCCU advanced control and optimization. Hydrocarbon Processing, June, 64 (1989). – volume: 78 start-page: 111 year: 2000 ident: BIB2 article-title: Modeling FCC units under steady and unsteady state conditions publication-title: Canadian Journal of Chemical Engineering – volume: 24 start-page: 1681 year: 2000 ident: BIB29 article-title: Modeling of a fluidized catalytic cracking process publication-title: Computers and Chemical Engineering – volume: 34 start-page: 1228 year: 1995 ident: BIB3 article-title: Dynamic and control of fluidized catalytic crackers. 1. Modeling of the current generation of FCC's publication-title: Industrial and Engineering Chemistry Research – volume: 41 start-page: 4765 year: 2002 ident: BIB33 article-title: Multiobjective optimization of industrial FCC units using elitist nondominated sorting genetic algorithm publication-title: Industrial and Engineering Chemistry Research – reference: Murata, T., Genetic algorithms for multi-objective optimization. Ph. D. Thesis, Osaka Prefecture University, Osaka, Japan, (1997). – volume: 19 start-page: 1153 year: 1995 ident: BIB34 article-title: Nonlinear process model based control and optimization of a model IV FCC unit publication-title: Computers and Chemical Engineering – volume: 8 start-page: 385 year: 1969 ident: BIB53 article-title: Kinetics and dynamics of catalytic cracking selectivity in fixed bed reactors publication-title: Industrial and Engineering Chemistry, Process Design and Development – volume: 50 start-page: 49 year: 1995 ident: BIB23 article-title: Chaotic behaviour of fluidized-bed catalytic reactors with consecutive endothermic chemical reactions publication-title: Chemical Engineering Science – reference: Schaffer, J.D., Some experiments in machine learning using vector evaluated genetic algorithms. Ph. D. Thesis, Vanderbilt University, Nashville, TN, (1984). – volume: 28 start-page: 515 year: 1973 ident: BIB18 article-title: Multiplicity of the steady state in fluidised bed reactors-I. Steady state considerations publication-title: Chemical Engineering Science – volume: 44 start-page: 2068 year: 1998 ident: BIB17 article-title: Modeling and optimization of a model IV fluidized catalytic cracking unit publication-title: American Institute of Chemical Engineers Journal – volume: 28 start-page: 1828 year: 1989 ident: BIB40 article-title: Adaptive optimizing control of multivariable constrained chemical processes. 1. Theoretical development publication-title: Industrial and Engineering Chemistry Research – volume: 45 start-page: 553 year: 1990 ident: BIB24 article-title: Digital simulation of industrial fluid catalytic cracking units: bifurcation and its implications publication-title: Chemical Engineering Science – volume: 22 start-page: 701 year: 1976 ident: BIB32 article-title: A lumping and reaction scheme for catalytic cracking publication-title: American Institute of Chemical Engineers Journal – volume: 81 start-page: 57 year: 1985 ident: BIB37 article-title: Modeling the regenerator in commercial fluid catalytic cracking units publication-title: Chemical Engineering Progress – reference: van Veldhuizen, D., Multiobjective evolutionary algorithms: classifications, analyses and new innovation. Ph. D. Thesis, Air Force Institute of Technology, WPAFB, OH, (1999). – volume: 35 start-page: 1357 year: 1980 ident: BIB20 article-title: Multiplicity of steady states in fluidized bed reactors-V. The effect of catalyst decay publication-title: Chemical Engineering Science – volume: 50 start-page: 1635 year: 1995 ident: BIB22 article-title: Digital simulation of industrial fluid catalytic cracking units-V. Static and dynamic bifurcation publication-title: Chemical Engineering Science – volume: 2 start-page: 221 year: 1994 ident: BIB49 article-title: Multiobjective optimization using nondominated sorting in genetic algorithms publication-title: Evolutionary Computation – year: 2002 ident: BIB6 publication-title: Evolutionary algorithms for solving multi-objective problems – volume: 70 start-page: 53 year: 1974 ident: BIB10 article-title: Cat cracker optimization