Solution of constrained mixed‐integer multi‐objective optimal power flow problem considering the hybrid multi‐objective evolutionary algorithm

An Optimal power flow (OPF) is non‐linear and constrained multi‐objective problem. OPF problems are expensive and evolutionary algorithms (EAs) are computationally complex to obtain uniformly distributed and global Pareto front (PF). Therefore, here, hybrid two‐phase algorithm integrated with parame...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IET generation, transmission & distribution Ročník 17; číslo 1; s. 66 - 90
Hlavní autori: Ali, Aamir, Abbas, Ghulam, Keerio, Muhammad Usman, Koondhar, Mohsin Ali, Chandni, Kiran, Mirsaeidi, Sohrab
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Wiley 01.01.2023
ISSN:1751-8687, 1751-8695
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract An Optimal power flow (OPF) is non‐linear and constrained multi‐objective problem. OPF problems are expensive and evolutionary algorithms (EAs) are computationally complex to obtain uniformly distributed and global Pareto front (PF). Therefore, here, hybrid two‐phase algorithm integrated with parameter less constraint technique is applied to solve OPF problem. Proposed technique combines single and multi‐objective EAs to find better convergence and evenly distributed PF. For the validation and effectiveness of proposed algorithm, various conflicting objective functions are formulated and implemented on IEEE 30 and 300‐bus network. Each case is independently run twenty times. Hyper volume indicator technique is employed to find the best PF, and the best‐compromised solution is obtained by using fuzzy decision‐making technique. Recently, maximum integration of wind and solar power is highly encouraged. Complexity of OPF is increased with the integration of uncertain renewable energy resources. Hence, 30‐bus test system is modified by replacing some conventional generators with the wind and solar generation. Uncertainties in wind, solar and load demand are modelled by appropriate probability distribution functions. Simulation results show that the proposed method can find the near global PF of highly complex problems subject to satisfying all the operational constraints.
AbstractList An Optimal power flow (OPF) is non‐linear and constrained multi‐objective problem. OPF problems are expensive and evolutionary algorithms (EAs) are computationally complex to obtain uniformly distributed and global Pareto front (PF). Therefore, here, hybrid two‐phase algorithm integrated with parameter less constraint technique is applied to solve OPF problem. Proposed technique combines single and multi‐objective EAs to find better convergence and evenly distributed PF. For the validation and effectiveness of proposed algorithm, various conflicting objective functions are formulated and implemented on IEEE 30 and 300‐bus network. Each case is independently run twenty times. Hyper volume indicator technique is employed to find the best PF, and the best‐compromised solution is obtained by using fuzzy decision‐making technique. Recently, maximum integration of wind and solar power is highly encouraged. Complexity of OPF is increased with the integration of uncertain renewable energy resources. Hence, 30‐bus test system is modified by replacing some conventional generators with the wind and solar generation. Uncertainties in wind, solar and load demand are modelled by appropriate probability distribution functions. Simulation results show that the proposed method can find the near global PF of highly complex problems subject to satisfying all the operational constraints.
Abstract An Optimal power flow (OPF) is non‐linear and constrained multi‐objective problem. OPF problems are expensive and evolutionary algorithms (EAs) are computationally complex to obtain uniformly distributed and global Pareto front (PF). Therefore, here, hybrid two‐phase algorithm integrated with parameter less constraint technique is applied to solve OPF problem. Proposed technique combines single and multi‐objective EAs to find better convergence and evenly distributed PF. For the validation and effectiveness of proposed algorithm, various conflicting objective functions are formulated and implemented on IEEE 30 and 300‐bus network. Each case is independently run twenty times. Hyper volume indicator technique is employed to find the best PF, and the best‐compromised solution is obtained by using fuzzy decision‐making technique. Recently, maximum integration of wind and solar power is highly encouraged. Complexity of OPF is increased with the integration of uncertain renewable energy resources. Hence, 30‐bus test system is modified by replacing some conventional generators with the wind and solar generation. Uncertainties in wind, solar and load demand are modelled by appropriate probability distribution functions. Simulation results show that the proposed method can find the near global PF of highly complex problems subject to satisfying all the operational constraints.
Author Koondhar, Mohsin Ali
Ali, Aamir
Abbas, Ghulam
Chandni, Kiran
Keerio, Muhammad Usman
Mirsaeidi, Sohrab
Author_xml – sequence: 1
  givenname: Aamir
  surname: Ali
  fullname: Ali, Aamir
  organization: Quaid‐e‐Awam University of Engineering, Science and Technology
– sequence: 2
  givenname: Ghulam
  orcidid: 0000-0001-7383-6798
  surname: Abbas
  fullname: Abbas, Ghulam
  email: lashariabbas@gmail.com
  organization: Southeast University
– sequence: 3
  givenname: Muhammad Usman
  surname: Keerio
  fullname: Keerio, Muhammad Usman
  organization: Quaid‐e‐Awam University of Engineering, Science and Technology
– sequence: 4
  givenname: Mohsin Ali
  surname: Koondhar
  fullname: Koondhar, Mohsin Ali
  organization: Quaid‐e‐Awam University of Engineering, Science and Technology
– sequence: 5
  givenname: Kiran
  surname: Chandni
  fullname: Chandni, Kiran
  organization: Southeast University
– sequence: 6
  givenname: Sohrab
  orcidid: 0000-0002-9564-0101
  surname: Mirsaeidi
  fullname: Mirsaeidi, Sohrab
  email: msohrab@bjtu.edu.cn
  organization: Beijing Jiaotong University
BookMark eNp9kU1u2zAQhYkiBZq42eQEXBdwQop_0rJIG8eAgS7qrAmKHMk0KNGg6Dje9Qhd9IQ9SeUfZFEEWZGcmfcN-N4VuuhjDwjdUHJLCa_u2uyKW1pIyT-gS6oEnZayEhev91J9QlfDsCZECMnVJfrzM4Zt9rHHscE29kNOxvfgcOdfwP399dv3GVpIuNuG7Md3rNdgs38GHDfZdybgTdyN_SbEHd6kWAfojiDvIPm-xXkFeLWvk3dvMOD5vN6kPTahjcnnVfcZfWxMGOD6fE7Q08P35f3jdPFjNr__uphapgSfNkyWjVCWW6mUNZQqxcTYKZuqIAWjJXOkkkQqVzAAwair6soIToUqTS0cm6D5ieuiWetNGr-T9joar4-FmFptUvY2gC6ZEMpQVgtbcymIkZRaDrxhlakpMyPry4llUxyGBM0rjxJ9yEYfstHHbMZh8t-w9dkcfDjYH96W0JNk5wPs34Hr2fJbcdL8A-8GqaI
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3331987
crossref_primary_10_1109_ACCESS_2024_3351710
crossref_primary_10_3390_en16010348
crossref_primary_10_1080_01430750_2024_2345839
crossref_primary_10_1038_s41598_024_56590_5
crossref_primary_10_3390_en18030478
crossref_primary_10_1007_s00202_024_02348_1
crossref_primary_10_1109_ACCESS_2024_3424240
crossref_primary_10_1371_journal_pone_0326104
crossref_primary_10_1049_rpg2_12949
crossref_primary_10_1016_j_scs_2023_105083
crossref_primary_10_3390_en16134896
crossref_primary_10_1109_ACCESS_2023_3306534
crossref_primary_10_1049_gtd2_13221
crossref_primary_10_1016_j_jestch_2023_101551
crossref_primary_10_1016_j_eswa_2023_119863
crossref_primary_10_1016_j_heliyon_2024_e39041
crossref_primary_10_1007_s00202_024_02937_0
crossref_primary_10_1016_j_asoc_2024_112155
crossref_primary_10_3389_fenrg_2023_1145888
crossref_primary_10_3390_su151813283
crossref_primary_10_1007_s40031_024_01081_4
crossref_primary_10_3389_fenrg_2023_1288486
crossref_primary_10_1002_ese3_70062
crossref_primary_10_1007_s00521_024_10952_2
crossref_primary_10_1109_ACCESS_2024_3392911
crossref_primary_10_32604_cmes_2024_048839
crossref_primary_10_3389_fenrg_2023_1293870
crossref_primary_10_1109_ACCESS_2023_3337535
crossref_primary_10_3389_fenrg_2023_1295476
crossref_primary_10_1049_rpg2_13077
crossref_primary_10_1109_ACCESS_2023_3242546
crossref_primary_10_1109_ACCESS_2024_3453755
crossref_primary_10_3389_fenrg_2023_1287413
crossref_primary_10_1109_ACCESS_2024_3410386
crossref_primary_10_1016_j_compeleceng_2025_110104
Cites_doi 10.1016/j.energy.2014.10.007
10.1109/SECON.2015.7133012
10.1016/j.energy.2018.03.002
10.1016/j.ijepes.2016.02.004
10.1016/j.energy.2011.09.027
10.1049/iet-gtd.2015.0388
10.1109/4235.996017
10.1109/TEVC.2019.2894743
10.1109/TEVC.2020.2981949
10.1016/j.energy.2017.01.071
10.1016/j.ijepes.2010.01.010
10.1109/TPWRS.2004.826716
10.1109/TPWRD.1986.4308013
10.3390/en11123438
10.1016/j.enconman.2013.09.028
10.1016/j.enconman.2017.06.071
10.1016/j.ijepes.2018.04.034
10.1016/S0142-0615(02)00006-6
10.1016/j.ijepes.2015.12.021
10.1049/iet-gtd.2016.1379
10.1109/4235.585893
10.1109/JSYST.2014.2325967
10.3390/en9090678
10.1109/4235.797969
10.1049/iet-gtd:20070457
10.1016/j.asoc.2016.06.022
10.3390/en11092270
10.1016/j.asoc.2018.01.039
10.1007/s40565-014-0089-4
10.1016/j.ijepes.2014.09.015
10.1016/j.asoc.2016.01.041
10.1016/j.asoc.2018.04.006
10.1016/j.epsr.2013.07.006
10.1016/j.engappai.2017.10.019
10.1049/iet-gtd.2016.1994
10.1016/j.renene.2016.10.022
10.1109/ACCESS.2019.2943480
10.1007/s00521-020-05453-x
10.3390/en12224310
10.1016/j.ins.2014.05.040
10.3390/en11010076
10.3390/en8042412
10.1016/j.asoc.2020.106321
