Experimental Study on Compressive Capacity Behavior of Helical Anchors in Aeolian Sand and Optimization of Design Methods
The compressive capacity of helical anchors constitutes a pivotal performance parameter in geotechnical design. To precisely predict the compressive bearing behavior of helical anchors in aeolian sand, this study integrates in situ testing with finite element numerical analysis to systematically elu...
Uloženo v:
| Vydáno v: | Buildings (Basel) Ročník 15; číslo 14; s. 2480 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.07.2025
|
| Témata: | |
| ISSN: | 2075-5309, 2075-5309 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The compressive capacity of helical anchors constitutes a pivotal performance parameter in geotechnical design. To precisely predict the compressive bearing behavior of helical anchors in aeolian sand, this study integrates in situ testing with finite element numerical analysis to systematically elucidate the non-linear evolution of its load-bearing mechanisms. The XGBoost algorithm enabled the rigorous quantification of the governing geometric features of compressive capacity, culminating in a computational framework for the bearing capacity factor (Nq) and lateral earth pressure coefficient (Ku). The research findings demonstrate the following: (1) Compressive capacity exhibits significant enhancement with increasing helix diameter yet displays limited sensitivity to helix number. (2) Load–displacement curves progress through three distinct phases—initial quasi-linear, intermediate non-linear, and terminal quasi-linear stages—under escalating pressure. (3) At embedment depths of H < 5D, tensile capacity diminishes by approximately 80% relative to compressive capacity, manifesting as characteristic shallow anchor failure patterns. (4) When H ≥ 5D, stress redistribution transitions from bowl-shaped to elliptical contours, with ≤10% divergence between uplift/compressive capacities, establishing 5D as the critical threshold defining shallow versus deep anchor behavior. (5) The helix spacing ratio (S/D) governs the failure mode transition, where cylindrical shear (CS) dominates at S/D ≤ 4, while individual bearing (IB) prevails at S/D > 4. (6) XGBoost feature importance analysis confirms internal friction angle, helix diameter, and embedment depth as the three parameters exerting the most pronounced influence on capacity. (7) The proposed computational models for Nq and Ku demonstrate exceptional concordance with numerical simulations (mean deviation = 1.03, variance = 0.012). These outcomes provide both theoretical foundations and practical methodologies for helical anchor engineering in aeolian sand environments. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2075-5309 2075-5309 |
| DOI: | 10.3390/buildings15142480 |