and control publication-title: Chemical Engineering Progress – volume: 37 start-page: 215 year: 1998 ident: BIB8 article-title: On-line optimization of a model IV fluid catalytic cracking unit publication-title: ISA Trans. – volume: 74 start-page: 72 year: 1978 ident: BIB52 article-title: Dynamic optimization of fluid cat crackers publication-title: Chemical Engineering Progress – volume: 48 start-page: 567 year: 1993 ident: BIB21 article-title: Digital simulation of industrial fluid catalytic cracking units-IV. Static and dynamic bifurcation publication-title: Chemical Engineering Science – reference: Rudolph, G., Evolutionary search under partially ordered fitness sets. In Proceedings of the International Symposium on Information Science Innovations in Engineering of Natural and Artificial Intelligent Systems (ISI 2001), Dubai, UAE, (2001). pp. 818–822. – volume: 8 start-page: 149 year: 2000 ident: BIB36 article-title: Approximating the non-dominated front using the Pareto archived evolution strategy publication-title: Evolutionary Computation – volume: 8 start-page: 173 year: 2000 ident: BIB56 article-title: Comparison of multiobjective evolutionary algorithms: Empirical results publication-title: Evolutionary Computation – reference: Ramasubramanian, S., Luus, R., & Woo, S.S., Optimization of a fluidized catalytic cracking unit. 50th Canadian Chemical Engineering Conference, Montreal, Canada, (2000). – volume: 6 start-page: 182 year: 2002 ident: BIB14 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation – year: 2001 ident: BIB15 publication-title: Optimization of Chemical Processes – volume: 34 start-page: 1113 year: 1979 ident: BIB19 article-title: Multiplicity of the steady state in fluidized reactors-IV. Fluid catalytic cracker (FCC) publication-title: Chemical Engineering Science – reference: Kursawe, F., A Variant of evolution strategies for vector optimization. In Parallel Problem Solving From Nature, I (PPSN-I), Dortmund, Germany, (1990). pp. 193–197. – volume: 59 start-page: 549 year: 1981 ident: BIB11 article-title: Analysis of fluidized bed catalytic cracking regenerator models in an industrial scale unit publication-title: Canadian Journal of Chemical Engineering – volume: 57 start-page: 191 year: 1979 ident: BIB25 article-title: A fluidized bed catalytic cracking regenerator model. Grid effects publication-title: Canadian Journal of Chemical Engineering – year: 1995 ident: BIB12 publication-title: Optimization for engineering design: algorithms and examples – reference: McKlintock, B., The discovery and characterization of transposable elements. In The Collected Papers of Barbara McClintock, New York: Garland, (1987). – reference: Zitzler, E., & Thiele, L., An evolutionary algorithm for multiobjective optimization: The strength Pareto approach. Technical Report 43, Swiss Federal Institute of Technology, Zurich, Switzerland, (1998). – reference: Iscol, L., The dynamics and stability of a fluid catalytic cracker. Proceedings of the American Control Conference, Atlanta; (1970). Paper 23B. – reference: Nandasana, A., Ray, A.K., & Gupta, S.K., Dynamic simulation of industrial steam reactors: an improved model. Industrial and Engineering Chemistry Research, 00, 0000, (2003). – reference: Hajela, P., Lee E., & Lin, C.Y., Genetic algorithms in structural topology optimization. In Proceedings of the NATO Advanced Research Workshop on Topology Design of Structures, Sesimbra, Portugal, (1992). pp. 117–134. – volume: 29 start-page: 931 year: 1990 ident: BIB4 article-title: Development of catalytic cracking technology. A lesson in chemical reactor design publication-title: Industrial and Engineering Chemistry Research – volume: 16 start-page: 1 year: 2000 ident: BIB5 article-title: Applications of multiobjective optimization in chemical engineering publication-title: Reviews in Chemical Engineering – reference: Kita, H., Yabumoto, Y., Mori, N., & Nishikawa, Y., Multi-objective optimization by means of thermodynamical genetic algorithm. In Processing of Parallel Problem Solving from Nature IV (PPSN-IV), Berlin, (1996). pp. 504–512. – year: 