A new bipenalty formulation for ensuring time step stability in time domain computational dynamics
SUMMARY It is well known that use of standard penalty methods can decrease the critical time step of time domain dynamic finite element analyses. The bipenalty method utilises both stiffness and mass penalties to impose constraints that have a minimal effect on the eigenfrequencies of the finite ele...
Saved in:
| Published in: | International journal for numerical methods in engineering Vol. 90; no. 3; pp. 269 - 286 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article Publication |
| Language: | English |
| Published: |
Chichester, UK
John Wiley & Sons, Ltd
20.04.2012
Wiley John Wiley & Sons |
| Subjects: | |
| ISSN: | 0029-5981, 1097-0207 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | SUMMARY
It is well known that use of standard penalty methods can decrease the critical time step of time domain dynamic finite element analyses. The bipenalty method utilises both stiffness and mass penalties to impose constraints that have a minimal effect on the eigenfrequencies of the finite element system. One way of achieving this goal is to find a ratio of stiffness and mass penalty parameters—the critical penalty ratio (CPR)—that does not affect the maximum eigenfrequency (and therefore, for conditionally stable solution schemes, the critical time step) of a system. In this contribution, we develop a new method of calculating the CPR associated with a finite element formulation by examining the eigenvalue problem in detail. Advantages of the method compared with previous solutions include increased simplicity and generality and the ability to consider multiple constraints. The method is demonstrated by deriving CPRs for a few finite element formulations, which are then verified using simple numerical examples. The superiority of the bipenalty method over standard mass penalty methods is also demonstrated. Copyright © 2011 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | It is well known that use of standard penalty methods can decrease the critical time step of time domain dynamic finite element analyses. The bipenalty method utilises both stiffness and mass penalties to impose constraints that have a minimal effect on the eigenfrequencies of the finite element system. One way of achieving this goal is to find a ratio of stiffness and mass penalty parameters—the critical penalty ratio (CPR)—that does not affect the maximum eigenfrequency (and therefore, for conditionally stable solution schemes, the critical time step) of a system. In this contribution, we develop a new method of calculating the CPR associated with a finite element formulation by examining the eigenvalue problem in detail. Advantages of the method compared with previous solutions include increased simplicity and generality and the ability to consider multiple constraints. The method is demonstrated by deriving CPRs for a few finite element formulations, which are then verified using simple numerical examples. The superiority of the bipenalty method over standard mass penalty methods is also demonstrated. Copyright © 2011 John Wiley & Sons, Ltd. Peer Reviewed SUMMARY It is well known that use of standard penalty methods can decrease the critical time step of time domain dynamic finite element analyses. The bipenalty method utilises both stiffness and mass penalties to impose constraints that have a minimal effect on the eigenfrequencies of the finite element system. One way of achieving this goal is to find a ratio of stiffness and mass penalty parameters—the critical penalty ratio (CPR)—that does not affect the maximum eigenfrequency (and therefore, for conditionally stable solution schemes, the critical time step) of a system. In this contribution, we develop a new method of calculating the CPR associated with a finite element formulation by examining the eigenvalue problem in detail. Advantages of the method compared with previous solutions include increased simplicity and generality and the ability to consider multiple constraints. The method is demonstrated by deriving CPRs for a few finite element formulations, which are then verified using simple numerical examples. The superiority of the bipenalty method over standard mass penalty methods is also demonstrated. Copyright © 2011 John Wiley & Sons, Ltd. |
| Author | Askes, Harm Hetherington, Jack Rodríguez-Ferran, Antonio |
| Author_xml | – sequence: 1 givenname: Jack surname: Hetherington fullname: Hetherington, Jack email: cip09jeh@sheffield.ac.uk, Jack Hetherington, Department of Civil and Structural Engineering, University of Sheffield,Mappin Street, Sheffield S1 3JD, UK., cip09jeh@sheffield.ac.uk organization: Department of Civil and Structural Engineering, University of Sheffield, Mappin Street, S1 3JD, Sheffield, UK – sequence: 2 givenname: Antonio surname: Rodríguez-Ferran fullname: Rodríguez-Ferran, Antonio organization: Laboratori de Càlcul Numèric, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034Barcelona, Spain – sequence: 3 givenname: Harm surname: Askes fullname: Askes, Harm organization: Department of Civil and Structural Engineering, University of Sheffield, Mappin Street, S1 3JD, Sheffield, UK |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25669398$$DView record in Pascal Francis |
| BookMark | eNp1kVtr3DAQhUVJoZu0kJ_gl0JfvJWsta15TEMuLekWSi_QFzGWxkWJLRvJS7L_vnKdpjSkD5JGo-8cmKNDduAHT4wdC74WnBdvfU9rKcXmGVsJDnXOC14fsFV6grwEJV6wwxivORei5HLFmpPM023WuJE8dtM-a4fQ7zqc3ODnOiMfd8H5n9nkesriRGPasHGdS7DzS9sOPabaDP24m35rscvs3mPvTHzJnrfYRXp1fx6xr-dnX04v86tPF-9PT65yI-tyk1tlJRhFJWwUWDKciAOAASstCGVt2ba1FFIplK1VqgZqmqpsNwYBChDyiInF18Sd0YEMBYOTHtD9vcwrBVJoKUFUs-b1ohkxGuzagN64qMfgegx7XZRVBRJU4tb33mGIMVCrjVsGnQK6Tguu5_R1Sl_P6SfBm0eCP55PoPmC3rqO9v_l9Pbj2b-8S79x98BjuNFVnaLU37cX-oP68bmEd1v9Tf4CjYSmNA |
| CODEN | IJNMBH |
| CitedBy_id | crossref_primary_10_1016_j_tafmec_2013_11_011 crossref_primary_10_1002_nme_6739 crossref_primary_10_1002_nme_4389 crossref_primary_10_1016_j_cma_2013_03_013 crossref_primary_10_1007_s00466_015_1188_4 crossref_primary_10_1002_nme_5712 crossref_primary_10_1002_nme_7614 crossref_primary_10_1002_nme_4819 crossref_primary_10_1016_j_matcom_2021_03_023 crossref_primary_10_1002_nme_4829 |
| Cites_doi | 10.1007/s00466-002-0353-8 10.1299/jsme1958.29.731 10.1002/nme.1620310309 10.1016/j.compstruc.2009.05.011 10.1299/jsme1958.29.3701 10.1299/jsme1958.26.1849 10.1098/rspa.2005.1472 10.1016/0045-7825(85)90126-4 10.1007/s00466-009-0428-x 10.1006/jsvi.2001.4191 10.1098/rspa.2009.0350 |
| ContentType | Journal Article Publication |
| Contributor | Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental Universitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria |
| Contributor_xml | – sequence: 1 fullname: Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental – sequence: 2 fullname: Universitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria |
| Copyright | Copyright © 2011 John Wiley & Sons, Ltd. 2015 INIST-CNRS info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es |
| Copyright_xml | – notice: Copyright © 2011 John Wiley & Sons, Ltd. – notice: 2015 INIST-CNRS – notice: info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a> |
| DBID | BSCLL AAYXX CITATION IQODW XX2 |
| DOI | 10.1002/nme.3314 |
| DatabaseName | Istex CrossRef Pascal-Francis Recercat |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Mathematics Physics |
| EISSN | 1097-0207 |
| EndPage | 286 |
| ExternalDocumentID | oai_recercat_cat_2072_339161 25669398 10_1002_nme_3314 NME3314 ark_67375_WNG_J8ZR59BN_V |
| Genre | article |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT ALUQN AAYXX CITATION O8X 31~ 6TJ ABDPE ABEML ACKIV ACSCC AGHNM AI. ARCSS GBZZK IQODW M6O PALCI RIWAO SAMSI TUS VH1 VOH ZY4 ~A~ XX2 |
| ID | FETCH-LOGICAL-c3754-d8d39c8e59489dec0ee0999c9d3d918dd5ff731388a3fd8879ebb65f4ca992913 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000301536100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-5981 |
| IngestDate | Fri Nov 07 13:56:44 EST 2025 Mon Jul 21 09:15:01 EDT 2025 Sat Nov 29 06:43:45 EST 2025 Tue Nov 18 22:27:13 EST 2025 Sun Sep 21 06:14:29 EDT 2025 Tue Nov 11 03:32:51 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Constraint explicit time integration Modeling constraints Penalty method Natural frequency Finite element method Time domain method finite element methods Eigenvalue problem bipenalty method Time integration critical time step |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3754-d8d39c8e59489dec0ee0999c9d3d918dd5ff731388a3fd8879ebb65f4ca992913 |
| Notes | istex:FA85B66B7BFE6902F0053BE0695C6A6674AFE96A ArticleID:NME3314 ark:/67375/WNG-J8ZR59BN-V |
| OpenAccessLink | https://recercat.cat/handle/2072/339161 |
| PageCount | 18 |
| ParticipantIDs | csuc_recercat_oai_recercat_cat_2072_339161 pascalfrancis_primary_25669398 crossref_citationtrail_10_1002_nme_3314 crossref_primary_10_1002_nme_3314 wiley_primary_10_1002_nme_3314_NME3314 istex_primary_ark_67375_WNG_J8ZR59BN_V |
| PublicationCentury | 2000 |
| PublicationDate | 20 April 2012 |
| PublicationDateYYYYMMDD | 2012-04-20 |
| PublicationDate_xml | – month: 04 year: 2012 text: 20 April 2012 day: 20 |
| PublicationDecade | 2010 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: Chichester |
| PublicationTitle | International journal for numerical methods in engineering |
| PublicationTitleAlternate | Int. J. Numer. Meth. Engng |
| PublicationYear | 2012 |
| Publisher | John Wiley & Sons, Ltd Wiley John Wiley & Sons |
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley – name: John Wiley & Sons |
| References | Asano N.A penalty function type of virtual work principle for impact contact problems of two bodies. Bulletin of the JSME 1986; 29(257):3701-3709. Hetherington J, Askes H.Penalty methods for time domain computational dynamics based on positive and negative inertia. Computers & Structures 2009; 87(23-24):1474-1482. Belytschko T, Neal MO.Contact-impact by the pinball algorithm with penalty and Lagrangian methods. International Journal for Numerical Methods in Engineering 1991; 31(3):547-572. Paraskevopoulos EA, Panagiotopoulos CG, Manolis GD.Imposition of time-dependent boundary conditions in FEM formulations for elastodynamics: critical assessment of penalty-type methods. Computational Mechanics 2010; 45(2-3):157-166. Askes H, Caramés-Saddler M, Rodríguez-Ferran A.Bipenalty method for time domain computational dynamics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2010; 466(2117):1389-1408. Ilanko S.Existence of natural frequencies of systems with artificial restraints and their convergence in asymptotic modelling. Journal of Sound and Vibration 2002; 255(5):883-898. DOI: 10.1006/jsvi.2001.4191. Asano N.A virtual work principle using penalty function method for impact contact problems of two bodies. Bulletin of the JSME 1986; 29(249):731-736. Belytschko T, Smolinkski P, Liu WK.Stability of multi-time step partitioned integrators for first-order finite element systems. Computer Methods in Applied Mechanics and Engineering 1985; 49(3):281-297. Ilanko S.Introducing the use of positive and negative inertial functions in asymptotic modelling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2005; 461(2060):2545-2562. DOI: 10.1098/rspa.2005.1472. Bathe K.Finite Element Procedures. Prentice Hall: Englewood Cliffs, 1996. Asano N.An approximate hybrid type of virtual work principle for two elastoimpact contact bodies. Bulletin of the JSME 1983; 26(221):1849-1856. Ling X, Cherukuri HP.Stability analysis of an explicit finite element scheme for plane wave motions in elastic solids. Computational Mechanics 2002; 29(4-5):430-440. Hughes TJR.The Finite Element Method. Dover Publications: New York, 2000. 2010; 45 1996 1986; 29 2009; 87 2002; 29 2005; 461 2000 1983; 26 2010; 466 1991; 31 1985; 49 2002; 255 e_1_2_12_4_1 e_1_2_12_3_1 e_1_2_12_6_1 e_1_2_12_5_1 Hughes TJR (e_1_2_12_12_1) 2000 Bathe K (e_1_2_12_2_1) 1996 e_1_2_12_14_1 e_1_2_12_13_1 e_1_2_12_8_1 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_10_1 e_1_2_12_9_1 |
| References_xml | – reference: Belytschko T, Neal MO.Contact-impact by the pinball algorithm with penalty and Lagrangian methods. International Journal for Numerical Methods in Engineering 1991; 31(3):547-572. – reference: Paraskevopoulos EA, Panagiotopoulos CG, Manolis GD.Imposition of time-dependent boundary conditions in FEM formulations for elastodynamics: critical assessment of penalty-type methods. Computational Mechanics 2010; 45(2-3):157-166. – reference: Bathe K.Finite Element Procedures. Prentice Hall: Englewood Cliffs, 1996. – reference: Askes H, Caramés-Saddler M, Rodríguez-Ferran A.Bipenalty method for time domain computational dynamics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2010; 466(2117):1389-1408. – reference: Ilanko S.Introducing the use of positive and negative inertial functions in asymptotic modelling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2005; 461(2060):2545-2562. DOI: 10.1098/rspa.2005.1472. – reference: Asano N.A penalty function type of virtual work principle for impact contact problems of two bodies. Bulletin of the JSME 1986; 29(257):3701-3709. – reference: Ling X, Cherukuri HP.Stability analysis of an explicit finite element scheme for plane wave motions in elastic solids. Computational Mechanics 2002; 29(4-5):430-440. – reference: Belytschko T, Smolinkski P, Liu WK.Stability of multi-time step partitioned integrators for first-order finite element systems. Computer Methods in Applied Mechanics and Engineering 1985; 49(3):281-297. – reference: Asano N.A virtual work principle using penalty function method for impact contact problems of two bodies. Bulletin of the JSME 1986; 29(249):731-736. – reference: Asano N.An approximate hybrid type of virtual work principle for two elastoimpact contact bodies. Bulletin of the JSME 1983; 26(221):1849-1856. – reference: Ilanko S.Existence of natural frequencies of systems with artificial restraints and their convergence in asymptotic modelling. Journal of Sound and Vibration 2002; 255(5):883-898. DOI: 10.1006/jsvi.2001.4191. – reference: Hetherington J, Askes H.Penalty methods for time domain computational dynamics based on positive and negative inertia. Computers & Structures 2009; 87(23-24):1474-1482. – reference: Hughes TJR.The Finite Element Method. Dover Publications: New York, 2000. – volume: 29 start-page: 731 issue: 249 year: 1986 end-page: 736 article-title: A virtual work principle using penalty function method for impact contact problems of two bodies publication-title: Bulletin of the JSME – volume: 49 start-page: 281 issue: 3 year: 1985 end-page: 297 article-title: Stability of multi‐time step partitioned integrators for first‐order finite element systems publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 31 start-page: 547 issue: 3 year: 1991 end-page: 572 article-title: Contact‐impact by the pinball algorithm with penalty and Lagrangian methods publication-title: International Journal for Numerical Methods in Engineering – volume: 26 start-page: 1849 issue: 221 year: 1983 end-page: 1856 article-title: An approximate hybrid type of virtual work principle for two elastoimpact contact bodies publication-title: Bulletin of the JSME – volume: 461 start-page: 2545 issue: 2060 year: 2005 end-page: 2562 article-title: Introducing the use of positive and negative inertial functions in asymptotic modelling publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences – volume: 29 start-page: 430 issue: 4‐5 year: 2002 end-page: 440 article-title: Stability analysis of an explicit finite element scheme for plane wave motions in elastic solids publication-title: Computational Mechanics – year: 1996 – year: 2000 – volume: 466 start-page: 1389 issue: 2117 year: 2010 end-page: 1408 article-title: Bipenalty method for time domain computational dynamics publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences – volume: 87 start-page: 1474 issue: 23‐24 year: 2009 end-page: 1482 article-title: Penalty methods for time domain computational dynamics based on positive and negative inertia publication-title: Computers & Structures – volume: 255 start-page: 883 issue: 5 year: 2002 end-page: 898 article-title: Existence of natural frequencies of systems with artificial restraints and their convergence in asymptotic modelling publication-title: Journal of Sound and Vibration – volume: 45 start-page: 157 issue: 2‐3 year: 2010 end-page: 166 article-title: Imposition of time‐dependent boundary conditions in FEM formulations for elastodynamics: critical assessment of penalty‐type methods publication-title: Computational Mechanics – volume: 29 start-page: 3701 issue: 257 year: 1986 end-page: 3709 article-title: A penalty function type of virtual work principle for impact contact problems of two bodies publication-title: Bulletin of the JSME – ident: e_1_2_12_13_1 doi: 10.1007/s00466-002-0353-8 – ident: e_1_2_12_11_1 doi: 10.1299/jsme1958.29.731 – ident: e_1_2_12_5_1 doi: 10.1002/nme.1620310309 – ident: e_1_2_12_7_1 doi: 10.1016/j.compstruc.2009.05.011 – ident: e_1_2_12_10_1 doi: 10.1299/jsme1958.29.3701 – ident: e_1_2_12_9_1 doi: 10.1299/jsme1958.26.1849 – volume-title: Finite Element Procedures year: 1996 ident: e_1_2_12_2_1 – ident: e_1_2_12_6_1 doi: 10.1098/rspa.2005.1472 – ident: e_1_2_12_14_1 doi: 10.1016/0045-7825(85)90126-4 – ident: e_1_2_12_4_1 doi: 10.1007/s00466-009-0428-x – volume-title: The Finite Element Method year: 2000 ident: e_1_2_12_12_1 – ident: e_1_2_12_3_1 doi: 10.1006/jsvi.2001.4191 – ident: e_1_2_12_8_1 doi: 10.1098/rspa.2009.0350 |
| SSID | ssj0011503 |
| Score | 2.0982316 |
| Snippet | SUMMARY
It is well known that use of standard penalty methods can decrease the critical time step of time domain dynamic finite element analyses. The bipenalty... It is well known that use of standard penalty methods can decrease the critical time step of time domain dynamic finite element analyses. The bipenalty method... Peer Reviewed |
| SourceID | csuc pascalfrancis crossref wiley istex |
| SourceType | Open Access Repository Index Database Enrichment Source Publisher |
| StartPage | 269 |
| SubjectTerms | 74 Mechanics of deformable solids 74S Numerical methods Algebra Anàlisi numèrica Bipenalty method Classificació AMS Constraints Critical time step Exact sciences and technology Explicit time integration Finite element methods Fundamental areas of phenomenology (including applications) Linear and multilinear algebra, matrix theory Matemàtiques i estadística Mathematics Methods of scientific computing (including symbolic computation, algebraic computation) Mètodes numèrics Numerical analysis Numerical analysis. Scientific computation Numerical methods and algorithms Partial differential equations, initial value problems and time-dependant initial-boundary value problems Penalty method Physics Resistència de materials Sciences and techniques of general use Solid mechanics Structural and continuum mechanics Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) Àrees temàtiques de la UPC |
| Title | A new bipenalty formulation for ensuring time step stability in time domain computational dynamics |
| URI | https://api.istex.fr/ark:/67375/WNG-J8ZR59BN-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.3314 https://recercat.cat/handle/2072/339161 |
| Volume | 90 |
| WOSCitedRecordID | wos000301536100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-0207 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011503 issn: 0029-5981 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7I1gd9sBeVrtoygigIsUkm2cw8Vu22SBukWC2-DJO5wKKbLputdP99z0lmQxcUCj7kMmFmkpyck_lmMvk-gDcmto5b46NKaoEdFJ5FepQbDHfLPXY3nLUtietpUZbi8lJ-DbMq6V-Yjh-iH3CjyGjf1xTgumoO7pCGTt0HzknDeiNFt80GsPH5fHxx2n9DQKjDVxM8cimSFfVsnB6syq41RgPTXBvEqGTeG5ojqRs0k-_0Ldaxa9v4jDf_57K34EmAnOyw85FteODqHdgM8JOF4G524PEdbkJMnfWErs1TqA4Z4m9WTWYO61osGWHdoPxF-4wUM6ggI7F6hvc2w1XHAb5kk7o7bK-mGvdNqyQRRiGZXdZ6iid5Bhfjo2-fTqIgzxAZ0s2NrLBcGuGI8EVaZ2LnCG4aabmVibA2977gCRdCc2_xZSZdVY1ynxktEZQl_DkM6qva7QKzI-0TlwlNvbfCJTIrjLFopUJ4nyZuCO9Wz0mZwF1OEhq_Vce6nCo0qyKzDuF1n3PW8XX8Jc97etQKmxQ3N3qhiGK7T9CSxkWKWRE6J0N42zpEX5ue_6LJcEWufpTH6ov4eZ7Lj6X6PoT9NY_pCyCoHEkuBdbUOsY_r0uVZ0e0fXHfjC_hEeK3lD5upfErGCzm124PHpo_i0kz3w_xcAtFhhAc |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD6UraA-WK2K66WOIApCbJJJNjP4VLVr1d0gpbXFl2EyF1h002WzFfffe05udEFB8CFXZibJyTkz30wm3wfw3ITWcWt8UEgtsIPCk0CPUoPhbrnH7oaztiZxnWR5Ls7P5ZcteNP9C9PwQ_QDbhQZdX1NAU4D0vtXWEPn7jXnJGK9naAXpQPYfn88Pp30HxEQ6_BuhkcqRdRxz4bxfpd3ozUamOrSIEgl-_6iSZK6Qjv5RuBiE7zWrc9457_u-zbcakEnO2i85A5suXIXdloAytrwrnbh5hV2Qjya9pSu1V0oDhgicFbMFg7LWq0Zod1W-4v2GWlmUEZGcvUMH26Bq4YFfM1mZXPaXsw17ptaS6Idh2R2Xeo5XuQenI4PT94dBa1AQ2BIOTewwnJphCPKF2mdCZ0jwGmk5VZGwtrU-4xHXAjNvcXqTLqiGKU-MVoiLIv4fRiUF6V7AMyOtI9cIjT13zIXySQzxqKVMuF9HLkhvOxelDItezmJaPxQDe9yrNCsisw6hGd9ykXD2PGHNK_oXStsVNzS6JUiku3-gJY4zGJMiuA5GsKL2iP60vTyO02Hy1J1ln9Qn8S341S-zdXXIextuEyfAWHlSHIpsKTaM_56XyqfHtL24b8mfArXj06mEzX5mH9-BDcQzcX0qSsOH8Ngtbx0T-Ca-bmaVcu9Njh-A393FAw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD6UrYh9sFoV10sdQRSE2CSTyww-Vdv1tg2lWFt8GSZzgaXudtlsxf33npMbXVAQfEgyCTOTycmcmW8yk-8DeGFC67g1PiilFjhA4Umgs9Sgu1vucbjhrK1JXMd5UYjzc3m8AW-7f2Eafoj-gxt5Rt1ek4O7ufV711hDp-4N5yRivZmkMkOv3Dw4GZ2O-0kExDq8W-GRShF13LNhvNelXeuNBqa6MghSyb6_aJGkrtBOvhG4WAevde8z2v6vct-B2y3oZPtNLbkLG262A9stAGWte1c7sHWNnRDPjnpK1-oelPsMETgrJ3OHeS1XjNBuq_1FYUaaGZSQkVw9w4eb465hAV-xyay5bC-nGsOm1pJov0Myu5rpKd7kPpyODr--_xi0Ag2BIeXcwArLpRGOKF-kdSZ0jgCnkZZbGQlrU-9zHnEhNPcWmzPpyjJLfWK0RFgW8QcwmF3O3ENgNtM-conQNH7LXSST3BiLVsqF93HkhvCqe1HKtOzlJKLxQzW8y7FCsyoy6xCe9zHnDWPHH-K8pnetsFNxC6OXiki2-xPa4jCPMSqC52gIL-sa0eemFxe0HC5P1VnxQX0W309S-a5Q34awu1Zl-gQIKzPJpcCc6prx13Kp4uiQjo_-NeIzuHl8MFLjT8WXx3ALwVxMM11x-AQGy8WVewo3zM_lpFrstr7xG-8eE4c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+bipenalty+formulation+for+ensuring+time+step+stability+in+time+domain+computational+dynamics&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=HETHERINGTON%2C+Jack&rft.au=RODRIGUEZ-FERRAN%2C+Antonio&rft.au=ASKES%2C+Harm&rft.date=2012-04-20&rft.pub=Wiley&rft.issn=0029-5981&rft.volume=90&rft.issue=3&rft.spage=269&rft.epage=310&rft_id=info:doi/10.1002%2Fnme.3314&rft.externalDBID=n%2Fa&rft.externalDocID=25669398 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon |