Deep learning for sentiment analysis

Research and industry are becoming more and more interested in finding automatically the polarised opinion of the general public regarding a specific subject. The advent of social networks has opened the possibility of having access to massive blogs, recommendations, and reviews. The challenge is to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Language and linguistics compass Ročník 10; číslo 12; s. 701 - 719
Hlavní autor: Rojas-Barahona, Lina Maria
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.12.2016
Wiley Subscription Services, Inc
Témata:
ISSN:1749-818X, 1749-818X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Research and industry are becoming more and more interested in finding automatically the polarised opinion of the general public regarding a specific subject. The advent of social networks has opened the possibility of having access to massive blogs, recommendations, and reviews. The challenge is to extract the polarity from these data, which is a task of opinion mining or sentiment analysis. The specific difficulties inherent in this task include issues related to subjective interpretation and linguistic phenomena that affect the polarity of words. Recently, deep learning has become a popular method of addressing this task. However, different approaches have been proposed in the literature. This article provides an overview of deep learning for sentiment analysis in order to place these approaches in context.
AbstractList Research and industry are becoming more and more interested in finding automatically the polarised opinion of the general public regarding a specific subject. The advent of social networks has opened the possibility of having access to massive blogs, recommendations, and reviews. The challenge is to extract the polarity from these data, which is a task of opinion mining or sentiment analysis. The specific difficulties inherent in this task include issues related to subjective interpretation and linguistic phenomena that affect the polarity of words. Recently, deep learning has become a popular method of addressing this task. However, different approaches have been proposed in the literature. This article provides an overview of deep learning for sentiment analysis in order to place these approaches in context.
Author Rojas-Barahona, Lina Maria
Author_xml – sequence: 1
  givenname: Lina Maria
  surname: Rojas-Barahona
  fullname: Rojas-Barahona, Lina Maria
  email: lina.rojas@eng.cam.ac.uk, lina.rojas@eng.cam.ac.uk
  organization: Department of Engineering, University of Cambridge, Cambridge, UK
BookMark eNp9kM1OwzAQhC1UJNrChSeIBCekFDubxM4R0h8QVblA25vlJA5ySZ1ip4K-PS4BhBBiD7t7mG92NT3U0bWWCJ0SPCCuLiudw4AEQcAOUJfQMPEZYcvOj_0I9axdYRzjJIYuOh9KufEqKYxW-skra-NZqRu1ds0TWlQ7q-wxOixFZeXJ5-yjx_HoIb3xp_eT2_Rq6udAI-aXLI4pyDAqQoIhK2iWYQFAZUCSAiATBWUlEIhCmbMsgpwBiIzRhBVhJmgIfXTW-m5M_bKVtuGremvcE5YTFrkbmJHEqS5aVW5qa40s-caotTA7TjDfp8D3KfCPFJwY_xLnqhGNqnVjhKr-RkiLvKpK7v4x59NZCl-M3zLKNvLtmxHmmbtIaMQXswmfp_O78XB5zRfwDp1fflk
CitedBy_id crossref_primary_10_1007_s13735_023_00308_2
crossref_primary_10_1007_s11432_018_9941_6
crossref_primary_10_1155_2019_1604392
crossref_primary_10_1016_j_ipm_2019_02_018
crossref_primary_10_1007_s11831_020_09464_8
crossref_primary_10_1007_s00500_019_04117_w
crossref_primary_10_1109_ACCESS_2021_3049734
crossref_primary_10_1007_s11042_021_11759_2
crossref_primary_10_1007_s11042_023_14449_3
crossref_primary_10_1109_ACCESS_2023_3279396
crossref_primary_10_1016_j_ijdrr_2018_04_021
crossref_primary_10_1109_ACCESS_2019_2928872
crossref_primary_10_2478_jsiot_2022_0008
crossref_primary_10_1007_s42001_024_00326_y
crossref_primary_10_3390_electronics9030483
crossref_primary_10_1145_3586075
crossref_primary_10_1016_j_actpsy_2025_105519
crossref_primary_10_1016_j_knosys_2021_107058
crossref_primary_10_1016_j_knosys_2021_107135
crossref_primary_10_1142_S0219649219500333
crossref_primary_10_1177_0165551519865488
crossref_primary_10_1002_cae_22253
crossref_primary_10_1007_s11042_022_13023_7
crossref_primary_10_1007_s12652_020_02423_y
crossref_primary_10_1002_cae_22179
crossref_primary_10_1007_s00521_018_3627_6
crossref_primary_10_1016_j_jksuci_2022_02_025
crossref_primary_10_1016_j_cosrev_2023_100576
crossref_primary_10_1016_j_knosys_2021_107134
crossref_primary_10_3233_JIFS_179336
crossref_primary_10_1080_08839514_2022_2145641
crossref_primary_10_1007_s10462_021_09973_3
crossref_primary_10_1016_j_eswa_2018_10_003
crossref_primary_10_1007_s10844_021_00643_y
crossref_primary_10_1016_j_asoc_2024_112408
crossref_primary_10_1016_j_jdmm_2021_100570
crossref_primary_10_3390_fi11020052
crossref_primary_10_1007_s00146_025_02582_6
crossref_primary_10_1016_j_asoc_2020_106836
crossref_primary_10_1155_2022_1084794
crossref_primary_10_1111_medu_14696
crossref_primary_10_1177_1470785318771451
crossref_primary_10_1007_s11042_020_10037_x
crossref_primary_10_1016_j_tourman_2020_104129
crossref_primary_10_1002_cpe_5909
crossref_primary_10_3390_app13031639
crossref_primary_10_3389_fimmu_2024_1478201
crossref_primary_10_1080_13602381_2024_2356224
crossref_primary_10_1016_j_asoc_2021_107373
crossref_primary_10_1371_journal_pone_0226708
crossref_primary_10_1177_0165551519849516
crossref_primary_10_32604_cmc_2023_034157
crossref_primary_10_3390_bdcc6020065
crossref_primary_10_1016_j_eswa_2020_113673
crossref_primary_10_1016_j_jbi_2021_103692
crossref_primary_10_3390_a17100457
crossref_primary_10_1007_s10462_022_10215_3
crossref_primary_10_1007_s11042_023_16158_3
crossref_primary_10_1145_3309543
crossref_primary_10_1007_s10462_017_9597_8
Cites_doi 10.1162/neco.1997.9.8.1735
10.1145/1571941.1572127
10.1016/j.chb.2013.05.024
10.18653/v1/D13-1170
10.3115/1118693.1118704
10.3115/1220575.1220619
10.3115/v1/S14-2009
10.1561/2000000039
10.1145/1935826.1935932
10.1609/icwsm.v3i1.13966
10.3115/1219840.1219855
10.3115/v1/D14-1162
10.1162/COLI_a_00049
10.1093/oso/9780198538493.001.0001
10.1023/A:1017181826899
10.1145/1014052.1014073
10.1109/72.279181
10.1145/2938640
10.3115/v1/D14-1181
10.1007/978-3-031-02145-9
10.3115/v1/P14-1146
10.3115/1654641.1654642
10.1017/S1351324912000332
10.18653/v1/D15-1278
10.3115/v1/P15-1150
10.3115/v1/E14-1040
10.1007/1-4020-4102-0_1
10.1609/icwsm.v3i1.14001
10.1145/1390156.1390177
10.18653/v1/S15-2078
10.3115/1073083.1073153
10.3115/v1/D14-1080
10.3115/v1/P14-1062
10.1609/icwsm.v4i1.14009
ContentType Journal Article
Copyright Copyright © 2016 John Wiley & Sons, Ltd.
John Wiley & Sons Ltd
Copyright_xml – notice: Copyright © 2016 John Wiley & Sons, Ltd.
– notice: John Wiley & Sons Ltd
DBID BSCLL
AAYXX
CITATION
7T9
8BM
DOI 10.1111/lnc3.12228
DatabaseName Istex
CrossRef
Linguistics and Language Behavior Abstracts (LLBA)
ComDisDome
DatabaseTitle CrossRef
Linguistics and Language Behavior Abstracts (LLBA)
ComDisDome
DatabaseTitleList
CrossRef
Linguistics and Language Behavior Abstracts (LLBA)
DeliveryMethod fulltext_linktorsrc
Discipline Languages & Literatures
Business
EISSN 1749-818X
EndPage 719
ExternalDocumentID 10_1111_lnc3_12228
LNC312228
ark_67375_WNG_VCVKFDXB_W
Genre article
GrantInformation_xml – fundername: Competitivity General Direction
– fundername: Industry
– fundername: French Services
GroupedDBID 05W
0R~
10A
1OC
31~
33P
4.4
52S
52U
5GY
8-1
AABNI
AAESR
AAHQN
AAMMB
AAMNL
AANHP
AAONW
AAOUF
AAXRX
AAYCA
AAZKR
ABCUV
ABIVO
ABJNI
ABLJU
ABSOO
ACAHQ
ACBKW
ACBWZ
ACCZN
ACGFO
ACGFS
ACPOU
ACRPL
ACXQS
ACYXJ
ADBBV
ADEMA
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AERSA
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFKFF
AFWVQ
AGHNM
AGQPQ
AGXDD
AHBTC
AIAGR
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ASTYK
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BNVMJ
BQESF
BRXPI
BSCLL
CS3
DCZOG
DRFUL
DRSSH
EBS
ECE
EJD
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IN-
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSSH
MSFUL
MSSSH
MXFUL
MXSSH
MY~
O66
O9-
OIG
P2P
P2W
QB0
ROL
SJN
SUPJJ
V8K
WBKPD
WGLLI
WIH
WII
WOHZO
WSUWO
WXSBR
XG1
ZZTAW
AAYXX
CITATION
7T9
8BM
ID FETCH-LOGICAL-c3758-f86673e45d4103bd7bb0a337e219d33bad78f31354ec8b53c833ab8798d4ba743
IEDL.DBID DRFUL
ISICitedReferencesCount 79
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000391990600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1749-818X
IngestDate Mon Nov 10 00:58:41 EST 2025
Wed Nov 05 20:53:55 EST 2025
Tue Nov 18 22:15:42 EST 2025
Tue Nov 11 03:14:09 EST 2025
Sun Sep 21 06:19:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3758-f86673e45d4103bd7bb0a337e219d33bad78f31354ec8b53c833ab8798d4ba743
Notes Industry
ark:/67375/WNG-VCVKFDXB-W
ArticleID:LNC312228
French Services
Competitivity General Direction
istex:F303D943413C1F7CE374A8153B4082B899B596B9
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.17863/cam.7345
PQID 1853750819
PQPubID 2038368
PageCount 19
ParticipantIDs proquest_journals_1853750819
crossref_primary_10_1111_lnc3_12228
crossref_citationtrail_10_1111_lnc3_12228
wiley_primary_10_1111_lnc3_12228_LNC312228
istex_primary_ark_67375_WNG_VCVKFDXB_W
PublicationCentury 2000
PublicationDate 2016-12
December 2016
2016-12-00
20161201
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Language and linguistics compass
PublicationTitleAlternate Language and Linguistics Compass
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, 5, 1-167.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9, 1735-1780.
Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford university press: New York, NY, USA.
Collobert, R., & Weston, J. (2008). A unified architecture for natural language processing: Deep neural networks with multitask learning. ACM.
Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011). Learning word vectors for sentiment analysis. Association for Computational Linguistics Stroudsburg, PA, USA.
Martínez-Cámara, E., Teresa Martín-Valdivia, M., Alfonso Urena-López, L., & Rturo Montejo-Ráez, A. (2014). Sentiment analysis in twitter. Natural Language Engineering, 20, 1-28.
Giachanou, A., & Crestani, F. (2016). Like it or not: A survey of twitter sentiment analysis methods. ACM Computing Surveys, 49(2), 1-41.
Bermingham, A., & Smeaton, A. F. (2009). A study of inter-annotator agreement for opinion retrieval. Paper presented at the SIGIR.
Tumasjan, A., Sprenger, T. O., Sandner, P. G., & Welpe, I. M. (2010). Predicting elections with twitter: What 140 characters reveal about political sentiment. ICWSM, 10, 178-185.
Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-based methods for sentiment analysis. Computational Linguistics, 37, 267-307.
Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. Neural Networks, IEEE Transactions on, 5, 157-166.
Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural language processing (almost) from scratch. The Journal of Machine Learning Research, 12, 2493-2537.
Deng, L., & Yu, D. (2014). Deep learning: methods and applications. Foundations and Trends in Signal Processing, 7, 197-387.
Kohavi, R., & Provost, F. (1998). Glossary of terms. Machine Learning, 30, 271-274.
Ortigosa, A., Martín, J. M., & Carro, R. M. (2014). Sentiment analysis in Facebook and its application to e-learning. Computers in Human Behavior, 31, 527-541.
2010; 10
2011
2010
2009
2008
2007
1995
2006
2005
2011; 12
2004
2015
2014
2011; 37
2013
2002
1998; 30
2014; 7
2016; 49
2012; 5
1994; 5
1997; 9
2014; 20
2014; 31
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_43_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_41_1
Maas A. L. (e_1_2_10_22_1) 2011
Collobert R. (e_1_2_10_6_1) 2011; 12
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
Somasundaran S. (e_1_2_10_40_1) 2010
e_1_2_10_47_1
References_xml – reference: Bermingham, A., & Smeaton, A. F. (2009). A study of inter-annotator agreement for opinion retrieval. Paper presented at the SIGIR.
– reference: Ortigosa, A., Martín, J. M., & Carro, R. M. (2014). Sentiment analysis in Facebook and its application to e-learning. Computers in Human Behavior, 31, 527-541.
– reference: Kohavi, R., & Provost, F. (1998). Glossary of terms. Machine Learning, 30, 271-274.
– reference: Tumasjan, A., Sprenger, T. O., Sandner, P. G., & Welpe, I. M. (2010). Predicting elections with twitter: What 140 characters reveal about political sentiment. ICWSM, 10, 178-185.
– reference: Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, 5, 1-167.
– reference: Giachanou, A., & Crestani, F. (2016). Like it or not: A survey of twitter sentiment analysis methods. ACM Computing Surveys, 49(2), 1-41.
– reference: Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-based methods for sentiment analysis. Computational Linguistics, 37, 267-307.
– reference: Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford university press: New York, NY, USA.
– reference: Deng, L., & Yu, D. (2014). Deep learning: methods and applications. Foundations and Trends in Signal Processing, 7, 197-387.
– reference: Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural language processing (almost) from scratch. The Journal of Machine Learning Research, 12, 2493-2537.
– reference: Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011). Learning word vectors for sentiment analysis. Association for Computational Linguistics Stroudsburg, PA, USA.
– reference: Collobert, R., & Weston, J. (2008). A unified architecture for natural language processing: Deep neural networks with multitask learning. ACM.
– reference: Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9, 1735-1780.
– reference: Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. Neural Networks, IEEE Transactions on, 5, 157-166.
– reference: Martínez-Cámara, E., Teresa Martín-Valdivia, M., Alfonso Urena-López, L., & Rturo Montejo-Ráez, A. (2014). Sentiment analysis in twitter. Natural Language Engineering, 20, 1-28.
– year: 2011
– start-page: 815
  year: 2011
  end-page: 824
– year: 2009
– volume: 7
  start-page: 197
  year: 2014
  end-page: 387
  article-title: Deep learning: methods and applications
  publication-title: Foundations and Trends in Signal Processing
– year: 2005
– volume: 37
  start-page: 267
  year: 2011
  end-page: 307
  article-title: Lexicon‐based methods for sentiment analysis
  publication-title: Computational Linguistics
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  article-title: Long short‐term memory
  publication-title: Neural computation
– year: 2007
– volume: 30
  start-page: 271
  year: 1998
  end-page: 274
  article-title: Glossary of terms
  publication-title: Machine Learning
– volume: 5
  start-page: 157
  year: 1994
  end-page: 166
  article-title: Learning long‐term dependencies with gradient descent is difficult
  publication-title: Neural Networks, IEEE Transactions on
– start-page: 377
  year: 2014
  end-page: 385
– volume: 12
  start-page: 2493
  year: 2011
  end-page: 2537
  article-title: Natural language processing (almost) from scratch
  publication-title: The Journal of Machine Learning Research
– year: 2014
– year: 2010
– volume: 31
  start-page: 527
  year: 2014
  end-page: 541
  article-title: Sentiment analysis in Facebook and its application to e‐learning
  publication-title: Computers in Human Behavior
– volume: 49
  start-page: 1
  issue: 2
  year: 2016
  end-page: 41
  article-title: Like it or not: A survey of twitter sentiment analysis methods
  publication-title: ACM Computing Surveys
– year: 2002
– volume: 10
  start-page: 178
  year: 2010
  end-page: 185
  article-title: Predicting elections with twitter: What 140 characters reveal about political sentiment
  publication-title: ICWSM
– year: 2008
– year: 2006
– year: 2004
– year: 1995
– volume: 20
  start-page: 1
  year: 2014
  end-page: 28
  article-title: Sentiment analysis in twitter
  publication-title: Natural Language Engineering
– start-page: 1
  year: 2006
  end-page: 10
– year: 2015
– volume: 5
  start-page: 1
  year: 2012
  end-page: 167
  article-title: Sentiment analysis and opinion mining
  publication-title: Synthesis Lectures on Human Language Technologies
– year: 2013
– ident: e_1_2_10_10_1
  doi: 10.1162/neco.1997.9.8.1735
– ident: e_1_2_10_3_1
  doi: 10.1145/1571941.1572127
– ident: e_1_2_10_29_1
  doi: 10.1016/j.chb.2013.05.024
– ident: e_1_2_10_39_1
  doi: 10.18653/v1/D13-1170
– ident: e_1_2_10_31_1
  doi: 10.3115/1118693.1118704
– ident: e_1_2_10_47_1
  doi: 10.3115/1220575.1220619
– ident: e_1_2_10_28_1
– ident: e_1_2_10_34_1
  doi: 10.3115/v1/S14-2009
– ident: e_1_2_10_7_1
  doi: 10.1561/2000000039
– ident: e_1_2_10_21_1
– ident: e_1_2_10_13_1
  doi: 10.1145/1935826.1935932
– ident: e_1_2_10_36_1
  doi: 10.1609/icwsm.v3i1.13966
– ident: e_1_2_10_38_1
– ident: e_1_2_10_30_1
  doi: 10.3115/1219840.1219855
– ident: e_1_2_10_32_1
  doi: 10.3115/v1/D14-1162
– ident: e_1_2_10_27_1
– ident: e_1_2_10_41_1
  doi: 10.1162/COLI_a_00049
– ident: e_1_2_10_4_1
  doi: 10.1093/oso/9780198538493.001.0001
– ident: e_1_2_10_17_1
  doi: 10.1023/A:1017181826899
– ident: e_1_2_10_11_1
  doi: 10.1145/1014052.1014073
– ident: e_1_2_10_24_1
– ident: e_1_2_10_2_1
  doi: 10.1109/72.279181
– ident: e_1_2_10_9_1
  doi: 10.1145/2938640
– ident: e_1_2_10_15_1
  doi: 10.3115/v1/D14-1181
– ident: e_1_2_10_26_1
– ident: e_1_2_10_20_1
  doi: 10.1007/978-3-031-02145-9
– ident: e_1_2_10_43_1
  doi: 10.3115/v1/P14-1146
– ident: e_1_2_10_18_1
– ident: e_1_2_10_16_1
  doi: 10.3115/1654641.1654642
– ident: e_1_2_10_23_1
  doi: 10.1017/S1351324912000332
– volume: 12
  start-page: 2493
  year: 2011
  ident: e_1_2_10_6_1
  article-title: Natural language processing (almost) from scratch
  publication-title: The Journal of Machine Learning Research
– ident: e_1_2_10_19_1
  doi: 10.18653/v1/D15-1278
– ident: e_1_2_10_25_1
– ident: e_1_2_10_42_1
  doi: 10.3115/v1/P15-1150
– ident: e_1_2_10_8_1
  doi: 10.3115/v1/E14-1040
– volume-title: Learning word vectors for sentiment analysis
  year: 2011
  ident: e_1_2_10_22_1
– ident: e_1_2_10_33_1
  doi: 10.1007/1-4020-4102-0_1
– ident: e_1_2_10_37_1
  doi: 10.1609/icwsm.v3i1.14001
– ident: e_1_2_10_5_1
  doi: 10.1145/1390156.1390177
– ident: e_1_2_10_35_1
  doi: 10.18653/v1/S15-2078
– ident: e_1_2_10_45_1
– ident: e_1_2_10_46_1
  doi: 10.3115/1073083.1073153
– ident: e_1_2_10_12_1
  doi: 10.3115/v1/D14-1080
– ident: e_1_2_10_14_1
  doi: 10.3115/v1/P14-1062
– ident: e_1_2_10_44_1
  doi: 10.1609/icwsm.v4i1.14009
– volume-title: Proceedings of the Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics
  year: 2010
  ident: e_1_2_10_40_1
SSID ssj0060963
Score 2.4342759
Snippet Research and industry are becoming more and more interested in finding automatically the polarised opinion of the general public regarding a specific subject....
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 701
SubjectTerms Blogs
Business
Computer generated language analysis
Data mining
Deep learning
General public
Learning
Natural language processing
Polarity
Sentiment analysis
Social networks
Subjectivity
Title Deep learning for sentiment analysis
URI https://api.istex.fr/ark:/67375/WNG-VCVKFDXB-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Flnc3.12228
https://www.proquest.com/docview/1853750819
Volume 10
WOSCitedRecordID wos000391990600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1749-818X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060963
  issn: 1749-818X
  databaseCode: DRFUL
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5q68GL70e1SsBSUIg0nU2zAS_aWgVLEbHa27KviChVmir-fHeTTVUQQbzlMGHDvPbbyc43AHXZFpwSKXwat5RPEtS-iFuBH_IkkloqoSKVDZuIBgM6GsVXJTguemFyfohZwc1GRpavbYBzkX4J8qexxKPAFjDmoNIyjhuWodK97g37RSZuG3iOeUOkLXXRkaMntTd5Pt_-tiFVrG7fv6HNr5g123R6S__73GVYdGDTO8m9YwVKerwKm31Xoky9htefsSqna1Dvav3iuTkS956Bs55tTcr4_z3u2EvWYdg7u-lc-G6Kgi_RHAb8hNrJnpqEigRNNLoXoskRI21ylUIUXEU0wQBDoiUVIUqKyAWNYqqI4AZgbEB5_DzWW-AloSBtDOwPmYhoHht0RkQYI6WKJ3GSVOGgUCWTjmLcTrp4YsVRw2qBZVqowv5M9iUn1vhRqpFZZCbCJ4_2KloUsrvBObvt3F72uqNTdleFWmEy5qIwZRaLGERkQE8VDjPj_LIU6w86mD1t_0V4BxYMhmrnN1xqUJ5OXvUuzMu36UM62XMe-QHIoeGH
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_UCfri98d0akERFCrrkq7po27WyWoRcbNvIV8VUaasKv75Jm02HYggvvXhSsrl7vLL9e5-AAeiyRnBgrskbEgXZ0i5PGx4rs-yQCghuQxkQTYRJAlJ0_Da1uaYXphyPsQ44WY8o4jXxsFNQvqblz8NBDrxTAZjGipY25E28Er7JurFo1Dc1PgclR2RJtdFUjuf1JTyfL09cSJVjHI_JuDmd9BanDrR4j-_dwkWLNx0Tkv7WIYpNViBjdgmKXPn0InHc5XzVThoK_XiWCaJe0cDWsc0JxUMAA6z80vWoBed37Y6ruVRcAXS1wE3I4bbU2FfYq-OtPY5rzOEAqWjlUSIMxmQDHnIx0oQ7iNBEGKcBCGRmDMNMdZhZvA8UJvgZD7XmvbML5kAKxZqfIa5HyJCJMvCLKvC0UiXVNgh44br4omOLhtGC7TQQhX2x7Iv5WiNH6UOiy0Zi7DhoylGC3x6l1zQfqvfjdrpGb2rQm20Z9T6YU4NGtGYSMOeKhwXu_PLUjROWqh42vqL8B7MdW6vYhpfJt1tmNeIqlnWu9Rg5nX4pnZgVry_PuTDXWuen1fG5Xc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3faxNBEB5qItIXW63V2LQeGAIVruQye7m9x5r0VHIcQUyat2V_FmmIIVfFP9_du02aghTEt3uYY4-Zndlv52bmA-jIgeCUSBHStK9CYlCHIu1HYcxNIrVUQiWqIptIioLO5-nE1-a4Xph6PsQ24eY8o4rXzsH1SpkdL18sJV5ELoPxBJrEscg0oDn6mk3zTSgeWHyOdUeky3XRuZ9P6kp57t9-cCI1nXJ_P4Cbu6C1OnWyg__83kN47uFmcFnvjxewp5cv4XXuk5Rl0A3y7Vzl8gg6I61XgWeSuAksoA1cc1LFABBwP7_kFUyzq2_Dz6HnUQgl2utAaKjj9tQkViTqodW-ED2OmGgbrRSi4CqhBiOMiZZUxCgpIhc0SakigluIcQyN5Y-lfgOBiQUZYOR-ySRE89TiMyLiFClV3KTGtOB8o0sm_ZBxx3WxYJvLhtMCq7TQgvdb2VU9WuOvUt3KJFsRvr51xWhJzK6LT2w2nI2z0fwju25Be2Mz5v2wZA6NWExkYU8LPlTWeWQplhdDrJ7e_ovwO3g2GWUs_1KMT2DfAqpBXe7Shsbd-qc-hafy1933cn3md-cfCULk8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+for+sentiment+analysis&rft.jtitle=Language+and+linguistics+compass&rft.au=Rojas-Barahona%2C+Lina+Maria&rft.date=2016-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1749-818X&rft.volume=10&rft.issue=12&rft.spage=701&rft_id=info:doi/10.1111%2Flnc3.12228&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1749-818X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1749-818X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1749-818X&client=summon