1969 ident: BIB38 publication-title: Fluidization Engineering – volume: 10 start-page: 94 year: 1995 ident: BIB44 article-title: A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm publication-title: Structural Optimization – volume: 45 start-page: 7 year: 2003 ident: BIB9 article-title: A model suitable for rating and optimization of industrial FCC units publication-title: Indian Chemical Engineer – volume: 43 start-page: 1825 year: 1988 ident: 10.1016/S0098-1354(03)00153-4_BIB16 article-title: Multiple steady states in FCC unit operations publication-title: Chemical Engineering Science doi: 10.1016/0009-2509(88)87048-9 – volume: 81 start-page: 57 year: 1985 ident: 10.1016/S0098-1354(03)00153-4_BIB37 article-title: Modeling the regenerator in commercial fluid catalytic cracking units publication-title: Chemical Engineering Progress – year: 2001 ident: 10.1016/S0098-1354(03)00153-4_BIB15 – volume: 50 start-page: 1635 year: 1995 ident: 10.1016/S0098-1354(03)00153-4_BIB22 article-title: Digital simulation of industrial fluid catalytic cracking units-V. Static and dynamic bifurcation publication-title: Chemical Engineering Science doi: 10.1016/0009-2509(94)00499-H – volume: 8 start-page: 385 year: 1969 ident: 10.1016/S0098-1354(03)00153-4_BIB53 article-title: Kinetics and dynamics of catalytic cracking selectivity in fixed bed reactors publication-title: Industrial and Engineering Chemistry, Process Design and Development doi: 10.1021/i260031a015 – volume: 2 start-page: 221 year: 1994 ident: 10.1016/S0098-1354(03)00153-4_BIB49 article-title: Multiobjective optimization using nondominated sorting in genetic algorithms publication-title: Evolutionary Computation doi: 10.1162/evco.1994.2.3.221 – volume: 45 start-page: 553 year: 1990 ident: 10.1016/S0098-1354(03)00153-4_BIB24 article-title: Digital simulation of industrial fluid catalytic cracking units: bifurcation and its implications publication-title: Chemical Engineering Science doi: 10.1016/0009-2509(90)87042-Q – volume: 45 start-page: 7 year: 2003 ident: 10.1016/S0098-1354(03)00153-4_BIB9 article-title: A model suitable for rating and optimization of industrial FCC units publication-title: Indian Chemical Engineer – volume: 34 start-page: 1113 year: 1979 ident: 10.1016/S0098-1354(03)00153-4_BIB19 article-title: Multiplicity of the steady state in fluidized reactors-IV. Fluid catalytic cracker (FCC) publication-title: Chemical Engineering Science doi: 10.1016/0009-2509(79)85017-4 – volume: 8 start-page: 149 year: 2000 ident: 10.1016/S0098-1354(03)00153-4_BIB36 article-title: Approximating the non-dominated front using the Pareto archived evolution strategy publication-title: Evolutionary Computation doi: 10.1162/106365600568167 – volume: 37 start-page: 215 year: 1998 ident: 10.1016/S0098-1354(03)00153-4_BIB8 article-title: On-line optimization of a model IV fluid catalytic cracking unit publication-title: ISA Trans. doi: 10.1016/S0019-0578(98)00028-7 – ident: 10.1016/S0098-1354(03)00153-4_BIB51 – ident: 10.1016/S0098-1354(03)00153-4_BIB55 – ident: 10.1016/S0098-1354(03)00153-4_BIB45 – volume: 29 start-page: 931 year: 1990 ident: 10.1016/S0098-1354(03)00153-4_BIB4 article-title: Development of catalytic cracking technology. A lesson in chemical reactor design publication-title: Industrial and Engineering Chemistry Research doi: 10.1021/ie00102a001 – year: 2002 ident: 10.1016/S0098-1354(03)00153-4_BIB6 – ident: 10.1016/S0098-1354(03)00153-4_BIB41 – volume: 10 start-page: 94 year: 1995 ident: 10.1016/S0098-1354(03)00153-4_BIB44 article-title: A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm publication-title: Structural Optimization doi: 10.1007/BF01743536 – volume: 57 start-page: 191 year: 1979 ident: 10.1016/S0098-1354(03)00153-4_BIB25 article-title: A fluidized bed catalytic cracking regenerator model. Grid effects publication-title: Canadian Journal of Chemical Engineering doi: 10.1002/cjce.5450570210 – volume: 28 start-page: 515 year: 1973 ident: 10.1016/S0098-1354(03)00153-4_BIB18 article-title: Multiplicity of the steady state in fluidised bed reactors-I. Steady state