Predicting game-induced emotions using EEG, data mining and machine learning

Background Emotion is a complex phenomenon that greatly affects human behavior and thinking in daily life. Electroencephalography (EEG), one of the human physiological signals, has been emphasized by most researchers in emotion recognition as its specific properties are closely associated with human...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the National Research Centre Jg. 48; H. 1; S. 57 - 10
Hauptverfasser: Lim, Min Xuan, Teo, Jason
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2024
Springer Nature B.V
SpringerOpen
Schlagworte:
ISSN:2522-8307, 2522-8307
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Background Emotion is a complex phenomenon that greatly affects human behavior and thinking in daily life. Electroencephalography (EEG), one of the human physiological signals, has been emphasized by most researchers in emotion recognition as its specific properties are closely associated with human emotion. However, the number of human emotion recognition studies using computer games as stimuli is still insufficient as there were no relevant publicly available datasets provided in the past decades. Most of the recent studies using the Gameemo public dataset have not clarified the relationship between the EEG signal’s changes and the emotion elicited using computer games. Thus, this paper is proposed to introduce the use of data mining techniques in investigating the relationships between the frequency changes of EEG signals and the human emotion elicited when playing different kinds of computer games. The data acquisition stage, data pre-processing, data annotation and feature extraction stage were designed and conducted in this paper to obtain and extract the EEG features from the Gameemo dataset. The cross-subject and subject-based experiments were conducted to evaluate the classifiers’ performance. The top 10 association rules generated by the RCAR classifier will be examined to determine the possible relationship between the EEG signal's frequency changes and game-induced emotions. Results The RCAR classifier constructed for cross-subject experiment achieved highest accuracy, precision, recall and F1-score evaluated with over 90% in classifying the HAPV, HANV and LANV game-induced emotions. The 20 experiment cases’ results from subject-based experiments supported that the SVM classifier could accurately classify the 4 emotion states with a kappa value over 0.62, demonstrating the SVM-based algorithm’s capabilities in precisely determining the emotion label for each participant’s EEG features’ instance. Conclusion The findings in this study fill the existing gap of game-induced emotion recognition field by providing an in-depth evaluation on the ruleset algorithm’s performance and feasibility of applying the generated rules on the game-induced EEG data for justifying the emotional state prediction result.
AbstractList Background Emotion is a complex phenomenon that greatly affects human behavior and thinking in daily life. Electroencephalography (EEG), one of the human physiological signals, has been emphasized by most researchers in emotion recognition as its specific properties are closely associated with human emotion. However, the number of human emotion recognition studies using computer games as stimuli is still insufficient as there were no relevant publicly available datasets provided in the past decades. Most of the recent studies using the Gameemo public dataset have not clarified the relationship between the EEG signal’s changes and the emotion elicited using computer games. Thus, this paper is proposed to introduce the use of data mining techniques in investigating the relationships between the frequency changes of EEG signals and the human emotion elicited when playing different kinds of computer games. The data acquisition stage, data pre-processing, data annotation and feature extraction stage were designed and conducted in this paper to obtain and extract the EEG features from the Gameemo dataset. The cross-subject and subject-based experiments were conducted to evaluate the classifiers’ performance. The top 10 association rules generated by the RCAR classifier will be examined to determine the possible relationship between the EEG signal's frequency changes and game-induced emotions. Results The RCAR classifier constructed for cross-subject experiment achieved highest accuracy, precision, recall and F1-score evaluated with over 90% in classifying the HAPV, HANV and LANV game-induced emotions. The 20 experiment cases’ results from subject-based experiments supported that the SVM classifier could accurately classify the 4 emotion states with a kappa value over 0.62, demonstrating the SVM-based algorithm’s capabilities in precisely determining the emotion label for each participant’s EEG features’ instance. Conclusion The findings in this study fill the existing gap of game-induced emotion recognition field by providing an in-depth evaluation on the ruleset algorithm’s performance and feasibility of applying the generated rules on the game-induced EEG data for justifying the emotional state prediction result.
Abstract Background Emotion is a complex phenomenon that greatly affects human behavior and thinking in daily life. Electroencephalography (EEG), one of the human physiological signals, has been emphasized by most researchers in emotion recognition as its specific properties are closely associated with human emotion. However, the number of human emotion recognition studies using computer games as stimuli is still insufficient as there were no relevant publicly available datasets provided in the past decades. Most of the recent studies using the Gameemo public dataset have not clarified the relationship between the EEG signal’s changes and the emotion elicited using computer games. Thus, this paper is proposed to introduce the use of data mining techniques in investigating the relationships between the frequency changes of EEG signals and the human emotion elicited when playing different kinds of computer games. The data acquisition stage, data pre-processing, data annotation and feature extraction stage were designed and conducted in this paper to obtain and extract the EEG features from the Gameemo dataset. The cross-subject and subject-based experiments were conducted to evaluate the classifiers’ performance. The top 10 association rules generated by the RCAR classifier will be examined to determine the possible relationship between the EEG signal's frequency changes and game-induced emotions. Results The RCAR classifier constructed for cross-subject experiment achieved highest accuracy, precision, recall and F1-score evaluated with over 90% in classifying the HAPV, HANV and LANV game-induced emotions. The 20 experiment cases’ results from subject-based experiments supported that the SVM classifier could accurately classify the 4 emotion states with a kappa value over 0.62, demonstrating the SVM-based algorithm’s capabilities in precisely determining the emotion label for each participant’s EEG features’ instance. Conclusion The findings in this study fill the existing gap of game-induced emotion recognition field by providing an in-depth evaluation on the ruleset algorithm’s performance and feasibility of applying the generated rules on the game-induced EEG data for justifying the emotional state prediction result.
BackgroundEmotion is a complex phenomenon that greatly affects human behavior and thinking in daily life. Electroencephalography (EEG), one of the human physiological signals, has been emphasized by most researchers in emotion recognition as its specific properties are closely associated with human emotion. However, the number of human emotion recognition studies using computer games as stimuli is still insufficient as there were no relevant publicly available datasets provided in the past decades. Most of the recent studies using the Gameemo public dataset have not clarified the relationship between the EEG signal’s changes and the emotion elicited using computer games. Thus, this paper is proposed to introduce the use of data mining techniques in investigating the relationships between the frequency changes of EEG signals and the human emotion elicited when playing different kinds of computer games. The data acquisition stage, data pre-processing, data annotation and feature extraction stage were designed and conducted in this paper to obtain and extract the EEG features from the Gameemo dataset. The cross-subject and subject-based experiments were conducted to evaluate the classifiers’ performance. The top 10 association rules generated by the RCAR classifier will be examined to determine the possible relationship between the EEG signal's frequency changes and game-induced emotions.ResultsThe RCAR classifier constructed for cross-subject experiment achieved highest accuracy, precision, recall and F1-score evaluated with over 90% in classifying the HAPV, HANV and LANV game-induced emotions. The 20 experiment cases’ results from subject-based experiments supported that the SVM classifier could accurately classify the 4 emotion states with a kappa value over 0.62, demonstrating the SVM-based algorithm’s capabilities in precisely determining the emotion label for each participant’s EEG features’ instance.ConclusionThe findings in this study fill the existing gap of game-induced emotion recognition field by providing an in-depth evaluation on the ruleset algorithm’s performance and feasibility of applying the generated rules on the game-induced EEG data for justifying the emotional state prediction result.
ArticleNumber 57
Author Teo, Jason
Lim, Min Xuan
Author_xml – sequence: 1
  givenname: Min Xuan
  surname: Lim
  fullname: Lim, Min Xuan
  organization: Faculty of Computing and Informatics, Universiti Malaysia Sabah
– sequence: 2
  givenname: Jason
  orcidid: 0000-0003-2415-5915
  surname: Teo
  fullname: Teo, Jason
  email: jtwteo@ums.edu.my
  organization: Creative Advanced Machine Intelligence Research Centre, Faculty of Computing and Informatics, Universiti Malaysia Sabah, Evolutionary Computing Laboratory, Faculty of Computing and Informatics, Universiti Malaysia Sabah
BookMark eNp9kUtr3TAQhUVJoUmaP9CVIds6kUbWw8sSbh5woV20azF6-FaXaymRfBf597Hj0pYsspI4M9-ZYc4ZOUk5BUK-MHrFmJbXtQOQfUuhaykDSlv1gZyCAGg1p-rkv_8nclHrnlIKrKO0g1Oy_VGCj26KadfscAxtTP7ogm_CmKeYU22OdaltNndfG48TNmNMi4DJNyO63zGF5hCwLOJn8nHAQw0Xf95z8ut28_Pmvt1-v3u4-bZtHVdCtdaDHJAr6yUCGzoVJKDstRcsgHXSWsekkFZqqaxTfa-V4JpZzXrgLnB-Th5WX59xbx5LHLE8m4zRvAq57AyWKbpDMGiZCwidcr3rFAir6WBtH9wAMAguZq_L1eux5KdjqJPZ52NJ8_qGU9FLCQpg7oK1y5VcawnD36mMmiUEs4Zg5hDMawhGzZB-A7k44XLVqWA8vI_yFa3znLQL5d9W71AvqpKb6g
CitedBy_id crossref_primary_10_1038_s41598_025_17220_w
Cites_doi 10.1016/j.bspc.2018.05.023
10.1109/jsen.2018.2883497
10.1016/j.artmed.2021.102210
10.1016/j.compbiomed.2021.104867
10.1016/j.compbiomed.2022.105441
10.1109/ecei53102.2022.9829482
10.1016/j.bspc.2020.101951
10.1109/taffc.2017.2714671
10.3390/app121910028
10.1109/icemis.2017.8272991
10.1109/inista52262.2021.9548406
10.3233/thc-174836
10.1109/IWCMC51323.2021.9498861
10.1109/taffc.2015.2436926
10.1016/j.chb.2016.08.029
10.1016/j.cogsys.2022.04.001
10.5755/j01.eee.20.10.8878
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7ST
7X7
7XB
8FD
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
K9.
M0S
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
RC3
SOI
DOA
DOI 10.1186/s42269-024-01200-7
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Agriculture
EISSN 2522-8307
EndPage 10
ExternalDocumentID oai_doaj_org_article_ab1cea247c9c4725b80fbb9ecf22f535
10_1186_s42269_024_01200_7
GroupedDBID 0R~
23N
5GY
7X7
8FI
8FJ
AAFWJ
AAKKN
ABDBF
ABEEZ
ABUWG
ACACY
ACUHS
ACULB
ADBBV
AEUYN
AFGXO
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
BCNDV
BENPR
C24
C6C
CCPQU
EBS
FYUFA
GROUPED_DOAJ
HMCUK
IAO
IGS
ISR
ITC
OK1
P2P
PIMPY
RSV
SOJ
UKHRP
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
3V.
7ST
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
RC3
SOI
ID FETCH-LOGICAL-c3757-bd26fa37bd6a21f47e62a698d51e2bc6bbc1656b6867bc799875381b81923ce33
IEDL.DBID C24
ISSN 2522-8307
IngestDate Mon Nov 10 04:35:09 EST 2025
Tue Oct 07 13:41:13 EDT 2025
Sat Nov 29 01:57:27 EST 2025
Tue Nov 18 22:16:05 EST 2025
Fri Feb 21 02:40:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Data mining
Game-induced EEG
EEG-based emotion recognition
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3757-bd26fa37bd6a21f47e62a698d51e2bc6bbc1656b6867bc799875381b81923ce33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2415-5915
OpenAccessLink https://link.springer.com/10.1186/s42269-024-01200-7
PQID 3059662722
PQPubID 4402865
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_ab1cea247c9c4725b80fbb9ecf22f535
proquest_journals_3059662722
crossref_primary_10_1186_s42269_024_01200_7
crossref_citationtrail_10_1186_s42269_024_01200_7
springer_journals_10_1186_s42269_024_01200_7
PublicationCentury 2000
PublicationDate 20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241201
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Berlin
PublicationTitle Bulletin of the National Research Centre
PublicationTitleAbbrev Bull Natl Res Cent
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References BhattiAMMajidMAnwarSMKhanBHuman emotion recognition and analysis in response to audio music using brain signalsComput Hum Behav20166526727510.1016/j.chb.2016.08.029
SaxenaSTripathiSSudarshanTSBAn intelligent facial expression recognition system with emotion intensity classificationCogn Syst Res202274395210.1016/j.cogsys.2022.04.001
SoleymaniMAsghari-EsfedenSFuYPanticMAnalysis of EEG signals and facial expressions for continuous emotion detectionIEEE Trans Affect Comput201671172810.1109/taffc.2015.2436926
AlarcaoSMFonsecaMJEmotions recognition using EEG signals: a surveyIEEE Trans Affect Comput201910337439310.1109/taffc.2017.2714671
LiMXuHLiuXLuSEmotion recognition from multichannel EEG signals using K-nearest neighbor classificationTechnol Health Care2018265095192018slss.book.....L10.3233/thc-174836297589746027901
GuptaVChopdaMDPachoriRBCross-subject emotion recognition using flexible analytic wavelet transform from EEG signalsIEEE Sens J2019196226622742019ISenJ..19.2266G10.1109/jsen.2018.2883497
AlakusTBGonenMTurkogluIDatabase for an emotion recognition system based on EEG signals and various computer games—GAMEEMOBiomed Signal Process Control20206010.1016/j.bspc.2020.101951
HazarikaJKantPDasguptaRLaskarSHNeural modulation in action video game players during inhibitory control function: an EEG study using discrete wavelet transformBiomed Signal Process Control20184514415010.1016/j.bspc.2018.05.023
MikuckasAMikuckieneIVenckauskasAKazanaviciusELukasRPlauskaIEmotion recognition in human computer interaction systemsElektron Elektrotech201410.5755/j01.eee.20.10.8878
DoganAAkayMBaruaPDBayginMDoganSTuncerTDogruAHAcharyaURPrimePatNet87: prime pattern and tunable q-factor wavelet transform techniques for automated accurate EEG emotion recognitionComput Biol Med202113810486710486710.1016/j.compbiomed.2021.10486734543892
AbdulrahmanABaykaraMAlakusTBA novel approach for emotion recognition based on EEG signal using deep learningAppl Sci20221219100281:CAS:528:DC%2BB38Xis1amtLfE10.3390/app121910028
Abdulrahman A, Baykara M (2021) Feature extraction approach based on statistical methods and wavelet packet decomposition for emotion recognition using EEG signals. In: 2021 International conference on innovations in intelligent SysTems and applications (INISTA). https://doi.org/10.1109/inista52262.2021.9548406
Abu M, Shin J, Islam MM, Abdullah A, Islam K (2022) Natural human emotion recognition based on various mixed reality (MR) games and electroencephalography (EEG) signals. https://doi.org/10.1109/ecei53102.2022.9829482
DhuheirMAlbaseerABaccourEErbadAAbdallahMHamdiMEmotion recognition for healthcare surveillance systems using neural networks: a surveyIEEE Xplore202110.1109/IWCMC51323.2021.9498861
TuncerTDoganSBayginMRajendra AcharyaUTetromino pattern based accurate EEG emotion classification modelArtif Intell Med202212310.1016/j.artmed.2021.10221034998511
Henia B, Lachiri Z (2017) Emotion classification in arousal-valence dimension using discrete affective keywords tagging. https://doi.org/10.1109/icemis.2017.8272991
KhanARasoolSGame induced emotion analysis using electroencephalographyComput Biol Med202214510.1016/j.compbiomed.2022.10544135381455
M Soleymani (1200_CR16) 2016; 7
J Hazarika (1200_CR10) 2018; 45
TB Alakus (1200_CR4) 2020; 60
A Abdulrahman (1200_CR2) 2022; 12
1200_CR3
A Dogan (1200_CR8) 2021; 138
A Khan (1200_CR12) 2022; 145
1200_CR1
A Mikuckas (1200_CR14) 2014
S Saxena (1200_CR15) 2022; 74
T Tuncer (1200_CR17) 2022; 123
M Dhuheir (1200_CR7) 2021
1200_CR11
SM Alarcao (1200_CR5) 2019; 10
V Gupta (1200_CR9) 2019; 19
M Li (1200_CR13) 2018; 26
AM Bhatti (1200_CR6) 2016; 65
References_xml – reference: GuptaVChopdaMDPachoriRBCross-subject emotion recognition using flexible analytic wavelet transform from EEG signalsIEEE Sens J2019196226622742019ISenJ..19.2266G10.1109/jsen.2018.2883497
– reference: SoleymaniMAsghari-EsfedenSFuYPanticMAnalysis of EEG signals and facial expressions for continuous emotion detectionIEEE Trans Affect Comput201671172810.1109/taffc.2015.2436926
– reference: AlakusTBGonenMTurkogluIDatabase for an emotion recognition system based on EEG signals and various computer games—GAMEEMOBiomed Signal Process Control20206010.1016/j.bspc.2020.101951
– reference: TuncerTDoganSBayginMRajendra AcharyaUTetromino pattern based accurate EEG emotion classification modelArtif Intell Med202212310.1016/j.artmed.2021.10221034998511
– reference: Abdulrahman A, Baykara M (2021) Feature extraction approach based on statistical methods and wavelet packet decomposition for emotion recognition using EEG signals. In: 2021 International conference on innovations in intelligent SysTems and applications (INISTA). https://doi.org/10.1109/inista52262.2021.9548406
– reference: Henia B, Lachiri Z (2017) Emotion classification in arousal-valence dimension using discrete affective keywords tagging. https://doi.org/10.1109/icemis.2017.8272991
– reference: AbdulrahmanABaykaraMAlakusTBA novel approach for emotion recognition based on EEG signal using deep learningAppl Sci20221219100281:CAS:528:DC%2BB38Xis1amtLfE10.3390/app121910028
– reference: LiMXuHLiuXLuSEmotion recognition from multichannel EEG signals using K-nearest neighbor classificationTechnol Health Care2018265095192018slss.book.....L10.3233/thc-174836297589746027901
– reference: AlarcaoSMFonsecaMJEmotions recognition using EEG signals: a surveyIEEE Trans Affect Comput201910337439310.1109/taffc.2017.2714671
– reference: SaxenaSTripathiSSudarshanTSBAn intelligent facial expression recognition system with emotion intensity classificationCogn Syst Res202274395210.1016/j.cogsys.2022.04.001
– reference: BhattiAMMajidMAnwarSMKhanBHuman emotion recognition and analysis in response to audio music using brain signalsComput Hum Behav20166526727510.1016/j.chb.2016.08.029
– reference: DoganAAkayMBaruaPDBayginMDoganSTuncerTDogruAHAcharyaURPrimePatNet87: prime pattern and tunable q-factor wavelet transform techniques for automated accurate EEG emotion recognitionComput Biol Med202113810486710486710.1016/j.compbiomed.2021.10486734543892
– reference: Abu M, Shin J, Islam MM, Abdullah A, Islam K (2022) Natural human emotion recognition based on various mixed reality (MR) games and electroencephalography (EEG) signals. https://doi.org/10.1109/ecei53102.2022.9829482
– reference: DhuheirMAlbaseerABaccourEErbadAAbdallahMHamdiMEmotion recognition for healthcare surveillance systems using neural networks: a surveyIEEE Xplore202110.1109/IWCMC51323.2021.9498861
– reference: HazarikaJKantPDasguptaRLaskarSHNeural modulation in action video game players during inhibitory control function: an EEG study using discrete wavelet transformBiomed Signal Process Control20184514415010.1016/j.bspc.2018.05.023
– reference: KhanARasoolSGame induced emotion analysis using electroencephalographyComput Biol Med202214510.1016/j.compbiomed.2022.10544135381455
– reference: MikuckasAMikuckieneIVenckauskasAKazanaviciusELukasRPlauskaIEmotion recognition in human computer interaction systemsElektron Elektrotech201410.5755/j01.eee.20.10.8878
– volume: 45
  start-page: 144
  year: 2018
  ident: 1200_CR10
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2018.05.023
– volume: 19
  start-page: 2266
  issue: 6
  year: 2019
  ident: 1200_CR9
  publication-title: IEEE Sens J
  doi: 10.1109/jsen.2018.2883497
– volume: 123
  year: 2022
  ident: 1200_CR17
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2021.102210
– volume: 138
  start-page: 104867
  year: 2021
  ident: 1200_CR8
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104867
– volume: 145
  year: 2022
  ident: 1200_CR12
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105441
– ident: 1200_CR3
  doi: 10.1109/ecei53102.2022.9829482
– volume: 60
  year: 2020
  ident: 1200_CR4
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.101951
– volume: 10
  start-page: 374
  issue: 3
  year: 2019
  ident: 1200_CR5
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/taffc.2017.2714671
– volume: 12
  start-page: 10028
  issue: 19
  year: 2022
  ident: 1200_CR2
  publication-title: Appl Sci
  doi: 10.3390/app121910028
– ident: 1200_CR11
  doi: 10.1109/icemis.2017.8272991
– ident: 1200_CR1
  doi: 10.1109/inista52262.2021.9548406
– volume: 26
  start-page: 509
  year: 2018
  ident: 1200_CR13
  publication-title: Technol Health Care
  doi: 10.3233/thc-174836
– year: 2021
  ident: 1200_CR7
  publication-title: IEEE Xplore
  doi: 10.1109/IWCMC51323.2021.9498861
– volume: 7
  start-page: 17
  issue: 1
  year: 2016
  ident: 1200_CR16
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/taffc.2015.2436926
– volume: 65
  start-page: 267
  year: 2016
  ident: 1200_CR6
  publication-title: Comput Hum Behav
  doi: 10.1016/j.chb.2016.08.029
– volume: 74
  start-page: 39
  year: 2022
  ident: 1200_CR15
  publication-title: Cogn Syst Res
  doi: 10.1016/j.cogsys.2022.04.001
– year: 2014
  ident: 1200_CR14
  publication-title: Elektron Elektrotech
  doi: 10.5755/j01.eee.20.10.8878
SSID ssj0002140042
Score 2.2756803
Snippet Background Emotion is a complex phenomenon that greatly affects human behavior and thinking in daily life. Electroencephalography (EEG), one of the human...
BackgroundEmotion is a complex phenomenon that greatly affects human behavior and thinking in daily life. Electroencephalography (EEG), one of the human...
Abstract Background Emotion is a complex phenomenon that greatly affects human behavior and thinking in daily life. Electroencephalography (EEG), one of the...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 57
SubjectTerms Agriculture
Algorithms
Annotations
Classification
Classifiers
Computer & video games
Data acquisition
Data mining
Data processing
Datasets
EEG
EEG-based emotion recognition
Electroencephalography
Emotion recognition
Emotional factors
Emotions
Engineering
Feature extraction
Game-induced EEG
Humanities and Social Sciences
Machine learning
Molecular Biology and Biotechnology
multidisciplinary
Performance evaluation
Science
Science (multidisciplinary)
Support vector machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxcCCKB8iUJAHBhC12tiJnYyACgyo6gBSN8tfqZBoQE3h9-Nz0tIiAQtr4kinu3PunXx-D6GzJM01zzUl2sNVkgjeJ3maWWI9dtapVSouVBCbEMNhNh7noxWpL5gJq-mBa8f1lI6NUzQRJjeJoKnO-oXWuTMFpUXKAnupRz0rzRT8g2kMuUkXt2Qy3qvgymhOfEkicF-0T8RaJQqE_Wso89vBaKg3tztouwGK-Ko2sI02XLmL2s1WrPB5wxd9sYceRjM4bYH5ZTxRU0d8m-0DZrGrJXoqDMPtEzwY3HUxTITiaVCFwKq0eBqGKR1u1CMm--jpdvB4c08akQRimEgF0d6rhWJCW65oXCTCcap4ntk0dlQbrrUBgh3NMy60Eb678g2Kx6pAhMaMY-wAtcrX0h0ibPp-fxthLAPKG2jFlM6c9YDLcasYj1C8cJg0DYM4CFm8yNBJZFzWTpbeyTI4WYoIXS6_eav5M35dfQ1xWK4E7uvwwGeEbDJC_pUREeosoiibDVlJBjJDnApKI9RdRPbr9c8mHf2HScdoi0LmhTGYDmrNZ-_uBG2aj_lzNTsNqfsJz3TuXg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6xZQ97WR4LostDPnBgBRaNndjJCQEqcEBVhViJm-VXKiTaQsPu78fjOkUgwYVrYkdWvrE94xl_H8B-XlRGVIZRE9xVmkvRo1VROuqC72wKp3VW6yg2IQeD8u6uGqYDtyaVVbZrYlyo3dTiGfkxR50YwSRjJ49PFFWjMLuaJDS-wTIyleUdWD7rD4Y3i1MWlqGNsva2TCmOG7w6WtGwNVG8N9qj8s2OFIn733ib7xKkcd-5WPnqiFfhZ_I4yencRNZgyU_WYS3N6YYcJOLpP7_gejjDtA0WQpORHnsa4vWAvCN-rvXTEKySH5F-__KIYGkpGUd5CaInjoxjVaYnSYZitAF_L_q351c0qS1Qy2UhqQnw1JpL44RmWZ1LL5gWVemKzDNjhTEWmXqMKIU0VoYwLUQ6welFRjVuPeeb0JlMJ34LiO2FhcJK6zhy52BMp03pXfDcvHCaiy5k7R9XNlGRoyLGg4ohSSnUHCUVUFIRJSW7cLjo8zgn4vi09RkCuWiJJNrxwXQ2UmlOKm0y6zXLpa1sLllhyl5tTOVtzVhd8KILOy2wKs3sRr2i2oWj1jReX388pN-ff20bfjA0ylgpswOd59k_vwvf7f_n-2a2l-z6BVhn_Jg
  priority: 102
  providerName: ProQuest
Title Predicting game-induced emotions using EEG, data mining and machine learning
URI https://link.springer.com/article/10.1186/s42269-024-01200-7
https://www.proquest.com/docview/3059662722
https://doaj.org/article/ab1cea247c9c4725b80fbb9ecf22f535
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2522-8307
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140042
  issn: 2522-8307
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2522-8307
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140042
  issn: 2522-8307
  databaseCode: 7X7
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2522-8307
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140042
  issn: 2522-8307
  databaseCode: BENPR
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2522-8307
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140042
  issn: 2522-8307
  databaseCode: PIMPY
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 2522-8307
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140042
  issn: 2522-8307
  databaseCode: C24
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9s64M-VFsVr61HHnxQbPA22Xw9tuWqgh6LKJxPIV-7CN5Vdqt_f5NctlpRQR83m0DIzCQzyczvB_C0ZspyZQm20V3FteAzrJj02Eff2TJvTNWaTDYhFgu5XKqmFIUNY7b7-CSZd-ps1pK_HFLNp8LxTMGp4HOGxRbssEqqpNdnpcYh7b-kSnpJxgqZ3w69cQplsP4bHuYvj6L5rDm_93-zvA-7xbdEJxtl2INbYb0Pd0-6vuBrhPj1E_7gPuwVyx7QswI__fwBvG369HiT0qFRZ1YBx6g9yt-jsGH8GVDKle_QfP7qGKUEU7TKJBPIrD1a5dzMgAoZRfcQPp7PP5y9xoVzATsqmMA2Cqk1VFjPDanaWgRODFfSsyoQ67i1LuH1WC65sE7EYC3GO9H1Tbhq1AVKH8H2-mIdHgNys7hdOOE8TQg6KbIzVgYf_bfAvaF8AtUoA-0KIHnixfiic2Aiud4spo6LqfNiajGBF9djvm7gOP7a-zSJ9rpngtLODRd9p4tlamMrFwyphVOuFoRZOWutVcG1hLSMsgkcjYqhi30PmibWIk4EIRM4HhXhx-8_T-ng37ofwh2SdCnnzxzB9mX_LTyB2-775eehn8KWWIop7JzOF837abaCab5UiG3Nm3fNpyuMcf8F
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWyS4QMtDLBTwASQQtbpxEts5oIrHlq66Xe2hSOVk_MqqEpstmwLiT_U31uMkWxWJ3nrgmjiRE38znhnPzAfwMssLwwvDqAnmKs0EH9Ail466YDub3GmdlDqSTYjJRB4fF9M1OO9qYTCtstOJUVG7hcUY-U6KPDGcCcZ2T39QZI3C09WOQqOBxYH_8zu4bPW70aewvq8Y2xsefdynLasAtanIBTVhGqVOhXFcs6TMhOdM80K6PPHMWG6MxY40hksujBXBHQkWfTDusHNYaj0GQIPKX88C2GUP1qejw-nXVVSHJSgTrKvOkXynxlLVgoatkGKd6oCKKztgJAq4Yt3-dSAb97m9e__bH9qAu61FTd43IrAJa766D5utzqrJ67ax9psHMJ4u8VgKE73JTM89PalcQLYjvuEyqglWAczIcPh5m2DqLJlH-gyiK0fmMevUk5ZmY_YQvtzIVz2CXrWo_GMgdhAUoRXWpdgbCH1WbaR3wTL13OmU9yHpVljZttU6Mn58V9Hlklw1qFABFSqiQok-vF09c9o0Grl29AcEzmokNgmPFxbLmWp1jtImsV6zTNjCZoLlRg5KYwpvS8bKPM37sNUBSbWaq1aXKOrDdgfFy9v_ntKT69_2Am7vHx2O1Xg0OXgKdxgKRMwK2oLe2fKnfwa37K-zk3r5vJUpAt9uGqQXuEpYdA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BQagcCi2tWCjgAwcQtbqxEzs5tmUXENVqDyD1ZvkrERKbVsnC78fjOKVFpRLiGMeWLM-MPaOZeQ_gdV5URlSGURPcVZpLMaVVUTrqgu9sCqd1VutINiEXi_LsrFpe6eKP1e5jSnLoaUCUpnZ9eOHqwcRLcdhj_2dFw_tCsflzSuVduIcZKQy_TlK_A97FLEMdZWO3zI1Lr71IEbj_mrf5R4I0vjvzR_-_48ewlXxOcjQoyTbc8e0OPDxquoS74cPXFVzCHdhOFt-TNwmW-u0TOF12mNTBMmnS6JWnIZoPeuGIH5iAeoI19A2ZzT4cECw8JatIPkF068gq1mx6kkgqml34Op99OflIExcDtVwWkpogvFpzaZzQLKtz6QXToipdkXlmrDDGIo6PEaWQxsoQxIU4KLjEiLfGred8Dzba89Y_BWKn4Rqx0jqOyDoY8WlTehf8Oi-c5mIC2SgPZRNQOfJlfFcxYCmFGg5ThcNU8TCVnMC7yzUXA0zHrbOPUcyXMxFiOw6cd41KFqu0yazXLJe2srlkhSmntTGVtzVjdcGLCeyPSqKS3feKI5uRYJKxCRyMSvH799-39Ozfpr-CB8v3c3X6afH5OWwyVKtYYrMPG-vuh38B9-3P9be-exnN4RdlWgW1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+game-induced+emotions+using+EEG%2C+data+mining+and+machine+learning&rft.jtitle=Bulletin+of+the+National+Research+Centre&rft.au=Lim%2C+Min+Xuan&rft.au=Teo%2C+Jason&rft.date=2024-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=2522-8307&rft.volume=48&rft.issue=1&rft_id=info:doi/10.1186%2Fs42269-024-01200-7&rft.externalDocID=10_1186_s42269_024_01200_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2522-8307&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2522-8307&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2522-8307&client=summon