10.1049/rpg2.12023
10.1109/TPWRS.2010.2051168
10.1080/0305215X.2016.1141204
10.1007/s00521-020-05455-9
10.1016/j.rser.2014.09.012
10.1007/s00500-019-04077-1
10.1109/59.898091
10.1109/TSMC.2020.3043642
10.1016/j.epsr.2016.09.025
10.3390/en11071692
10.1109/ACCESS.2019.2912643
10.1049/iet-gtd.2016.1135
10.1016/j.ins.2014.09.051
10.1049/iet-gtd.2017.0289
10.1111/coin.12312
10.1109/TSTE.2010.2044817
10.1016/j.asoc.2014.04.010
10.1016/j.asoc.2017.01.030
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/gtd2.12664
DatabaseName Wiley Online Library Open Access
CrossRef
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8695
EndPage 90
ExternalDocumentID oai_doaj_org_article_83557a13b5cb4650a611c4e4f39ab13a
10_1049_gtd2_12664
GTD212664
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 52150410399
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
4.4
4IJ
6IK
8FE
8FG
8VB
96U
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACIWK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
ESX
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFIPE
IGS
IPLJI
ITC
JAVBF
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
NXXTH
O9-
OCL
OK1
P62
PTHSS
QWB
RIE
RNS
ROL
RUI
S0W
U5U
UNMZH
ZL0
AAYXX
AFFHD
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3754-f368f57c4c677ca1177353758f92023183d096067d23ee531d9b9a541578ab5d3
IEDL.DBID DOA
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000882545400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-8687
IngestDate Fri Oct 03 12:27:51 EDT 2025
Wed Oct 29 21:09:26 EDT 2025
Tue Nov 18 21:22:46 EST 2025
Wed Jan 22 16:20:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3754-f368f57c4c677ca1177353758f92023183d096067d23ee531d9b9a541578ab5d3
ORCID 0000-0001-7383-6798
0000-0002-9564-0101
OpenAccessLink https://doaj.org/article/83557a13b5cb4650a611c4e4f39ab13a
PageCount 25
ParticipantIDs doaj_primary_oai_doaj_org_article_83557a13b5cb4650a611c4e4f39ab13a
crossref_primary_10_1049_gtd2_12664
crossref_citationtrail_10_1049_gtd2_12664
wiley_primary_10_1049_gtd2_12664_GTD212664
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle IET generation, transmission & distribution
PublicationYear 2023
Publisher Wiley
Publisher_xml – name: Wiley
References 2018; 11 9
2019; 12
1997; 1
2008; 2
2016; 79
2001; 103
2014; 21
2015; 294
1986; 1
2010; 1
2014; 2
2021; 33
2000; 15
2020; 50
2020; 92
2015; 41
2019; 23
2016; 42
2016; 81
2011; 26
2014; 281
2017; 122
2016; 48
2016; 47
2019; 7
2010; 32
2018; 102
2013; 105
2002; 6
2016; 10
2020; 36
1999; 3
2011; 36
2015; 9
2015; 8
2018; 65
2021; 52
2018; 68
2021; 15
2018; 150
2004; 19
2020
2015; 64
2017; 11
2002; 24
2017; 54
2020; 24
2015
2017; 142
2018; 12
2018; 11
2017; 101
2014; 78
2017; 148
2016; 9
2014; 77
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
Zhou Y. (e_1_2_10_51_1) 2020; 50
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Tian Y. (e_1_2_10_49_1) 2020
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 2
  start-page: 289
  issue: 4
  year: 2014
  end-page: 297
  article-title: A review on applications of heuristic optimization algorithms for optimal power flow in modern power systems
  publication-title: Journal of Modern Power Systems and Clean Energy
– volume: 105
  start-page: 142
  year: 2013
  end-page: 151
  article-title: Optimization of economic/emission load dispatch for hybrid generating systems using controlled Elitist NSGA‐II
  publication-title: Electr. Power Syst. Res.
– volume: 42
  start-page: 119
  year: 2016
  end-page: 131
  article-title: Optimal power flow using an Improved Colliding Bodies Optimization algorithm
  publication-title: Applied Soft Computing
– volume: 23
  start-page: 870
  issue: 5
  year: 2019
  end-page: 884
  article-title: Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces
  publication-title: IEEE Trans Evol Comput
– volume: 102
  start-page: 254
  year: 2018
  end-page: 264
  article-title: An efficient covexified SDP model for multi‐objective optimal power flow
  publication-title: International Journal of Electrical Power & Energy Systems
– volume: 41
  start-page: 1437
  year: 2015
  end-page: 1446
  article-title: Probabilistic optimal power flow in correlated hybrid wind‐PV power systems: A review and a new approach
  publication-title: Renewable Sustainable Energy Rev.
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  end-page: 271
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach
  publication-title: IEEE Trans Evol Comput
– volume: 281
  start-page: 225
  year: 2014
  end-page: 247
  article-title: Application of imperialist competitive algorithm with its modified techniques for multi‐objective optimal power flow problem: A comparative study
  publication-title: Information Sciences
– volume: 12
  start-page: 859
  issue: 4
  year: 2018
  end-page: 872
  article-title: Improved normalised normal constraint method to solve multi‐objective optimal power flow problem
  publication-title: IET Generation, Transmission & Distribution
– volume: 1
  start-page: 2
  issue: 1
  year: 2010
  end-page: 9
  article-title: Economic Load Dispatch Constrained by Wind Power Availability: A Here‐and‐Now Approach
  publication-title: IEEE Transactions on Sustainable Energy
– volume: 52
  start-page: 2374
  issue: 4
  year: 2021
  end-page: 2385
  article-title: A Biobjective Perspective for Mixed‐Integer Programming
  publication-title: IEEE Trans Syst Man Cybern Syst.
– volume: 24
  start-page: 851
  issue: 10
  year: 2002
  end-page: 857
  article-title: Optimal power flow with FACTS devices by hybrid TS/SA approach
  publication-title: International Journal of Electrical Power & Energy Systems
– volume: 54
  start-page: 229
  year: 2017
  end-page: 245
  article-title: An enhanced self‐adaptive differential evolution based solution methodology for multiobjective optimal power flow
  publication-title: Applied Soft Computing
– volume: 79
  start-page: 1
  year: 2016
  end-page: 10
  article-title: Differential search algorithm for solving multi‐objective optimal power flow problem
  publication-title: International Journal of Electrical Power & Energy Systems
– volume: 26
  start-page: 12
  issue: 1
  year: 2011
  end-page: 19
  article-title: MATPOWER: Steady‐state operations, planning, and analysis tools for power systems research and education
  publication-title: IEEE Trans Power Syst
– volume: 11 9
  start-page: 2270
  year: 2018
– volume: 11
  start-page: 3499
  issue: 14
  year: 2017
  end-page: 3509
  article-title: Transmission, and Distribution, Multi‐objective stochastic optimal power flow considering voltage stability and demand response with significant wind penetration
  publication-title: IET Gener. Transm. Distrib.
– volume: 11
  start-page: 1012
  issue: 4
  year: 2017
  end-page: 1022
  article-title: Modified bio‐inspired optimisation algorithm with a centroid decision making approach for solving a multi‐objective optimal power flow problem
  publication-title: IET Generation, Transmission & Distribution
– volume: 77
  start-page: 597
  year: 2014
  end-page: 607
  article-title: A modified teaching–learning based optimization for multi‐objective optimal power flow problem
  publication-title: Energy Convers. Manage.
– volume: 32
  start-page: 736
  issue: 6
  year: 2010
  end-page: 742
  article-title: Enhanced genetic Algorithm based computation technique for multi‐objective optimal power flow solution
  publication-title: International Journal of Electrical Power & Energy Systems
– volume: 92
  year: 2020
  article-title: Application of modified pigeon‐inspired optimization algorithm and constraint‐objective sorting rule on multi‐objective optimal power flow problem
  publication-title: Applied Soft Computing
– volume: 33
  start-page: 6753
  issue: 12
  year: 2021
  end-page: 6774
  article-title: Optimal placement and sizing of FACTS devices for optimal power flow in a wind power integrated electrical network
  publication-title: Neural Comput. Appl
– volume: 11
  start-page: 3438
  issue: 12
  year: 2018
  article-title: Solving the multi‐objective optimal power flow problem using the multi‐objective firefly algorithm with a constraints‐prior pareto‐domination approach
  publication-title: Energies
– volume: 11
  start-page: 76
  issue: 1
  year: 2018
  article-title: Improved krill herd algorithm with novel constraint handling method for solving optimal power flow problems
  publication-title: Energies
– volume: 33
  start-page: 6775
  issue: 12
  year: 2021
  end-page: 6804
  article-title: Optimal power flow solution with stochastic wind power using the Lévy coyote optimization algorithm
  publication-title: Neural Comput Appl
– volume: 294
  start-page: 286
  year: 2015
  end-page: 304
  article-title: Multi‐objective optimal electric power planning in the power system using Gaussian bare‐bones imperialist competitive algorithm
  publication-title: Information Sciences
– volume: 148
  start-page: 1194
  year: 2017
  end-page: 1207
  article-title: Optimal power flow solutions incorporating stochastic wind and solar power
  publication-title: Energy Convers. Manage.
– volume: 7
  start-page: 139726
  year: 2019
  end-page: 139745
  article-title: Multi‐objective optimal power flow based on hybrid firefly‐bat algorithm and constraints—Prior object‐fuzzy sorting strategy
  publication-title: IEEE Access
– year: 2015
  article-title: Comparative study of voltage stability analysis for renewable energy grid‐connected systems using PSS/E
– volume: 15
  start-page: 1204
  issue: 4
  year: 2000
  end-page: 1211
  article-title: Optimal power flow solutions under variable load conditions
  publication-title: IEEE Trans Power Syst
– volume: 10
  start-page: 1117
  issue: 5
  year: 2016
  end-page: 1123
  article-title: Linear approximated formulation of AC optimal power flow using binary discretisation
  publication-title: IET Generation, Transmission & Distribution
– volume: 36
  start-page: 1078
  issue: 3
  year: 2020
  end-page: 1096
  article-title: Multiobjective optimal power flow using interior search algorithm: A case study on a real‐time electrical network
  publication-title: Computational Intelligence
– volume: 101
  start-page: 1357
  year: 2017
  end-page: 1368
  article-title: Optimal scheduling of thermal‐wind‐solar power system with storage
  publication-title: Renewable Energy
– volume: 48
  start-page: 1823
  issue: 11
  year: 2016
  end-page: 1844
  article-title: An improved imperialist competitive algorithm for multi‐objective optimization
  publication-title: Engineering Optimization
– volume: 36
  start-page: 6420
  issue: 11
  year: 2011
  end-page: 6432
  article-title: A modified shuffle frog leaping algorithm for multi‐objective optimal power flow
  publication-title: Energy
– volume: 9
  start-page: 678
  issue: 9
  year: 2016
– volume: 47
  start-page: 494
  year: 2016
  end-page: 514
  article-title: A modified MOEA/D approach to the solution of multi‐objective optimal power flow problem
  publication-title: Applied Soft Computing
– volume: 68
  start-page: 81
  year: 2018
  end-page: 100
  article-title: Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 7
  start-page: 52060
  year: 2019
  end-page: 52084
  article-title: Applications of novel hybrid bat algorithm with constrained pareto fuzzy dominant rule on multi‐objective optimal power flow problems
  publication-title: IEEE Access
– volume: 150
  start-page: 1039
  year: 2018
  end-page: 1057
  article-title: Multiobjective economic‐environmental power dispatch with stochastic wind‐solar‐small hydro power
  publication-title: Energy
– volume: 21
  start-page: 590
  year: 2014
  end-page: 606
  article-title: Multi‐objective optimal power flow using quasi‐oppositional teaching learning based optimization
  publication-title: Applied Soft Computing
– start-page: 1
  year: 2020
  end-page: 1
  article-title: A coevolutionary framework for constrained multi‐objective optimization problems
  publication-title: IEEE Trans Evol Comput
– volume: 68
  start-page: 322
  year: 2018
  end-page: 342
  article-title: Applications of multi‐objective dimension‐based firefly algorithm to optimize the power losses, emission, and cost in power systems
  publication-title: Applied Soft Computing
– volume: 12
  start-page: 4310
  issue: 22
  year: 2019
  article-title: Optimal power flow for transmission power networks using a novel metaheuristic algorithm
  publication-title: Energies
– volume: 11
  start-page: 570
  issue: 2
  year: 2017
  end-page: 581
  article-title: MOPF solution methodology
  publication-title: IET Generation, Transmission & Distribution
– volume: 65
  start-page: 360
  year: 2018
  end-page: 373
  article-title: A novel quasi‐oppositional modified Jaya algorithm for multi‐objective optimal power flow solution
  publication-title: Applied Soft Computing
– volume: 81
  start-page: 64
  year: 2016
  end-page: 77
  article-title: Optimal power flow with emission and non‐smooth cost functions using backtracking search optimization algorithm
  publication-title: International Journal of Electrical Power & Energy Systems
– volume: 24
  start-page: 2999
  year: 2020
  end-page: 3023
  article-title: Multi‐objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms
  publication-title: Soft Computing
– volume: 142
  start-page: 190
  year: 2017
  end-page: 206
  article-title: Optimal power flow using moth swarm algorithm
  publication-title: Electr. Power Syst. Res.
– volume: 9
  start-page: 1440
  issue: 4
  year: 2015
  end-page: 1451
  article-title: Real‐time economic dispatch considering renewable power generation variability and uncertainty over scheduling period
  publication-title: IEEE Systems Journal
– volume: 19
  start-page: 913
  issue: 2
  year: 2004
  end-page: 918
  article-title: A novel optimal reactive power dispatch method based on an improved hybrid evolutionary programming technique
  publication-title: IEEE Trans Power Syst
– volume: 2
  start-page: 720
  issue: 5
  year: 2008
  end-page: 730
  article-title: Solving multi‐objective optimal power flow using differential evolution
  publication-title: IET Generation, Transmission & Distribution
– volume: 1
  start-page: 346
  issue: 3
  year: 1986
  end-page: 354
  article-title: Estimating the voltage stability of a power‐system
  publication-title: Ieee Transactions on Power Delivery
– volume: 122
  start-page: 70
  year: 2017
  end-page: 82
  article-title: Multi‐objective optimal power flow based on improved strength Pareto evolutionary algorithm
  publication-title: Energy
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  end-page: 197
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA‐II
  publication-title: IEEE Trans Evol Comput
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  end-page: 82
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans Evol Comput
– volume: 78
  start-page: 276
  year: 2014
  end-page: 289
  article-title: Multi‐objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi‐objective modified imperialist competitive algorithm
  publication-title: Energy
– volume: 24
  start-page: 938
  issue: 5
  year: 2020
  end-page: 947
  article-title: A constrained multiobjective evolutionary algorithm with detect‐and‐escape strategy
  publication-title: IEEE Trans Evol Comput
– volume: 50
  start-page: 3086
  issue: 8
  year: 2020
  end-page: 3099
  article-title: Tri‐goal evolution framework for constrained many‐objective optimization
  publication-title: IEEE Trans Syst Man Cybern Syst
– volume: 103
  start-page: 1
  year: 2001
  end-page: 21
  article-title: SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization
– year: 2020
– volume: 11
  start-page: 1692
  issue: 7
  year: 2018
  article-title: Solving non‐smooth optimal power flow problems using a developed grey wolf optimizer
  publication-title: Energies
– volume: 64
  start-page: 1237
  year: 2015
  end-page: 1250
  article-title: Solution of optimal power flow using non dominated sorting multi objective opposition based gravitational search algorithm
  publication-title: International Journal of Electrical Power & Energy Systems
– volume: 8
  issue: 4
  year: 2015
  article-title: An improved artificial bee colony algorithm and its application to multi‐objective optimal power flow
  publication-title: Energies
– volume: 15
  start-page: 278
  issue: 2
  year: 2021
  end-page: 296
  article-title: AC optimal power flow with thermal–wind–solar–tidal systems using the symbiotic organisms search algorithm
  publication-title: IET Renewable Power Generation
– ident: e_1_2_10_31_1
  doi: 10.1016/j.energy.2014.10.007
– ident: e_1_2_10_46_1
  doi: 10.1109/SECON.2015.7133012
– ident: e_1_2_10_61_1
  doi: 10.1016/j.energy.2018.03.002
– ident: e_1_2_10_19_1
  doi: 10.1016/j.ijepes.2016.02.004
– ident: e_1_2_10_23_1
  doi: 10.1016/j.energy.2011.09.027
– ident: e_1_2_10_4_1
  doi: 10.1049/iet-gtd.2015.0388
– ident: e_1_2_10_60_1
– ident: e_1_2_10_52_1
  doi: 10.1109/4235.996017
– ident: e_1_2_10_48_1
  doi: 10.1109/TEVC.2019.2894743
– ident: e_1_2_10_50_1
  doi: 10.1109/TEVC.2020.2981949
– ident: e_1_2_10_26_1
  doi: 10.1016/j.energy.2017.01.071
– ident: e_1_2_10_5_1
  doi: 10.1016/j.ijepes.2010.01.010
– ident: e_1_2_10_6_1
  doi: 10.1109/TPWRS.2004.826716
– ident: e_1_2_10_54_1
  doi: 10.1109/TPWRD.1986.4308013
– ident: e_1_2_10_20_1
  doi: 10.3390/en11123438
– ident: e_1_2_10_24_1
  doi: 10.1016/j.enconman.2013.09.028
– ident: e_1_2_10_57_1
  doi: 10.1016/j.enconman.2017.06.071
– ident: e_1_2_10_36_1
  doi: 10.1016/j.ijepes.2018.04.034
– volume: 50
  start-page: 3086
  issue: 8
  year: 2020
  ident: e_1_2_10_51_1
  article-title: Tri‐goal evolution framework for constrained many‐objective optimization
  publication-title: IEEE Trans Syst Man Cybern Syst
– ident: e_1_2_10_8_1
  doi: 10.1016/S0142-0615(02)00006-6
– ident: e_1_2_10_15_1
  doi: 10.1016/j.ijepes.2015.12.021
– ident: e_1_2_10_28_1
  doi: 10.1049/iet-gtd.2016.1379
– ident: e_1_2_10_47_1
  doi: 10.1109/4235.585893
– ident: e_1_2_10_55_1
  doi: 10.1109/JSYST.2014.2325967
– ident: e_1_2_10_11_1
  doi: 10.3390/en9090678
– ident: e_1_2_10_64_1
  doi: 10.1109/4235.797969
– ident: e_1_2_10_13_1
  doi: 10.1049/iet-gtd:20070457
– ident: e_1_2_10_67_1
– ident: e_1_2_10_10_1
  doi: 10.1016/j.asoc.2016.06.022
– start-page: 1
  year: 2020
  ident: e_1_2_10_49_1
  article-title: A coevolutionary framework for constrained multi‐objective optimization problems
  publication-title: IEEE Trans Evol Comput
– ident: e_1_2_10_21_1
  doi: 10.3390/en11092270
– ident: e_1_2_10_33_1
  doi: 10.1016/j.asoc.2018.01.039
– ident: e_1_2_10_2_1
  doi: 10.1007/s40565-014-0089-4
– ident: e_1_2_10_27_1
  doi: 10.1016/j.ijepes.2014.09.015
– ident: e_1_2_10_18_1
  doi: 10.1016/j.asoc.2016.01.041
– ident: e_1_2_10_35_1
  doi: 10.1016/j.asoc.2018.04.006
– ident: e_1_2_10_58_1
  doi: 10.1016/j.epsr.2013.07.006
– ident: e_1_2_10_12_1
  doi: 10.1016/j.engappai.2017.10.019
– ident: e_1_2_10_45_1
  doi: 10.1049/iet-gtd.2016.1994
– ident: e_1_2_10_56_1
  doi: 10.1016/j.renene.2016.10.022
– ident: e_1_2_10_40_1
  doi: 10.1109/ACCESS.2019.2943480
– ident: e_1_2_10_42_1
  doi: 10.1007/s00521-020-05453-x
– ident: e_1_2_10_14_1
  doi: 10.3390/en12224310
– ident: e_1_2_10_30_1
  doi: 10.1016/j.ins.2014.05.040
– ident: e_1_2_10_9_1
  doi: 10.3390/en11010076
– ident: e_1_2_10_17_1
  doi: 10.3390/en8042412
– ident: e_1_2_10_38_1
  doi: 10.1016/j.asoc.2020.106321
– ident: e_1_2_10_43_1
  doi: 10.1049/rpg2.12023
– ident: e_1_2_10_63_1
  doi: 10.1109/TPWRS.2010.2051168
– ident: e_1_2_10_66_1
  doi: 10.1080/0305215X.2016.1141204
– ident: e_1_2_10_44_1
  doi: 10.1007/s00521-020-05455-9
– ident: e_1_2_10_41_1
  doi: 10.1016/j.rser.2014.09.012
– ident: e_1_2_10_65_1
  doi: 10.1007/s00500-019-04077-1
– ident: e_1_2_10_3_1
  doi: 10.1109/59.898091
– ident: e_1_2_10_62_1
– ident: e_1_2_10_53_1
  doi: 10.1109/TSMC.2020.3043642
– ident: e_1_2_10_16_1
  doi: 10.1016/j.epsr.2016.09.025
– ident: e_1_2_10_7_1
  doi: 10.3390/en11071692
– ident: e_1_2_10_39_1
  doi: 10.1109/ACCESS.2019.2912643
– ident: e_1_2_10_32_1
  doi: 10.1049/iet-gtd.2016.1135
– ident: e_1_2_10_25_1
  doi: 10.1016/j.ins.2014.09.051
– ident: e_1_2_10_37_1
  doi: 10.1049/iet-gtd.2017.0289
– ident: e_1_2_10_34_1
  doi: 10.1111/coin.12312
– ident: e_1_2_10_59_1
  doi: 10.1109/TSTE.2010.2044817
– ident: e_1_2_10_29_1
  doi: 10.1016/j.asoc.2014.04.010
– ident: e_1_2_10_22_1
  doi: 10.1016/j.asoc.2017.01.030
SSID ssj0055647
Score 2.5319054
Snippet An Optimal power flow (OPF) is non‐linear and constrained multi‐objective problem. OPF problems are expensive and evolutionary algorithms (EAs) are...
Abstract An Optimal power flow (OPF) is non‐linear and constrained multi‐objective problem. OPF problems are expensive and evolutionary algorithms (EAs) are...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 66
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL0qhQUsyltMecgSbEAKxLEd2xIbXoVV1UWRuov8nA6amVTptNBdP4EFX8iXcO0kA5UqJMQujxs78bWvj-34HIBnCBpKi7Ci4MLjAMVzXeioWFFGXgZGXcl8mcUm5O6uOjjQexvwetwL0_NDrCfcUsvI8To1cGN7FRIEtejE6cpXLyn2L_wKXKWUqSTcUPG9MQ4LUWd5MewfaaFqJUdyUq5f_X72QneUWfsvotTczezc_L8XvAVbA7wkb_r6cBs2wvIO3PiDdPAu_BhnwkgbiUvwMKlEBE8Ws2_B_zz_nhkkQkfyv4Z43tovfVQkLcaXBSZ_lKTVSJy3X8kgSJMTSjv6MAuCmJIcnqWtYJekEU6H7PHDiJlP2262Olzcg887H_bffSoGbYbCJdHcIrJaRSEdd7WUzqSlXybwjoo6CbJjoPB5cCR9xULAhu611UYgXJDKWOHZfdhctsvwAAiPSnHDTeIq5NLVRlNjtcdqU5ZOx2oCz0cXNW4gLk8lM2_yAjrXTSrpJpf0BJ6ubY96uo5Lrd4mT68tEsV2vtB202ZosQ1CUyENZVY4yxHHmppSxwOPTBtLmZnAi-z9v-TTfNx_X-Wj7X8xfgjXUxn2Ez2PYHPVnYTHcM2drmbH3ZNcyX8ByT8DPw
  priority: 102
  providerName: Wiley-Blackwell
Title Solution of constrained mixed‐integer multi‐objective optimal power flow problem considering the hybrid multi‐objective evolutionary algorithm
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fgtd2.12664
https://doaj.org/article/83557a13b5cb4650a611c4e4f39ab13a
Volume 17
WOSCitedRecordID wos000882545400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1751-8695
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0055647
  issn: 1751-8687
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-8695
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055647
  issn: 1751-8687
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-8695
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055647
  issn: 1751-8687
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV25TuwwFLVgRMErEKvesIws8ZqHFEhiO7ZLdmhGFCDoIscLDJqZoDBsHZ9AwRfyJVw7GQQSeq-hibJYvpGv7Xu8nYPQHwANcQGwIqLMwADFUBlJJ0gUOxpbkuiYmDiITfBuV1xcyJNPUl9-T1hND1wX3BYgBMZVQgqmCwpwQmVJoqmljkhVJCRAI0A948FU3QczlgVpMYiNSSQywcfEpFRuXY5MuplAXKJfQlFg7P-KUEOIOZhFMw02xNv1P82hCTucR78-MQYuoNfxNBYuHdYe23mJB2vwoPdozdvzS6B_sBUOGwXhuSyu6y4Nl9A5DCD7G6-Lhl2_fMCNmkzIyB_HAxMYACG-evLnuL7Jw9435lX1hFX_sqx6o6vBIjo72D_dPYoaYYVIe8XbyJFMOMY11RnnWvl1W8Lgi3DSq6lDKzdhZMNNSqyFVmpkIRWDWM-FKpghS6g1LIf2N8LUCUEVVZ5okHKdKZmoQhrweRxr6dI2-jsu41w3rOO-ZPp5WP2mMvf-yIM_2mj9I-1NzbXxbaod76qPFJ4fO7yAWpM3tSb_X61po43g6H_YyQ9P99Jwt_wTFlfQtC_bevZmFbVG1Z1dQ1P6ftS7rTpoMqUnnVCH4Xp-3H0HIKD4fA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2CggQseKMOT0uwASklGduxveRVWlFGLAbRXeT4MZ1qZlKFocCOT2DBF_Il3OtkBipVSIhdHjd2Yl9fH9vxOQCPEDTkNcKKTEiPAxQvTGai5lkeRR544XLu8yQ2oUYjvb9v3vX_5tBemI4fYj3hRi0jxWtq4DQh3Q04BZFkTpZ-uFVgByPOwjmBSIOUGz7sjlaBWMoy6YthB1lkutRqxU4qzNPfz57ojxJt_0mYmvqZ7Sv_-YZX4XIPMNmzziOuwZmwuA6X_qAdvAE_VnNhrInMEUAknYjg2Xz6Jfif374nDonQsvS3IZ439WEXF1mDEWaOyR-RuBqLs-Yz6yVpUkK0pw-zYIgq2cFX2gx2ShrhuM8ev4zZ2aRpp8uD-U14v_1q_GIn69UZMkeyuVnkpY5SOeFKpZylxV8u8Y6OhiTZMVT4NDxSfshDwKbuTW2sRMCgtK2l57dgY9EswiYwEbUWVlhiKxTKldYUtjYeHSfPnYnDATxe1VHleupyKplZlZbQhamopKtU0gN4uLY96gg7TrV6TlW9tiCS7XShaSdV32YrBKdS2YLX0tXkX7YsCieCiNzYuuB2AE9S9f8ln-r1-OUwHd3-F-MHcGFn_Hav2tsdvbkDF6k8u2mfu7CxbD-Fe3DeHS-nH9v7yeN_Ac-OB5c
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIAQH3qjL0xJcQArEsR3bR6AsINBqD0XqLXL82C7a3azSpcCtP6GH_sL-Emac7EKlCglxy2NiJ-PxzGc7_oaQZwAa8hpgRSakhwGKFyYzUfMsjyIPnLmc-zwlm1Cjkd7bM-P-3xzcC9PxQ2wm3LBnJH-NHTwsfewGnAJJMicrX7xkEGDERXJJSMXQqAsxXjtiKcuUXwwCJMt0qdWanVSYV7-fPROPEm3_WZia4szwxn--4U1yvQeY9HVnEbfIhbC4Ta79QTt4h5ys58JoE6lDgIh5IoKn8-mP4E-PjhOHRGhp-tsQzpv6a-cXaQMeZg7FLzG5Go2z5jvtU9KkgnBPH1RBAVXS_Z-4GeycMsJhXz18GbWzSdNOV_vzu-TL8N3u2w9Zn50hc5g2N4u81FEqJ1yplLO4-Msl3NHRYEp2cBU-DY-UL3gI0NW9qY2VABiUtrX0_B7ZWjSLsE2oiFoLKyyyFQrlSmuYrY0Hw8lzZ2IxIM_XbVS5nrocNTOr0hK6MBVqukqaHpCnG9llR9hxrtQbbOqNBJJspwtNO6n6PlsBOJXKMl5LVwtAsrZkzIkgIje2ZtwOyIvU_H-pp3q_u1Oko_v_IvyEXBnvDKvPH0efHpCrqM5u1uch2Vq138IjctkdrqYH7eNk8L8AzrEGrg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution+of+constrained+mixed%E2%80%90integer+multi%E2%80%90objective+optimal+power+flow+problem+considering+the+hybrid+multi%E2%80%90objective+evolutionary+algorithm&rft.jtitle=IET+generation%2C+transmission+%26+distribution&rft.au=Aamir+Ali&rft.au=Ghulam+Abbas&rft.au=Muhammad+Usman+Keerio&rft.au=Mohsin+Ali+Koondhar&rft.date=2023-01-01&rft.pub=Wiley&rft.issn=1751-8687&rft.eissn=1751-8695&rft.volume=17&rft.issue=1&rft.spage=66&rft.epage=90&rft_id=info:doi/10.1049%2Fgtd2.12664&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_83557a13b5cb4650a611c4e4f39ab13a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8687&client=summon