considerations publication-title: Chemical Engineering Science doi: 10.1016/0009-2509(73)80048-X – ident: 10.1016/S0098-1354(03)00153-4_BIB39 – ident: 10.1016/S0098-1354(03)00153-4_BIB31 – volume: 35 start-page: 1357 year: 1980 ident: 10.1016/S0098-1354(03)00153-4_BIB20 article-title: Multiplicity of steady states in fluidized bed reactors-V. The effect of catalyst decay publication-title: Chemical Engineering Science doi: 10.1016/0009-2509(80)85129-3 – volume: 16 start-page: 1 year: 2000 ident: 10.1016/S0098-1354(03)00153-4_BIB5 article-title: Applications of multiobjective optimization in chemical engineering publication-title: Reviews in Chemical Engineering doi: 10.1515/REVCE.2000.16.1.1 – volume: 41 start-page: 4765 year: 2002 ident: 10.1016/S0098-1354(03)00153-4_BIB33 article-title: Multiobjective optimization of industrial FCC units using elitist nondominated sorting genetic algorithm publication-title: Industrial and Engineering Chemistry Research doi: 10.1021/ie020087s – volume: 34 start-page: 1228 year: 1995 ident: 10.1016/S0098-1354(03)00153-4_BIB3 article-title: Dynamic and control of fluidized catalytic crackers. 1. Modeling of the current generation of FCC's publication-title: Industrial and Engineering Chemistry Research doi: 10.1021/ie00043a027 – ident: 10.1016/S0098-1354(03)00153-4_BIB46 – volume: 177 start-page: 227 year: 1999 ident: 10.1016/S0098-1354(03)00153-4_BIB1 article-title: 5-lump kinetic model for gas oil catalytic cracking publication-title: Applied Catalysis A doi: 10.1016/S0926-860X(98)00262-2 – volume: 48 start-page: 567 year: 1993 ident: 10.1016/S0098-1354(03)00153-4_BIB21 article-title: Digital simulation of industrial fluid catalytic cracking units-IV. Static and dynamic bifurcation publication-title: Chemical Engineering Science doi: 10.1016/0009-2509(93)80311-D – ident: 10.1016/S0098-1354(03)00153-4_BIB42 – year: 2000 ident: 10.1016/S0098-1354(03)00153-4_BIB50 – year: 1983 ident: 10.1016/S0098-1354(03)00153-4_BIB7 – volume: 24 start-page: 61 year: 2000 ident: 10.1016/S0098-1354(03)00153-4_BIB54 article-title: Optimizing operating conditions based on ANN and modified GAs publication-title: Computers and Chemical Engineering doi: 10.1016/S0098-1354(00)00306-9 – volume: 64 start-page: 397 year: 1995 ident: 10.1016/S0098-1354(03)00153-4_BIB26 article-title: A comparison of evolutionary programming and genetic algorithms on selected constrained optimization problems publication-title: Simulation doi: 10.1177/003754979506400605 – volume: 24 start-page: 1681 year: 2000 ident: 10.1016/S0098-1354(03)00153-4_BIB29 article-title: Modeling of a fluidized catalytic cracking process publication-title: Computers and Chemical Engineering doi: 10.1016/S0098-1354(00)00453-1 – ident: 10.1016/S0098-1354(03)00153-4_BIB30 – year: 2001 ident: 10.1016/S0098-1354(03)00153-4_BIB13 – volume: 78 start-page: 111 year: 2000 ident: 10.1016/S0098-1354(03)00153-4_BIB2 article-title: Modeling FCC units under steady and unsteady state conditions publication-title: Canadian Journal of Chemical Engineering doi: 10.1002/cjce.5450780116 – year: 1969 ident: 10.1016/S0098-1354(03)00153-4_BIB38 – ident: 10.1016/S0098-1354(03)00153-4_BIB47 – ident: 10.1016/S0098-1354(03)00153-4_BIB28 – ident: 10.1016/S0098-1354(03)00153-4_BIB43 – volume: 8 start-page: 173 year: 2000 ident: 10.1016/S0098-1354(03)00153-4_BIB56 article-title: Comparison of multiobjective evolutionary algorithms: Empirical results publication-title: Evolutionary Computation doi: 10.1162/106365600568202 – volume: 22 start-page: 701 year: 1976 ident: 10.1016/S0098-1354(03)00153-4_BIB32 article-title: A lumping and reaction scheme for catalytic cracking publication-title: American Institute of Chemical Engineers Journal doi: 10.1002/aic.690220412 – ident: 10.1016/S0098-1354(03)00153-4_BIB35 doi: 10.1007/3-540-61723-X_1014 – volume: 59 start-page: 549 year: 1981 ident: 10.1016/S0098-1354(03)00153-4_BIB11 article-title: Analysis of fluidized bed catalytic cracking regenerator models in an industrial scale unit publication-title: Canadian Journal of Chemical Engineering doi: 10.1002/cjce.5450590424 – volume: 44 start-page: 2068 year: 1998 ident: 10.1016/S0098-1354(03)00153-4_BIB17 article-title: Modeling and optimization of a model IV fluidized catalytic cracking unit publication-title: American Institute of Chemical Engineers Journal doi: 10.1002/aic.690440914 – volume: 28 start-page: 1828 year: 1989 ident: 10.1016/S0098-1354(03)00153-4_BIB40 article-title: Adaptive optimizing control of multivariable constrained chemical processes. 1. Theoretical development publication-title: Industrial and Engineering Chemistry Research doi: 10.1021/ie00096a015 – ident: 10.1016/S0098-1354(03)00153-4_BIB27 – ident: 10.1016/S0098-1354(03)00153-4_BIB48 – year: 1995 ident: 10.1016/S0098-1354(03)00153-4_BIB12 – volume: 6 start-page: 182 year: 2002 ident: 10.1016/S0098-1354(03)00153-4_BIB14 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.996017 – volume: 70 start-page: 53 year: 1974 ident: 10.1016/S0098-1354(03)00153-4_BIB10 article-title: Cat cracker optimization and control publication-title: Chemical Engineering Progress – volume: 74 start-page: 72 year: 1978 ident: 10.1016/S0098-1354(03)00153-4_BIB52 article-title: Dynamic optimization of fluid cat crackers publication-title: Chemical Engineering Progress – volume: 19 start-page: 1153 year: 1995 ident: 10.1016/S0098-1354(03)00153-4_BIB34 article-title: Nonlinear process model based control and optimization of a model IV FCC unit publication-title: Computers and Chemical Engineering doi: 10.1016/0098-1354(94)00110-3 – volume: 50 start-page: 49 year: 1995 ident: 10.1016/S0098-1354(03)00153-4_BIB23 article-title: Chaotic behaviour of fluidized-bed catalytic reactors with consecutive endothermic chemical reactions publication-title: Chemical Engineering Science doi: 10.1016/0009-2509(94)00178-T |
| SSID | ssj0002488 |
| Score | 2.1854877 |
| Snippet | The multi-objective optimization of industrial operations using genetic algorithm and its variants, often requires inordinately large amounts of computational... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1785 |
| SubjectTerms | FCC units Fluidized-bed catalytic crackers Genetic algorithm Jumping genes Multi-objective function optimization Pareto sets Transposons |
| Title | Multi-objective optimization of an industrial fluidized-bed catalytic cracking unit (FCCU) using genetic algorithm (GA) with the jumping genes operator |
| URI | https://dx.doi.org/10.1016/S0098-1354(03)00153-4 https://www.proquest.com/docview/27851014 |
| Volume | 27 |
| WOSCitedRecordID | wos000186564200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4375 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002488 issn: 0098-1354 databaseCode: AIEXJ dateStart: 19950611 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE-xPH2gUqtV2E2cNsmxKu0CWhXEtlJvluM40FU3KW2zWvgj3PmlzNhx0l2ECgcuURTZceT5MjMee74h5JWXirDXS4TjB37i-MrrOsJNYdUqkT0rjZHzTRebCMbjcDaLPjYaP20uzMUiyLLw8jJa_ldRwzMQNqbO_oO4q5fCA7gHocMVxA7XvxK8Tql18vjMqLKDHJTCeZltqXf98WxjVa8jXRTzZP5dJU4MrqcO5nxDDle5EhKj6AcF_PPoho4GgymGEAodXIDRlaZ6XXzOV_PNl3MdbuhjAxPZBfSdAVJs2zV8htI7-tvesC0psdYAlJa7QNUciZU9EGuhzcWnukz0cbE0ru9pGau1wQuGB0FM-qZVyBEsYpnhkbYK2ZAFWOB5W-rVDUx9n9JUu6FmOf3dDJiIxGn19hbW4IIpQA_RZhVdod4ef-Cj6ckJnwxnkxYbLb86WJcM9-9b7I3ByA2y5wWw_GqSvf674ex9Ze89PwwtMysOVueJHdZf0D5inXL0P3lA13wB7eBM7pI75cqE9g2i7pGGyu6T21t8lQ_Ij2vYotvYonlKRUZrbNEr2KIVtqjFFkVs0TYiq0M1rmiJK1rhiraP-x2KmKKAKVpiSrdbU4uph2Q6Gk4Gb52ysocjWdDdOG6i_MRVPVcmQQpmAJetIopAugoZMOPEDyRzuz0WKCY9kXQjJpkIZJpEXhx7PntEmlmeqceEhlEUS6lCGUrph66MUoFFjLoqZjJlnrtPfDvbXJa091h9ZcHr840gJI5C4keMayFxf5-8rrotDe_Lrg6hFSUvnVfjlHIA5a6uL63oOSh33LETmcqLNfdgRrCY9pOdLZ6SW_X_9Yw0N6tCPSc35cVmvl69KCH7C0X8wd0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimization+of+an+industrial+fluidized-bed+catalytic+cracking+unit+%28FCCU%29+using+genetic+algorithm+%28GA%29+with+the+jumping+genes+operator&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Kasat%2C+R+B&rft.au=Gupta%2C+S+K&rft.date=2003-12-15&rft.issn=0098-1354&rft.volume=27&rft.issue=12&rft.spage=1785&rft.epage=1800&rft_id=info:doi/10.1016%2FS0098-1354%2803%2900153-4&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon |