Multi-objective optimization of an industrial fluidized-bed catalytic cracking unit (FCCU) using genetic algorithm (GA) with the jumping genes operator

The multi-objective optimization of industrial operations using genetic algorithm and its variants, often requires inordinately large amounts of computational (CPU) time. Any adaptation to speed up the solution procedure is, thus, desirable. An adaptation is developed in this study that is inspired...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & chemical engineering Jg. 27; H. 12; S. 1785 - 1800
Hauptverfasser: Kasat, Rahul B., Gupta, Santosh K.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 15.12.2003
Schlagworte:
ISSN:0098-1354, 1873-4375
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The multi-objective optimization of industrial operations using genetic algorithm and its variants, often requires inordinately large amounts of computational (CPU) time. Any adaptation to speed up the solution procedure is, thus, desirable. An adaptation is developed in this study that is inspired from natural genetics. It is based on the concept of jumping genes (JG; transposons). The binary-coded elitist non-dominated sorting genetic algorithm (NSGA-II) is adapted, and the new code, NSGA-II-JG, is used to obtain solutions for the multi-objective optimization of an industrial fluidized-bed catalytic cracking unit (FCCU). This unit is associated with a complex model that is highly compute-intense. The CPU time required for this problem is found to reduce fivefold when NSGA-II-JG is used, as compared to when NSGA-II is used. Solutions of similar two-objective optimization problems for the FCCU are compared. NSGA-II-JG also gives improved convergence characteristics and spread of the optimal Pareto points for two simpler multi-objective optimization problems studied here. Indeed, in one problem, where several optimal Pareto fronts exist, the new code gives the correct, global optimal Pareto set, while the original code (binary-coded NSGA-II) converges to local Paretos. The JG operator is associated with some kind of macro–macro-mutation and introduces higher exploratory capabilities, counteracting the effect of elitism in NSGA-II. We, thus, have a better algorithm incorporating the advantages of elitism. This adaptation can prove to be of considerable value for solving other compute-intense problems in chemical engineering.
AbstractList The multi-objective optimization of industrial operations using genetic algorithm and its variants, often requires inordinately large amounts of computational (CPU) time. Any adaptation to speed up the solution procedure is, thus, desirable. An adaptation is developed in this study that is inspired from natural genetics. It is based on the concept of jumping genes (JG; transposons). The binary-coded elitist non-dominated sorting genetic algorithm (NSGA-II) is adapted, and the new code, NSGA-II-JG, is used to obtain solutions for the multi-objective optimization of an industrial fluidized-bed catalytic cracking unit (FCCU). This unit is associated with a complex model that is highly compute-intense. The CPU time required for this problem is found to reduce fivefold when NSGA-II-JG is used, as compared to when NSGA-II is used. Solutions of similar two-objective optimization problems for the FCCU are compared. NSGA- II-JG also gives improved convergence characteristics and spread of the optimal Pareto points for two simpler multi-objective optimization problems studied here. Indeed, in one problem, where several optimal Pareto fronts exist, the new code gives the correct, global optimal Pareto set, while the original code (binary-coded NSGA-II) converges to local Paretos. The JG operator is associated with some kind of macro-macro-mutation and introduces higher exploratory capabilities, counteracting the effect of elitism in NSGA-II. We, thus, have a better algorithm incorporating the advantages of elitism. This adaptation can prove to be of considerable value for solving other compute-intense problems in chemical engineering.
The multi-objective optimization of industrial operations using genetic algorithm and its variants, often requires inordinately large amounts of computational (CPU) time. Any adaptation to speed up the solution procedure is, thus, desirable. An adaptation is developed in this study that is inspired from natural genetics. It is based on the concept of jumping genes (JG; transposons). The binary-coded elitist non-dominated sorting genetic algorithm (NSGA-II) is adapted, and the new code, NSGA-II-JG, is used to obtain solutions for the multi-objective optimization of an industrial fluidized-bed catalytic cracking unit (FCCU). This unit is associated with a complex model that is highly compute-intense. The CPU time required for this problem is found to reduce fivefold when NSGA-II-JG is used, as compared to when NSGA-II is used. Solutions of similar two-objective optimization problems for the FCCU are compared. NSGA-II-JG also gives improved convergence characteristics and spread of the optimal Pareto points for two simpler multi-objective optimization problems studied here. Indeed, in one problem, where several optimal Pareto fronts exist, the new code gives the correct, global optimal Pareto set, while the original code (binary-coded NSGA-II) converges to local Paretos. The JG operator is associated with some kind of macro–macro-mutation and introduces higher exploratory capabilities, counteracting the effect of elitism in NSGA-II. We, thus, have a better algorithm incorporating the advantages of elitism. This adaptation can prove to be of considerable value for solving other compute-intense problems in chemical engineering.
Author Kasat, Rahul B.
Gupta, Santosh K.
Author_xml – sequence: 1
  givenname: Rahul B.
  surname: Kasat
  fullname: Kasat, Rahul B.
– sequence: 2
  givenname: Santosh K.
  surname: Gupta
  fullname: Gupta, Santosh K.
  email: skgupta@iitk.ac.in
BookMark eNqFkUFv1DAQhS1UJLaFn4DkE9o9hNpxsk7EAVUrWpCKOEDPlmNPtrM49mI7rdo_wt8l2aUcuPTkkfW9N5r3TsmJDx4IecvZe874-vw7Y21TcFFXSyZWjPFaFNULsuCNnAYh6xOy-Ie8Iqcp7RhjZdU0C_L76-gyFqHbgcl4BzTsMw74qDMGT0NPtafo7ZhyRO1o70a0-Ai26MBSo7N2DxkNNVGbn-i3dPSY6fJys7lZ0THNP1vwMCPabUPEfDvQ5dXFit5PI823QHfjsH_i0rQeos4hviYve-0SvPn7npGby08_Np-L629XXzYX14WZ7soFt1BZDmturOxZLdha1rptZVMDF1J2tpJG8HotJAhTalu3wggtTW_bsuvKSpyRd0fffQy_RkhZDZgMOKc9hDGpcrKaQp7BD0fQxJBShF4ZzIeUctToFGdqLkMdylBz0ooJdShDzer6P_U-4qDjw7O6j0cdTBncIUSVDII3YDFOhSkb8BmHP4SHpc4
CitedBy_id crossref_primary_10_1016_j_jprocont_2015_01_001
crossref_primary_10_1007_s11270_014_1892_2
crossref_primary_10_1016_j_cep_2012_07_012
crossref_primary_10_1016_j_jtice_2019_03_004
crossref_primary_10_1080_03052151003739598
crossref_primary_10_1016_j_proche_2014_10_003
crossref_primary_10_1007_s00521_017_3057_x
crossref_primary_10_1016_j_bej_2004_05_007
crossref_primary_10_1109_TEVC_2007_895269
crossref_primary_10_1016_j_fuproc_2006_08_009
crossref_primary_10_1080_01496390500526854
crossref_primary_10_1016_j_procbio_2012_01_020
crossref_primary_10_1002_cite_201200050
crossref_primary_10_1002_jssc_201400089
crossref_primary_10_1016_j_jiec_2016_12_015
crossref_primary_10_1007_BF03402538
crossref_primary_10_1016_j_cej_2023_143990
crossref_primary_10_1002_pen_21165
crossref_primary_10_1016_j_seppur_2006_03_002
crossref_primary_10_1016_j_seppur_2020_118298
crossref_primary_10_1016_j_cherd_2008_03_012
crossref_primary_10_1080_10826070802225320
crossref_primary_10_1515_cppm_2022_0018
crossref_primary_10_1016_j_ces_2009_08_036
crossref_primary_10_1016_j_scitotenv_2023_164988
crossref_primary_10_1002_bit_22328
crossref_primary_10_1016_j_chroma_2006_07_052
crossref_primary_10_1515_cppm_2015_0062
crossref_primary_10_1515_psr_2015_0017
crossref_primary_10_3390_jmse8090699
crossref_primary_10_1016_j_ces_2007_01_030
crossref_primary_10_1016_j_asoc_2017_05_062
crossref_primary_10_1016_j_seppur_2025_133043
crossref_primary_10_1016_j_ces_2009_06_016
crossref_primary_10_1016_j_procbio_2010_04_016
crossref_primary_10_1016_j_compchemeng_2019_106684
crossref_primary_10_1016_j_chroma_2018_10_029
crossref_primary_10_1016_j_chroma_2015_06_044
crossref_primary_10_1016_j_seppur_2021_118604
crossref_primary_10_1080_00194506_2012_713543
crossref_primary_10_1016_j_ins_2016_12_003
crossref_primary_10_1016_j_jiec_2017_09_029
crossref_primary_10_1016_j_procbio_2008_08_011
crossref_primary_10_1016_j_minpro_2005_06_003
crossref_primary_10_1016_j_seppur_2024_129217
crossref_primary_10_1002_er_4587
crossref_primary_10_1016_j_procbio_2011_01_015
crossref_primary_10_1016_j_ces_2015_09_035
crossref_primary_10_1016_j_cherd_2010_02_021
crossref_primary_10_1016_j_asoc_2022_109339
crossref_primary_10_1016_j_jiec_2022_11_006
crossref_primary_10_1080_10826076_2011_575976
crossref_primary_10_1016_j_fuel_2010_12_043
crossref_primary_10_1016_j_ins_2015_07_033
crossref_primary_10_1002_jssc_201200322
crossref_primary_10_1016_j_jiec_2019_08_046
crossref_primary_10_1016_j_chroma_2016_12_052
crossref_primary_10_1016_j_seppur_2024_128593
crossref_primary_10_1002_aic_11691
crossref_primary_10_2478_s11532_011_0096_5
crossref_primary_10_1002_mats_200500013
crossref_primary_10_1016_j_chroma_2012_07_091
crossref_primary_10_1109_TIE_2010_2062479
crossref_primary_10_1007_s13369_023_08227_4
crossref_primary_10_1016_j_cie_2011_01_011
crossref_primary_10_1016_j_jngse_2021_104207
crossref_primary_10_1007_s11063_020_10300_0
crossref_primary_10_1002_cjce_5450850608
crossref_primary_10_1080_10426910802540612
crossref_primary_10_1016_j_seppur_2020_116922
crossref_primary_10_1016_j_compchemeng_2005_05_002
crossref_primary_10_1016_j_ces_2009_07_030
crossref_primary_10_1016_j_procbio_2013_10_021
crossref_primary_10_1016_j_seppur_2018_12_020
crossref_primary_10_1016_j_chroma_2016_05_016
crossref_primary_10_1016_j_minpro_2006_01_008
crossref_primary_10_1002_aic_11604
crossref_primary_10_1016_j_procbio_2012_09_027
crossref_primary_10_1080_10826070802022354
crossref_primary_10_1002_cjce_20663
crossref_primary_10_1016_j_cej_2023_144884
crossref_primary_10_1016_j_chroma_2010_12_102
crossref_primary_10_1016_j_chroma_2016_01_013
crossref_primary_10_1016_j_chroma_2019_460394
crossref_primary_10_1016_j_seppur_2019_116357
crossref_primary_10_1016_j_chroma_2016_08_063
crossref_primary_10_1088_1742_6596_622_1_012044
crossref_primary_10_1016_j_chroma_2017_02_040
crossref_primary_10_1016_j_ins_2006_07_019
crossref_primary_10_26634_jfet_10_2_3094
crossref_primary_10_1002_apj_4
crossref_primary_10_1016_j_minpro_2013_12_001
crossref_primary_10_3390_w15193523
crossref_primary_10_1016_j_chroma_2018_09_025
crossref_primary_10_1016_j_jiec_2017_07_011
crossref_primary_10_1016_j_cej_2004_12_034
crossref_primary_10_1016_j_compchemeng_2006_12_012
crossref_primary_10_1007_s10462_022_10219_z
crossref_primary_10_1016_j_procbio_2025_05_003
crossref_primary_10_1016_j_jiec_2021_11_015
crossref_primary_10_1016_j_cherd_2020_10_011
crossref_primary_10_1016_j_chroma_2014_03_038
crossref_primary_10_1016_j_jclepro_2024_144307
crossref_primary_10_1016_j_seppur_2008_10_050
crossref_primary_10_1016_j_procbio_2011_11_011
crossref_primary_10_1016_j_compchemeng_2006_01_002
crossref_primary_10_1016_j_chroma_2019_06_010
crossref_primary_10_1016_j_compchemeng_2013_09_014
crossref_primary_10_1016_j_fuel_2018_03_087
crossref_primary_10_1016_j_jiec_2021_02_018
crossref_primary_10_1002_mats_200350033
crossref_primary_10_1016_j_compchemeng_2019_106636
crossref_primary_10_1016_j_bej_2007_01_026
crossref_primary_10_1016_j_chroma_2014_05_036
crossref_primary_10_1016_j_compchemeng_2022_107823
crossref_primary_10_1016_j_cherd_2017_02_033
crossref_primary_10_1016_j_chroma_2011_09_015
crossref_primary_10_1016_j_compchemeng_2010_08_004
crossref_primary_10_1002_fft2_70056
crossref_primary_10_1016_j_chroma_2010_09_014
crossref_primary_10_1016_j_ces_2004_07_120
crossref_primary_10_1155_2007_10672
crossref_primary_10_1080_00986445_2017_1390455
crossref_primary_10_1016_j_compchemeng_2011_05_002
crossref_primary_10_1016_j_jngse_2010_11_001
crossref_primary_10_1002_advs_202502702
crossref_primary_10_1016_j_powtec_2009_07_009
crossref_primary_10_1002_cjce_21700
crossref_primary_10_1016_j_cherd_2007_11_005
crossref_primary_10_1016_j_chroma_2010_08_049
crossref_primary_10_1016_j_cej_2022_134887
crossref_primary_10_1016_j_procbio_2021_05_018
crossref_primary_10_1007_s10450_006_0566_9
crossref_primary_10_1016_j_cherd_2009_04_010
crossref_primary_10_1080_10826070802548523
crossref_primary_10_1007_s10489_007_0095_6
crossref_primary_10_1080_10826076_2011_647195
crossref_primary_10_1016_j_chroma_2014_09_005
crossref_primary_10_1016_j_jlp_2010_08_009
crossref_primary_10_1016_j_chroma_2012_01_081
crossref_primary_10_1007_s11814_016_0027_4
Cites_doi 10.1016/0009-2509(88)87048-9
10.1016/0009-2509(94)00499-H
10.1021/i260031a015
10.1162/evco.1994.2.3.221
10.1016/0009-2509(90)87042-Q
10.1016/0009-2509(79)85017-4
10.1162/106365600568167
10.1016/S0019-0578(98)00028-7
10.1021/ie00102a001
10.1007/BF01743536
10.1002/cjce.5450570210
10.1016/0009-2509(73)80048-X
10.1016/0009-2509(80)85129-3
10.1515/REVCE.2000.16.1.1
10.1021/ie020087s
10.1021/ie00043a027
10.1016/S0926-860X(98)00262-2
10.1016/0009-2509(93)80311-D
10.1016/S0098-1354(00)00306-9
10.1177/003754979506400605
10.1016/S0098-1354(00)00453-1
10.1002/cjce.5450780116
10.1162/106365600568202
10.1002/aic.690220412
10.1007/3-540-61723-X_1014
10.1002/cjce.5450590424
10.1002/aic.690440914
10.1021/ie00096a015
10.1109/4235.996017
10.1016/0098-1354(94)00110-3
10.1016/0009-2509(94)00178-T
ContentType Journal Article
Copyright 2003 Elsevier Ltd
Copyright_xml – notice: 2003 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/S0098-1354(03)00153-4
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4375
EndPage 1800
ExternalDocumentID 10_1016_S0098_1354_03_00153_4
S0098135403001534
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
VH1
WUQ
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c375t-1de4d1e61cd7f0530675a99785e1377bd47c315637e3c2ad593c3a7cfd92bb243
ISICitedReferencesCount 183
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000186564200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-1354
IngestDate Sat Sep 27 17:54:39 EDT 2025
Sat Nov 29 05:10:36 EST 2025
Tue Nov 18 22:32:51 EST 2025
Fri Feb 23 02:24:15 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Pareto sets
FCC units
Transposons
Genetic algorithm
Multi-objective function optimization
Jumping genes
Fluidized-bed catalytic crackers
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c375t-1de4d1e61cd7f0530675a99785e1377bd47c315637e3c2ad593c3a7cfd92bb243
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 27851014
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_27851014
crossref_citationtrail_10_1016_S0098_1354_03_00153_4
crossref_primary_10_1016_S0098_1354_03_00153_4
elsevier_sciencedirect_doi_10_1016_S0098_1354_03_00153_4
PublicationCentury 2000
PublicationDate 2003-12-15
PublicationDateYYYYMMDD 2003-12-15
PublicationDate_xml – month: 12
  year: 2003
  text: 2003-12-15
  day: 15
PublicationDecade 2000
PublicationTitle Computers & chemical engineering
PublicationYear 2003
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hajela, P., Lee E., & Lin, C.Y., Genetic algorithms in structural topology optimization. In Proceedings of the NATO Advanced Research Workshop on Topology Design of Structures, Sesimbra, Portugal, (1992). pp. 117–134.
Khandalekar, Riggs (BIB34) 1995; 19
Han, Chung, Riggs (BIB29) 2000; 24
Rhemann, H., Schwarz, G., Badgwell, T.A., Darby, M.L., & White, D.C., On-line FCCU advanced control and optimization. Hydrocarbon Processing, June, 64 (1989).
Osyczka, Kundu (BIB44) 1995; 10
Deb (BIB12) 1995
Zitzler, Deb, Thiele (BIB56) 2000; 8
Deb, Pratap, Agarwal, Meyarivan (BIB14) 2002; 6
Srinivas, Deb (BIB49) 1994; 2
Errazu, de-Lasa, Sarti (BIB25) 1979; 57
Ellis, Li, Riggs (BIB17) 1998; 44
Deb (BIB13) 2001
Murata, T., Genetic algorithms for multi-objective optimization. Ph. D. Thesis, Osaka Prefecture University, Osaka, Japan, (1997).
De Lasa, Errazu, Barreiro, Solioz (BIB11) 1981; 59
Nandasana, A., Ray, A.K., & Gupta, S.K., Dynamic simulation of industrial steam reactors: an improved model. Industrial and Engineering Chemistry Research, 00, 0000, (2003).
Elshishini, Elnashaie (BIB24) 1990; 45
Carlos, van Veldhuizen, Lamont (BIB6) 2002
Elnashaie, El-Hennawi (BIB19) 1979; 34
Rudolph, G., Evolutionary search under partially ordered fitness sets. In Proceedings of the International Symposium on Information Science Innovations in Engineering of Natural and Artificial Intelligent Systems (ISI 2001), Dubai, UAE, (2001). pp. 818–822.
Iscol, L., The dynamics and stability of a fluid catalytic cracker. Proceedings of the American Control Conference, Atlanta; (1970). Paper 23B.
Elnashaie, Elshishini (BIB21) 1993; 48
Kasat, Kunzru, Saraf, Gupta (BIB33) 2002; 41
Dave, Saraf (BIB9) 2003; 45
Weekman (BIB53) 1969; 8
Webb, Lutter, Hair (BIB52) 1978; 74
Ramasubramanian, S., Luus, R., & Woo, S.S., Optimization of a fluidized catalytic cracking unit. 50th Canadian Chemical Engineering Conference, Montreal, Canada, (2000).
Edgar, Himmelblau, Lasdon (BIB15) 2001
Jacob, Gross, Voltz, Weekman (BIB32) 1976; 22
Zhao, Chen, Hu (BIB54) 2000; 24
Chankong, Haimes (BIB7) 1983
Edwards, Kim (BIB16) 1988; 43
Elnashaie, Elbialy (BIB20) 1980; 35
Kursawe, F., A Variant of evolution strategies for vector optimization. In Parallel Problem Solving From Nature, I (PPSN-I), Dortmund, Germany, (1990). pp. 193–197.
McKlintock, B., The discovery and characterization of transposable elements. In The Collected Papers of Barbara McClintock, New York: Garland, (1987).
Kunii, Levenspiel (BIB38) 1969
Bhaskar, Gupta, Ray (BIB5) 2000; 16
van Veldhuizen, D., Multiobjective evolutionary algorithms: classifications, analyses and new innovation. Ph. D. Thesis, Air Force Institute of Technology, WPAFB, OH, (1999).
Fogel (BIB26) 1995; 64
Schaffer, J.D., Some experiments in machine learning using vector evaluated genetic algorithms. Ph. D. Thesis, Vanderbilt University, Nashville, TN, (1984).
Elnashaie, Abasaeed, Elshishini (BIB22) 1995; 50
Stryer (BIB50) 2000
Ancheyta, Lopez, Aguilar (BIB1) 1999; 177
Davis, Griffin, Webb (BIB10) 1974; 70
Horn, J., & Nafploitis, N., Multiobjective optimization using the niched Pareto genetic algorithm. Technical Report 93005, IlliGAL, University of Illinois, Urbana-Champaign. (1993).
Krishna, Parkin (BIB37) 1985; 81
Zitzler, E., & Thiele, L., An evolutionary algorithm for multiobjective optimization: The strength Pareto approach. Technical Report 43, Swiss Federal Institute of Technology, Zurich, Switzerland, (1998).
Chitnis, Corripio (BIB8) 1998; 37
Elnashaie, Yates (BIB18) 1973; 28
Arandes, Azkoiti, Bilbao, de Lasa (BIB2) 2000; 78
Arbel, Huang, Rinard, Shinnar, Sapre (BIB3) 1995; 34
Elnashaie, Abashar, Teymour (BIB23) 1995; 50
Knowles, Corne (BIB36) 2000; 8
Kita, H., Yabumoto, Y., Mori, N., & Nishikawa, Y., Multi-objective optimization by means of thermodynamical genetic algorithm. In Processing of Parallel Problem Solving from Nature IV (PPSN-IV), Berlin, (1996). pp. 504–512.
Fonseca, C.M., & Fleming, P.J., Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, CA: Morgan Kaufmann, (1993). pp. 416–423.
Avidan, Shinnar (BIB4) 1990; 29
McFarlane, Bacon (BIB40) 1989; 28
Elnashaie (10.1016/S0098-1354(03)00153-4_BIB22) 1995; 50
Osyczka (10.1016/S0098-1354(03)00153-4_BIB44) 1995; 10
10.1016/S0098-1354(03)00153-4_BIB27
10.1016/S0098-1354(03)00153-4_BIB28
Ancheyta (10.1016/S0098-1354(03)00153-4_BIB1) 1999; 177
10.1016/S0098-1354(03)00153-4_BIB35
Dave (10.1016/S0098-1354(03)00153-4_BIB9) 2003; 45
Elnashaie (10.1016/S0098-1354(03)00153-4_BIB19) 1979; 34
10.1016/S0098-1354(03)00153-4_BIB30
10.1016/S0098-1354(03)00153-4_BIB31
Srinivas (10.1016/S0098-1354(03)00153-4_BIB49) 1994; 2
Elnashaie (10.1016/S0098-1354(03)00153-4_BIB20) 1980; 35
Stryer (10.1016/S0098-1354(03)00153-4_BIB50) 2000
De Lasa (10.1016/S0098-1354(03)00153-4_BIB11) 1981; 59
Deb (10.1016/S0098-1354(03)00153-4_BIB14) 2002; 6
Elnashaie (10.1016/S0098-1354(03)00153-4_BIB21) 1993; 48
Elnashaie (10.1016/S0098-1354(03)00153-4_BIB23) 1995; 50
Knowles (10.1016/S0098-1354(03)00153-4_BIB36) 2000; 8
Errazu (10.1016/S0098-1354(03)00153-4_BIB25) 1979; 57
Krishna (10.1016/S0098-1354(03)00153-4_BIB37) 1985; 81
Kunii (10.1016/S0098-1354(03)00153-4_BIB38) 1969
Kasat (10.1016/S0098-1354(03)00153-4_BIB33) 2002; 41
Carlos (10.1016/S0098-1354(03)00153-4_BIB6) 2002
Deb (10.1016/S0098-1354(03)00153-4_BIB12) 1995
Edgar (10.1016/S0098-1354(03)00153-4_BIB15) 2001
Bhaskar (10.1016/S0098-1354(03)00153-4_BIB5) 2000; 16
Elnashaie (10.1016/S0098-1354(03)00153-4_BIB18) 1973; 28
Fogel (10.1016/S0098-1354(03)00153-4_BIB26) 1995; 64
Arandes (10.1016/S0098-1354(03)00153-4_BIB2) 2000; 78
Ellis (10.1016/S0098-1354(03)00153-4_BIB17) 1998; 44
Edwards (10.1016/S0098-1354(03)00153-4_BIB16) 1988; 43
Zitzler (10.1016/S0098-1354(03)00153-4_BIB56) 2000; 8
Zhao (10.1016/S0098-1354(03)00153-4_BIB54) 2000; 24
Deb (10.1016/S0098-1354(03)00153-4_BIB13) 2001
10.1016/S0098-1354(03)00153-4_BIB48
Weekman (10.1016/S0098-1354(03)00153-4_BIB53) 1969; 8
Webb (10.1016/S0098-1354(03)00153-4_BIB52) 1978; 74
10.1016/S0098-1354(03)00153-4_BIB55
Arbel (10.1016/S0098-1354(03)00153-4_BIB3) 1995; 34
10.1016/S0098-1354(03)00153-4_BIB51
McFarlane (10.1016/S0098-1354(03)00153-4_BIB40) 1989; 28
Davis (10.1016/S0098-1354(03)00153-4_BIB10) 1974; 70
Avidan (10.1016/S0098-1354(03)00153-4_BIB4) 1990; 29
Elshishini (10.1016/S0098-1354(03)00153-4_BIB24) 1990; 45
Chankong (10.1016/S0098-1354(03)00153-4_BIB7) 1983
10.1016/S0098-1354(03)00153-4_BIB39
Khandalekar (10.1016/S0098-1354(03)00153-4_BIB34) 1995; 19
10.1016/S0098-1354(03)00153-4_BIB45
10.1016/S0098-1354(03)00153-4_BIB46
10.1016/S0098-1354(03)00153-4_BIB47
10.1016/S0098-1354(03)00153-4_BIB41
Jacob (10.1016/S0098-1354(03)00153-4_BIB32) 1976; 22
10.1016/S0098-1354(03)00153-4_BIB42
Han (10.1016/S0098-1354(03)00153-4_BIB29) 2000; 24
10.1016/S0098-1354(03)00153-4_BIB43
Chitnis (10.1016/S0098-1354(03)00153-4_BIB8) 1998; 37
References_xml – year: 2000
  ident: BIB50
  publication-title: Biochemistry
– year: 2001
  ident: BIB13
  publication-title: Multi-objective optimization using evolutionary algorithms
– reference: Horn, J., & Nafploitis, N., Multiobjective optimization using the niched Pareto genetic algorithm. Technical Report 93005, IlliGAL, University of Illinois, Urbana-Champaign. (1993).
– volume: 24
  start-page: 61
  year: 2000
  ident: BIB54
  article-title: Optimizing operating conditions based on ANN and modified GAs
  publication-title: Computers and Chemical Engineering
– volume: 64
  start-page: 397
  year: 1995
  ident: BIB26
  article-title: A comparison of evolutionary programming and genetic algorithms on selected constrained optimization problems
  publication-title: Simulation
– reference: Fonseca, C.M., & Fleming, P.J., Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, CA: Morgan Kaufmann, (1993). pp. 416–423.
– year: 1983
  ident: BIB7
  publication-title: Multiobjective decision making—Theory and methodology
– volume: 43
  start-page: 1825
  year: 1988
  ident: BIB16
  article-title: Multiple steady states in FCC unit operations
  publication-title: Chemical Engineering Science
– volume: 177
  start-page: 227
  year: 1999
  ident: BIB1
  article-title: 5-lump kinetic model for gas oil catalytic cracking
  publication-title: Applied Catalysis A
– reference: Rhemann, H., Schwarz, G., Badgwell, T.A., Darby, M.L., & White, D.C., On-line FCCU advanced control and optimization. Hydrocarbon Processing, June, 64 (1989).
– volume: 78
  start-page: 111
  year: 2000
  ident: BIB2
  article-title: Modeling FCC units under steady and unsteady state conditions
  publication-title: Canadian Journal of Chemical Engineering
– volume: 24
  start-page: 1681
  year: 2000
  ident: BIB29
  article-title: Modeling of a fluidized catalytic cracking process
  publication-title: Computers and Chemical Engineering
– volume: 34
  start-page: 1228
  year: 1995
  ident: BIB3
  article-title: Dynamic and control of fluidized catalytic crackers. 1. Modeling of the current generation of FCC's
  publication-title: Industrial and Engineering Chemistry Research
– volume: 41
  start-page: 4765
  year: 2002
  ident: BIB33
  article-title: Multiobjective optimization of industrial FCC units using elitist nondominated sorting genetic algorithm
  publication-title: Industrial and Engineering Chemistry Research
– reference: Murata, T., Genetic algorithms for multi-objective optimization. Ph. D. Thesis, Osaka Prefecture University, Osaka, Japan, (1997).
– volume: 19
  start-page: 1153
  year: 1995
  ident: BIB34
  article-title: Nonlinear process model based control and optimization of a model IV FCC unit
  publication-title: Computers and Chemical Engineering
– volume: 8
  start-page: 385
  year: 1969
  ident: BIB53
  article-title: Kinetics and dynamics of catalytic cracking selectivity in fixed bed reactors
  publication-title: Industrial and Engineering Chemistry, Process Design and Development
– volume: 50
  start-page: 49
  year: 1995
  ident: BIB23
  article-title: Chaotic behaviour of fluidized-bed catalytic reactors with consecutive endothermic chemical reactions
  publication-title: Chemical Engineering Science
– reference: Schaffer, J.D., Some experiments in machine learning using vector evaluated genetic algorithms. Ph. D. Thesis, Vanderbilt University, Nashville, TN, (1984).
– volume: 28
  start-page: 515
  year: 1973
  ident: BIB18
  article-title: Multiplicity of the steady state in fluidised bed reactors-I. Steady state considerations
  publication-title: Chemical Engineering Science
– volume: 44
  start-page: 2068
  year: 1998
  ident: BIB17
  article-title: Modeling and optimization of a model IV fluidized catalytic cracking unit
  publication-title: American Institute of Chemical Engineers Journal
– volume: 28
  start-page: 1828
  year: 1989
  ident: BIB40
  article-title: Adaptive optimizing control of multivariable constrained chemical processes. 1. Theoretical development
  publication-title: Industrial and Engineering Chemistry Research
– volume: 45
  start-page: 553
  year: 1990
  ident: BIB24
  article-title: Digital simulation of industrial fluid catalytic cracking units: bifurcation and its implications
  publication-title: Chemical Engineering Science
– volume: 22
  start-page: 701
  year: 1976
  ident: BIB32
  article-title: A lumping and reaction scheme for catalytic cracking
  publication-title: American Institute of Chemical Engineers Journal
– volume: 81
  start-page: 57
  year: 1985
  ident: BIB37
  article-title: Modeling the regenerator in commercial fluid catalytic cracking units
  publication-title: Chemical Engineering Progress
– reference: van Veldhuizen, D., Multiobjective evolutionary algorithms: classifications, analyses and new innovation. Ph. D. Thesis, Air Force Institute of Technology, WPAFB, OH, (1999).
– volume: 35
  start-page: 1357
  year: 1980
  ident: BIB20
  article-title: Multiplicity of steady states in fluidized bed reactors-V. The effect of catalyst decay
  publication-title: Chemical Engineering Science
– volume: 50
  start-page: 1635
  year: 1995
  ident: BIB22
  article-title: Digital simulation of industrial fluid catalytic cracking units-V. Static and dynamic bifurcation
  publication-title: Chemical Engineering Science
– volume: 2
  start-page: 221
  year: 1994
  ident: BIB49
  article-title: Multiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evolutionary Computation
– year: 2002
  ident: BIB6
  publication-title: Evolutionary algorithms for solving multi-objective problems
– volume: 70
  start-page: 53
  year: 1974
  ident: BIB10
  article-title: Cat cracker optimization and control
  publication-title: Chemical Engineering Progress
– volume: 37
  start-page: 215
  year: 1998
  ident: BIB8
  article-title: On-line optimization of a model IV fluid catalytic cracking unit
  publication-title: ISA Trans.
– volume: 74
  start-page: 72
  year: 1978
  ident: BIB52
  article-title: Dynamic optimization of fluid cat crackers
  publication-title: Chemical Engineering Progress
– volume: 48
  start-page: 567
  year: 1993
  ident: BIB21
  article-title: Digital simulation of industrial fluid catalytic cracking units-IV. Static and dynamic bifurcation
  publication-title: Chemical Engineering Science
– reference: Rudolph, G., Evolutionary search under partially ordered fitness sets. In Proceedings of the International Symposium on Information Science Innovations in Engineering of Natural and Artificial Intelligent Systems (ISI 2001), Dubai, UAE, (2001). pp. 818–822.
– volume: 8
  start-page: 149
  year: 2000
  ident: BIB36
  article-title: Approximating the non-dominated front using the Pareto archived evolution strategy
  publication-title: Evolutionary Computation
– volume: 8
  start-page: 173
  year: 2000
  ident: BIB56
  article-title: Comparison of multiobjective evolutionary algorithms: Empirical results
  publication-title: Evolutionary Computation
– reference: Ramasubramanian, S., Luus, R., & Woo, S.S., Optimization of a fluidized catalytic cracking unit. 50th Canadian Chemical Engineering Conference, Montreal, Canada, (2000).
– volume: 6
  start-page: 182
  year: 2002
  ident: BIB14
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
– year: 2001
  ident: BIB15
  publication-title: Optimization of Chemical Processes
– volume: 34
  start-page: 1113
  year: 1979
  ident: BIB19
  article-title: Multiplicity of the steady state in fluidized reactors-IV. Fluid catalytic cracker (FCC)
  publication-title: Chemical Engineering Science
– reference: Kursawe, F., A Variant of evolution strategies for vector optimization. In Parallel Problem Solving From Nature, I (PPSN-I), Dortmund, Germany, (1990). pp. 193–197.
– volume: 59
  start-page: 549
  year: 1981
  ident: BIB11
  article-title: Analysis of fluidized bed catalytic cracking regenerator models in an industrial scale unit
  publication-title: Canadian Journal of Chemical Engineering
– volume: 57
  start-page: 191
  year: 1979
  ident: BIB25
  article-title: A fluidized bed catalytic cracking regenerator model. Grid effects
  publication-title: Canadian Journal of Chemical Engineering
– year: 1995
  ident: BIB12
  publication-title: Optimization for engineering design: algorithms and examples
– reference: McKlintock, B., The discovery and characterization of transposable elements. In The Collected Papers of Barbara McClintock, New York: Garland, (1987).
– reference: Zitzler, E., & Thiele, L., An evolutionary algorithm for multiobjective optimization: The strength Pareto approach. Technical Report 43, Swiss Federal Institute of Technology, Zurich, Switzerland, (1998).
– reference: Iscol, L., The dynamics and stability of a fluid catalytic cracker. Proceedings of the American Control Conference, Atlanta; (1970). Paper 23B.
– reference: Nandasana, A., Ray, A.K., & Gupta, S.K., Dynamic simulation of industrial steam reactors: an improved model. Industrial and Engineering Chemistry Research, 00, 0000, (2003).
– reference: Hajela, P., Lee E., & Lin, C.Y., Genetic algorithms in structural topology optimization. In Proceedings of the NATO Advanced Research Workshop on Topology Design of Structures, Sesimbra, Portugal, (1992). pp. 117–134.
– volume: 29
  start-page: 931
  year: 1990
  ident: BIB4
  article-title: Development of catalytic cracking technology. A lesson in chemical reactor design
  publication-title: Industrial and Engineering Chemistry Research
– volume: 16
  start-page: 1
  year: 2000
  ident: BIB5
  article-title: Applications of multiobjective optimization in chemical engineering
  publication-title: Reviews in Chemical Engineering
– reference: Kita, H., Yabumoto, Y., Mori, N., & Nishikawa, Y., Multi-objective optimization by means of thermodynamical genetic algorithm. In Processing of Parallel Problem Solving from Nature IV (PPSN-IV), Berlin, (1996). pp. 504–512.
– year: 1969
  ident: BIB38
  publication-title: Fluidization Engineering
– volume: 10
  start-page: 94
  year: 1995
  ident: BIB44
  article-title: A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm
  publication-title: Structural Optimization
– volume: 45
  start-page: 7
  year: 2003
  ident: BIB9
  article-title: A model suitable for rating and optimization of industrial FCC units
  publication-title: Indian Chemical Engineer
– volume: 43
  start-page: 1825
  year: 1988
  ident: 10.1016/S0098-1354(03)00153-4_BIB16
  article-title: Multiple steady states in FCC unit operations
  publication-title: Chemical Engineering Science
  doi: 10.1016/0009-2509(88)87048-9
– volume: 81
  start-page: 57
  year: 1985
  ident: 10.1016/S0098-1354(03)00153-4_BIB37
  article-title: Modeling the regenerator in commercial fluid catalytic cracking units
  publication-title: Chemical Engineering Progress
– year: 2001
  ident: 10.1016/S0098-1354(03)00153-4_BIB15
– volume: 50
  start-page: 1635
  year: 1995
  ident: 10.1016/S0098-1354(03)00153-4_BIB22
  article-title: Digital simulation of industrial fluid catalytic cracking units-V. Static and dynamic bifurcation
  publication-title: Chemical Engineering Science
  doi: 10.1016/0009-2509(94)00499-H
– volume: 8
  start-page: 385
  year: 1969
  ident: 10.1016/S0098-1354(03)00153-4_BIB53
  article-title: Kinetics and dynamics of catalytic cracking selectivity in fixed bed reactors
  publication-title: Industrial and Engineering Chemistry, Process Design and Development
  doi: 10.1021/i260031a015
– volume: 2
  start-page: 221
  year: 1994
  ident: 10.1016/S0098-1354(03)00153-4_BIB49
  article-title: Multiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.1994.2.3.221
– volume: 45
  start-page: 553
  year: 1990
  ident: 10.1016/S0098-1354(03)00153-4_BIB24
  article-title: Digital simulation of industrial fluid catalytic cracking units: bifurcation and its implications
  publication-title: Chemical Engineering Science
  doi: 10.1016/0009-2509(90)87042-Q
– volume: 45
  start-page: 7
  year: 2003
  ident: 10.1016/S0098-1354(03)00153-4_BIB9
  article-title: A model suitable for rating and optimization of industrial FCC units
  publication-title: Indian Chemical Engineer
– volume: 34
  start-page: 1113
  year: 1979
  ident: 10.1016/S0098-1354(03)00153-4_BIB19
  article-title: Multiplicity of the steady state in fluidized reactors-IV. Fluid catalytic cracker (FCC)
  publication-title: Chemical Engineering Science
  doi: 10.1016/0009-2509(79)85017-4
– volume: 8
  start-page: 149
  year: 2000
  ident: 10.1016/S0098-1354(03)00153-4_BIB36
  article-title: Approximating the non-dominated front using the Pareto archived evolution strategy
  publication-title: Evolutionary Computation
  doi: 10.1162/106365600568167
– volume: 37
  start-page: 215
  year: 1998
  ident: 10.1016/S0098-1354(03)00153-4_BIB8
  article-title: On-line optimization of a model IV fluid catalytic cracking unit
  publication-title: ISA Trans.
  doi: 10.1016/S0019-0578(98)00028-7
– ident: 10.1016/S0098-1354(03)00153-4_BIB51
– ident: 10.1016/S0098-1354(03)00153-4_BIB55
– ident: 10.1016/S0098-1354(03)00153-4_BIB45
– volume: 29
  start-page: 931
  year: 1990
  ident: 10.1016/S0098-1354(03)00153-4_BIB4
  article-title: Development of catalytic cracking technology. A lesson in chemical reactor design
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/ie00102a001
– year: 2002
  ident: 10.1016/S0098-1354(03)00153-4_BIB6
– ident: 10.1016/S0098-1354(03)00153-4_BIB41
– volume: 10
  start-page: 94
  year: 1995
  ident: 10.1016/S0098-1354(03)00153-4_BIB44
  article-title: A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm
  publication-title: Structural Optimization
  doi: 10.1007/BF01743536
– volume: 57
  start-page: 191
  year: 1979
  ident: 10.1016/S0098-1354(03)00153-4_BIB25
  article-title: A fluidized bed catalytic cracking regenerator model. Grid effects
  publication-title: Canadian Journal of Chemical Engineering
  doi: 10.1002/cjce.5450570210
– volume: 28
  start-page: 515
  year: 1973
  ident: 10.1016/S0098-1354(03)00153-4_BIB18
  article-title: Multiplicity of the steady state in fluidised bed reactors-I. Steady state considerations
  publication-title: Chemical Engineering Science
  doi: 10.1016/0009-2509(73)80048-X
– ident: 10.1016/S0098-1354(03)00153-4_BIB39
– ident: 10.1016/S0098-1354(03)00153-4_BIB31
– volume: 35
  start-page: 1357
  year: 1980
  ident: 10.1016/S0098-1354(03)00153-4_BIB20
  article-title: Multiplicity of steady states in fluidized bed reactors-V. The effect of catalyst decay
  publication-title: Chemical Engineering Science
  doi: 10.1016/0009-2509(80)85129-3
– volume: 16
  start-page: 1
  year: 2000
  ident: 10.1016/S0098-1354(03)00153-4_BIB5
  article-title: Applications of multiobjective optimization in chemical engineering
  publication-title: Reviews in Chemical Engineering
  doi: 10.1515/REVCE.2000.16.1.1
– volume: 41
  start-page: 4765
  year: 2002
  ident: 10.1016/S0098-1354(03)00153-4_BIB33
  article-title: Multiobjective optimization of industrial FCC units using elitist nondominated sorting genetic algorithm
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/ie020087s
– volume: 34
  start-page: 1228
  year: 1995
  ident: 10.1016/S0098-1354(03)00153-4_BIB3
  article-title: Dynamic and control of fluidized catalytic crackers. 1. Modeling of the current generation of FCC's
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/ie00043a027
– ident: 10.1016/S0098-1354(03)00153-4_BIB46
– volume: 177
  start-page: 227
  year: 1999
  ident: 10.1016/S0098-1354(03)00153-4_BIB1
  article-title: 5-lump kinetic model for gas oil catalytic cracking
  publication-title: Applied Catalysis A
  doi: 10.1016/S0926-860X(98)00262-2
– volume: 48
  start-page: 567
  year: 1993
  ident: 10.1016/S0098-1354(03)00153-4_BIB21
  article-title: Digital simulation of industrial fluid catalytic cracking units-IV. Static and dynamic bifurcation
  publication-title: Chemical Engineering Science
  doi: 10.1016/0009-2509(93)80311-D
– ident: 10.1016/S0098-1354(03)00153-4_BIB42
– year: 2000
  ident: 10.1016/S0098-1354(03)00153-4_BIB50
– year: 1983
  ident: 10.1016/S0098-1354(03)00153-4_BIB7
– volume: 24
  start-page: 61
  year: 2000
  ident: 10.1016/S0098-1354(03)00153-4_BIB54
  article-title: Optimizing operating conditions based on ANN and modified GAs
  publication-title: Computers and Chemical Engineering
  doi: 10.1016/S0098-1354(00)00306-9
– volume: 64
  start-page: 397
  year: 1995
  ident: 10.1016/S0098-1354(03)00153-4_BIB26
  article-title: A comparison of evolutionary programming and genetic algorithms on selected constrained optimization problems
  publication-title: Simulation
  doi: 10.1177/003754979506400605
– volume: 24
  start-page: 1681
  year: 2000
  ident: 10.1016/S0098-1354(03)00153-4_BIB29
  article-title: Modeling of a fluidized catalytic cracking process
  publication-title: Computers and Chemical Engineering
  doi: 10.1016/S0098-1354(00)00453-1
– ident: 10.1016/S0098-1354(03)00153-4_BIB30
– year: 2001
  ident: 10.1016/S0098-1354(03)00153-4_BIB13
– volume: 78
  start-page: 111
  year: 2000
  ident: 10.1016/S0098-1354(03)00153-4_BIB2
  article-title: Modeling FCC units under steady and unsteady state conditions
  publication-title: Canadian Journal of Chemical Engineering
  doi: 10.1002/cjce.5450780116
– year: 1969
  ident: 10.1016/S0098-1354(03)00153-4_BIB38
– ident: 10.1016/S0098-1354(03)00153-4_BIB47
– ident: 10.1016/S0098-1354(03)00153-4_BIB28
– ident: 10.1016/S0098-1354(03)00153-4_BIB43
– volume: 8
  start-page: 173
  year: 2000
  ident: 10.1016/S0098-1354(03)00153-4_BIB56
  article-title: Comparison of multiobjective evolutionary algorithms: Empirical results
  publication-title: Evolutionary Computation
  doi: 10.1162/106365600568202
– volume: 22
  start-page: 701
  year: 1976
  ident: 10.1016/S0098-1354(03)00153-4_BIB32
  article-title: A lumping and reaction scheme for catalytic cracking
  publication-title: American Institute of Chemical Engineers Journal
  doi: 10.1002/aic.690220412
– ident: 10.1016/S0098-1354(03)00153-4_BIB35
  doi: 10.1007/3-540-61723-X_1014
– volume: 59
  start-page: 549
  year: 1981
  ident: 10.1016/S0098-1354(03)00153-4_BIB11
  article-title: Analysis of fluidized bed catalytic cracking regenerator models in an industrial scale unit
  publication-title: Canadian Journal of Chemical Engineering
  doi: 10.1002/cjce.5450590424
– volume: 44
  start-page: 2068
  year: 1998
  ident: 10.1016/S0098-1354(03)00153-4_BIB17
  article-title: Modeling and optimization of a model IV fluidized catalytic cracking unit
  publication-title: American Institute of Chemical Engineers Journal
  doi: 10.1002/aic.690440914
– volume: 28
  start-page: 1828
  year: 1989
  ident: 10.1016/S0098-1354(03)00153-4_BIB40
  article-title: Adaptive optimizing control of multivariable constrained chemical processes. 1. Theoretical development
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/ie00096a015
– ident: 10.1016/S0098-1354(03)00153-4_BIB27
– ident: 10.1016/S0098-1354(03)00153-4_BIB48
– year: 1995
  ident: 10.1016/S0098-1354(03)00153-4_BIB12
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/S0098-1354(03)00153-4_BIB14
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– volume: 70
  start-page: 53
  year: 1974
  ident: 10.1016/S0098-1354(03)00153-4_BIB10
  article-title: Cat cracker optimization and control
  publication-title: Chemical Engineering Progress
– volume: 74
  start-page: 72
  year: 1978
  ident: 10.1016/S0098-1354(03)00153-4_BIB52
  article-title: Dynamic optimization of fluid cat crackers
  publication-title: Chemical Engineering Progress
– volume: 19
  start-page: 1153
  year: 1995
  ident: 10.1016/S0098-1354(03)00153-4_BIB34
  article-title: Nonlinear process model based control and optimization of a model IV FCC unit
  publication-title: Computers and Chemical Engineering
  doi: 10.1016/0098-1354(94)00110-3
– volume: 50
  start-page: 49
  year: 1995
  ident: 10.1016/S0098-1354(03)00153-4_BIB23
  article-title: Chaotic behaviour of fluidized-bed catalytic reactors with consecutive endothermic chemical reactions
  publication-title: Chemical Engineering Science
  doi: 10.1016/0009-2509(94)00178-T
SSID ssj0002488
Score 2.1854877
Snippet The multi-objective optimization of industrial operations using genetic algorithm and its variants, often requires inordinately large amounts of computational...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1785
SubjectTerms FCC units
Fluidized-bed catalytic crackers
Genetic algorithm
Jumping genes
Multi-objective function optimization
Pareto sets
Transposons
Title Multi-objective optimization of an industrial fluidized-bed catalytic cracking unit (FCCU) using genetic algorithm (GA) with the jumping genes operator
URI https://dx.doi.org/10.1016/S0098-1354(03)00153-4
https://www.proquest.com/docview/27851014
Volume 27
WOSCitedRecordID wos000186564200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002488
  issn: 0098-1354
  databaseCode: AIEXJ
  dateStart: 19950611
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE-xPH2gUqtV2E2cNsmxKu0CWhXEtlJvluM40FU3KW2zWvgj3PmlzNhx0l2ECgcuURTZceT5MjMee74h5JWXirDXS4TjB37i-MrrOsJNYdUqkT0rjZHzTRebCMbjcDaLPjYaP20uzMUiyLLw8jJa_ldRwzMQNqbO_oO4q5fCA7gHocMVxA7XvxK8Tql18vjMqLKDHJTCeZltqXf98WxjVa8jXRTzZP5dJU4MrqcO5nxDDle5EhKj6AcF_PPoho4GgymGEAodXIDRlaZ6XXzOV_PNl3MdbuhjAxPZBfSdAVJs2zV8htI7-tvesC0psdYAlJa7QNUciZU9EGuhzcWnukz0cbE0ru9pGau1wQuGB0FM-qZVyBEsYpnhkbYK2ZAFWOB5W-rVDUx9n9JUu6FmOf3dDJiIxGn19hbW4IIpQA_RZhVdod4ef-Cj6ckJnwxnkxYbLb86WJcM9-9b7I3ByA2y5wWw_GqSvf674ex9Ze89PwwtMysOVueJHdZf0D5inXL0P3lA13wB7eBM7pI75cqE9g2i7pGGyu6T21t8lQ_Ij2vYotvYonlKRUZrbNEr2KIVtqjFFkVs0TYiq0M1rmiJK1rhiraP-x2KmKKAKVpiSrdbU4uph2Q6Gk4Gb52ysocjWdDdOG6i_MRVPVcmQQpmAJetIopAugoZMOPEDyRzuz0WKCY9kXQjJpkIZJpEXhx7PntEmlmeqceEhlEUS6lCGUrph66MUoFFjLoqZjJlnrtPfDvbXJa091h9ZcHr840gJI5C4keMayFxf5-8rrotDe_Lrg6hFSUvnVfjlHIA5a6uL63oOSh33LETmcqLNfdgRrCY9pOdLZ6SW_X_9Yw0N6tCPSc35cVmvl69KCH7C0X8wd0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimization+of+an+industrial+fluidized-bed+catalytic+cracking+unit+%28FCCU%29+using+genetic+algorithm+%28GA%29+with+the+jumping+genes+operator&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Kasat%2C+R+B&rft.au=Gupta%2C+S+K&rft.date=2003-12-15&rft.issn=0098-1354&rft.volume=27&rft.issue=12&rft.spage=1785&rft.epage=1800&rft_id=info:doi/10.1016%2FS0098-1354%2803%2900153-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon