A new bipenalty formulation for ensuring time step stability in time domain computational dynamics

SUMMARY It is well known that use of standard penalty methods can decrease the critical time step of time domain dynamic finite element analyses. The bipenalty method utilises both stiffness and mass penalties to impose constraints that have a minimal effect on the eigenfrequencies of the finite ele...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in engineering Vol. 90; no. 3; pp. 269 - 286
Main Authors: Hetherington, Jack, Rodríguez-Ferran, Antonio, Askes, Harm
Format: Journal Article Publication
Language:English
Published: Chichester, UK John Wiley & Sons, Ltd 20.04.2012
Wiley
John Wiley & Sons
Subjects:
ISSN:0029-5981, 1097-0207
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract SUMMARY It is well known that use of standard penalty methods can decrease the critical time step of time domain dynamic finite element analyses. The bipenalty method utilises both stiffness and mass penalties to impose constraints that have a minimal effect on the eigenfrequencies of the finite element system. One way of achieving this goal is to find a ratio of stiffness and mass penalty parameters—the critical penalty ratio (CPR)—that does not affect the maximum eigenfrequency (and therefore, for conditionally stable solution schemes, the critical time step) of a system. In this contribution, we develop a new method of calculating the CPR associated with a finite element formulation by examining the eigenvalue problem in detail. Advantages of the method compared with previous solutions include increased simplicity and generality and the ability to consider multiple constraints. The method is demonstrated by deriving CPRs for a few finite element formulations, which are then verified using simple numerical examples. The superiority of the bipenalty method over standard mass penalty methods is also demonstrated. Copyright © 2011 John Wiley & Sons, Ltd.
AbstractList It is well known that use of standard penalty methods can decrease the critical time step of time domain dynamic finite element analyses. The bipenalty method utilises both stiffness and mass penalties to impose constraints that have a minimal effect on the eigenfrequencies of the finite element system. One way of achieving this goal is to find a ratio of stiffness and mass penalty parameters—the critical penalty ratio (CPR)—that does not affect the maximum eigenfrequency (and therefore, for conditionally stable solution schemes, the critical time step) of a system. In this contribution, we develop a new method of calculating the CPR associated with a finite element formulation by examining the eigenvalue problem in detail. Advantages of the method compared with previous solutions include increased simplicity and generality and the ability to consider multiple constraints. The method is demonstrated by deriving CPRs for a few finite element formulations, which are then verified using simple numerical examples. The superiority of the bipenalty method over standard mass penalty methods is also demonstrated. Copyright © 2011 John Wiley & Sons, Ltd.
Peer Reviewed
SUMMARY It is well known that use of standard penalty methods can decrease the critical time step of time domain dynamic finite element analyses. The bipenalty method utilises both stiffness and mass penalties to impose constraints that have a minimal effect on the eigenfrequencies of the finite element system. One way of achieving this goal is to find a ratio of stiffness and mass penalty parameters—the critical penalty ratio (CPR)—that does not affect the maximum eigenfrequency (and therefore, for conditionally stable solution schemes, the critical time step) of a system. In this contribution, we develop a new method of calculating the CPR associated with a finite element formulation by examining the eigenvalue problem in detail. Advantages of the method compared with previous solutions include increased simplicity and generality and the ability to consider multiple constraints. The method is demonstrated by deriving CPRs for a few finite element formulations, which are then verified using simple numerical examples. The superiority of the bipenalty method over standard mass penalty methods is also demonstrated. Copyright © 2011 John Wiley & Sons, Ltd.
Author Askes, Harm
Hetherington, Jack
Rodríguez-Ferran, Antonio
Author_xml – sequence: 1
  givenname: Jack
  surname: Hetherington
  fullname: Hetherington, Jack
  email: cip09jeh@sheffield.ac.uk, Jack Hetherington, Department of Civil and Structural Engineering, University of Sheffield,Mappin Street, Sheffield S1 3JD, UK., cip09jeh@sheffield.ac.uk
  organization: Department of Civil and Structural Engineering, University of Sheffield, Mappin Street, S1 3JD, Sheffield, UK
– sequence: 2
  givenname: Antonio
  surname: Rodríguez-Ferran
  fullname: Rodríguez-Ferran, Antonio
  organization: Laboratori de Càlcul Numèric, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034Barcelona, Spain
– sequence: 3
  givenname: Harm
  surname: Askes
  fullname: Askes, Harm
  organization: Department of Civil and Structural Engineering, University of Sheffield, Mappin Street, S1 3JD, Sheffield, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25669398$$DView record in Pascal Francis
BookMark eNp1kVtr3DAQhUVJoZu0kJ_gl0JfvJWsta15TEMuLekWSi_QFzGWxkWJLRvJS7L_vnKdpjSkD5JGo-8cmKNDduAHT4wdC74WnBdvfU9rKcXmGVsJDnXOC14fsFV6grwEJV6wwxivORei5HLFmpPM023WuJE8dtM-a4fQ7zqc3ODnOiMfd8H5n9nkesriRGPasHGdS7DzS9sOPabaDP24m35rscvs3mPvTHzJnrfYRXp1fx6xr-dnX04v86tPF-9PT65yI-tyk1tlJRhFJWwUWDKciAOAASstCGVt2ba1FFIplK1VqgZqmqpsNwYBChDyiInF18Sd0YEMBYOTHtD9vcwrBVJoKUFUs-b1ohkxGuzagN64qMfgegx7XZRVBRJU4tb33mGIMVCrjVsGnQK6Tguu5_R1Sl_P6SfBm0eCP55PoPmC3rqO9v_l9Pbj2b-8S79x98BjuNFVnaLU37cX-oP68bmEd1v9Tf4CjYSmNA
CODEN IJNMBH
CitedBy_id crossref_primary_10_1016_j_tafmec_2013_11_011
crossref_primary_10_1002_nme_6739
crossref_primary_10_1002_nme_4389
crossref_primary_10_1016_j_cma_2013_03_013
crossref_primary_10_1007_s00466_015_1188_4
crossref_primary_10_1002_nme_5712
crossref_primary_10_1002_nme_7614
crossref_primary_10_1002_nme_4819
crossref_primary_10_1016_j_matcom_2021_03_023
crossref_primary_10_1002_nme_4829
Cites_doi 10.1007/s00466-002-0353-8
10.1299/jsme1958.29.731
10.1002/nme.1620310309
10.1016/j.compstruc.2009.05.011
10.1299/jsme1958.29.3701
10.1299/jsme1958.26.1849
10.1098/rspa.2005.1472
10.1016/0045-7825(85)90126-4
10.1007/s00466-009-0428-x
10.1006/jsvi.2001.4191
10.1098/rspa.2009.0350
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
Universitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
Copyright Copyright © 2011 John Wiley & Sons, Ltd.
2015 INIST-CNRS
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es
Copyright_xml – notice: Copyright © 2011 John Wiley & Sons, Ltd.
– notice: 2015 INIST-CNRS
– notice: info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>
DBID BSCLL
AAYXX
CITATION
IQODW
XX2
DOI 10.1002/nme.3314
DatabaseName Istex
CrossRef
Pascal-Francis
Recercat
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
Physics
EISSN 1097-0207
EndPage 286
ExternalDocumentID oai_recercat_cat_2072_339161
25669398
10_1002_nme_3314
NME3314
ark_67375_WNG_J8ZR59BN_V
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
ALUQN
AAYXX
CITATION
O8X
31~
6TJ
ABDPE
ABEML
ACKIV
ACSCC
AGHNM
AI.
ARCSS
GBZZK
IQODW
M6O
PALCI
RIWAO
SAMSI
TUS
VH1
VOH
ZY4
~A~
XX2
ID FETCH-LOGICAL-c3754-d8d39c8e59489dec0ee0999c9d3d918dd5ff731388a3fd8879ebb65f4ca992913
IEDL.DBID DRFUL
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000301536100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
IngestDate Fri Nov 07 13:56:44 EST 2025
Mon Jul 21 09:15:01 EDT 2025
Sat Nov 29 06:43:45 EST 2025
Tue Nov 18 22:27:13 EST 2025
Sun Sep 21 06:14:29 EDT 2025
Tue Nov 11 03:32:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Constraint
explicit time integration
Modeling
constraints
Penalty method
Natural frequency
Finite element method
Time domain method
finite element methods
Eigenvalue problem
bipenalty method
Time integration
critical time step
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3754-d8d39c8e59489dec0ee0999c9d3d918dd5ff731388a3fd8879ebb65f4ca992913
Notes istex:FA85B66B7BFE6902F0053BE0695C6A6674AFE96A
ArticleID:NME3314
ark:/67375/WNG-J8ZR59BN-V
OpenAccessLink https://recercat.cat/handle/2072/339161
PageCount 18
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_339161
pascalfrancis_primary_25669398
crossref_citationtrail_10_1002_nme_3314
crossref_primary_10_1002_nme_3314
wiley_primary_10_1002_nme_3314_NME3314
istex_primary_ark_67375_WNG_J8ZR59BN_V
PublicationCentury 2000
PublicationDate 20 April 2012
PublicationDateYYYYMMDD 2012-04-20
PublicationDate_xml – month: 04
  year: 2012
  text: 20 April 2012
  day: 20
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle International journal for numerical methods in engineering
PublicationTitleAlternate Int. J. Numer. Meth. Engng
PublicationYear 2012
Publisher John Wiley & Sons, Ltd
Wiley
John Wiley & Sons
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
– name: John Wiley & Sons
References Asano N.A penalty function type of virtual work principle for impact contact problems of two bodies. Bulletin of the JSME 1986; 29(257):3701-3709.
Hetherington J, Askes H.Penalty methods for time domain computational dynamics based on positive and negative inertia. Computers & Structures 2009; 87(23-24):1474-1482.
Belytschko T, Neal MO.Contact-impact by the pinball algorithm with penalty and Lagrangian methods. International Journal for Numerical Methods in Engineering 1991; 31(3):547-572.
Paraskevopoulos EA, Panagiotopoulos CG, Manolis GD.Imposition of time-dependent boundary conditions in FEM formulations for elastodynamics: critical assessment of penalty-type methods. Computational Mechanics 2010; 45(2-3):157-166.
Askes H, Caramés-Saddler M, Rodríguez-Ferran A.Bipenalty method for time domain computational dynamics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2010; 466(2117):1389-1408.
Ilanko S.Existence of natural frequencies of systems with artificial restraints and their convergence in asymptotic modelling. Journal of Sound and Vibration 2002; 255(5):883-898. DOI: 10.1006/jsvi.2001.4191.
Asano N.A virtual work principle using penalty function method for impact contact problems of two bodies. Bulletin of the JSME 1986; 29(249):731-736.
Belytschko T, Smolinkski P, Liu WK.Stability of multi-time step partitioned integrators for first-order finite element systems. Computer Methods in Applied Mechanics and Engineering 1985; 49(3):281-297.
Ilanko S.Introducing the use of positive and negative inertial functions in asymptotic modelling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2005; 461(2060):2545-2562. DOI: 10.1098/rspa.2005.1472.
Bathe K.Finite Element Procedures. Prentice Hall: Englewood Cliffs, 1996.
Asano N.An approximate hybrid type of virtual work principle for two elastoimpact contact bodies. Bulletin of the JSME 1983; 26(221):1849-1856.
Ling X, Cherukuri HP.Stability analysis of an explicit finite element scheme for plane wave motions in elastic solids. Computational Mechanics 2002; 29(4-5):430-440.
Hughes TJR.The Finite Element Method. Dover Publications: New York, 2000.
2010; 45
1996
1986; 29
2009; 87
2002; 29
2005; 461
2000
1983; 26
2010; 466
1991; 31
1985; 49
2002; 255
e_1_2_12_4_1
e_1_2_12_3_1
e_1_2_12_6_1
e_1_2_12_5_1
Hughes TJR (e_1_2_12_12_1) 2000
Bathe K (e_1_2_12_2_1) 1996
e_1_2_12_14_1
e_1_2_12_13_1
e_1_2_12_8_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_10_1
e_1_2_12_9_1
References_xml – reference: Belytschko T, Neal MO.Contact-impact by the pinball algorithm with penalty and Lagrangian methods. International Journal for Numerical Methods in Engineering 1991; 31(3):547-572.
– reference: Paraskevopoulos EA, Panagiotopoulos CG, Manolis GD.Imposition of time-dependent boundary conditions in FEM formulations for elastodynamics: critical assessment of penalty-type methods. Computational Mechanics 2010; 45(2-3):157-166.
– reference: Bathe K.Finite Element Procedures. Prentice Hall: Englewood Cliffs, 1996.
– reference: Askes H, Caramés-Saddler M, Rodríguez-Ferran A.Bipenalty method for time domain computational dynamics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2010; 466(2117):1389-1408.
– reference: Ilanko S.Introducing the use of positive and negative inertial functions in asymptotic modelling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2005; 461(2060):2545-2562. DOI: 10.1098/rspa.2005.1472.
– reference: Asano N.A penalty function type of virtual work principle for impact contact problems of two bodies. Bulletin of the JSME 1986; 29(257):3701-3709.
– reference: Ling X, Cherukuri HP.Stability analysis of an explicit finite element scheme for plane wave motions in elastic solids. Computational Mechanics 2002; 29(4-5):430-440.
– reference: Belytschko T, Smolinkski P, Liu WK.Stability of multi-time step partitioned integrators for first-order finite element systems. Computer Methods in Applied Mechanics and Engineering 1985; 49(3):281-297.
– reference: Asano N.A virtual work principle using penalty function method for impact contact problems of two bodies. Bulletin of the JSME 1986; 29(249):731-736.
– reference: Asano N.An approximate hybrid type of virtual work principle for two elastoimpact contact bodies. Bulletin of the JSME 1983; 26(221):1849-1856.
– reference: Ilanko S.Existence of natural frequencies of systems with artificial restraints and their convergence in asymptotic modelling. Journal of Sound and Vibration 2002; 255(5):883-898. DOI: 10.1006/jsvi.2001.4191.
– reference: Hetherington J, Askes H.Penalty methods for time domain computational dynamics based on positive and negative inertia. Computers & Structures 2009; 87(23-24):1474-1482.
– reference: Hughes TJR.The Finite Element Method. Dover Publications: New York, 2000.
– volume: 29
  start-page: 731
  issue: 249
  year: 1986
  end-page: 736
  article-title: A virtual work principle using penalty function method for impact contact problems of two bodies
  publication-title: Bulletin of the JSME
– volume: 49
  start-page: 281
  issue: 3
  year: 1985
  end-page: 297
  article-title: Stability of multi‐time step partitioned integrators for first‐order finite element systems
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 31
  start-page: 547
  issue: 3
  year: 1991
  end-page: 572
  article-title: Contact‐impact by the pinball algorithm with penalty and Lagrangian methods
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 26
  start-page: 1849
  issue: 221
  year: 1983
  end-page: 1856
  article-title: An approximate hybrid type of virtual work principle for two elastoimpact contact bodies
  publication-title: Bulletin of the JSME
– volume: 461
  start-page: 2545
  issue: 2060
  year: 2005
  end-page: 2562
  article-title: Introducing the use of positive and negative inertial functions in asymptotic modelling
  publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
– volume: 29
  start-page: 430
  issue: 4‐5
  year: 2002
  end-page: 440
  article-title: Stability analysis of an explicit finite element scheme for plane wave motions in elastic solids
  publication-title: Computational Mechanics
– year: 1996
– year: 2000
– volume: 466
  start-page: 1389
  issue: 2117
  year: 2010
  end-page: 1408
  article-title: Bipenalty method for time domain computational dynamics
  publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
– volume: 87
  start-page: 1474
  issue: 23‐24
  year: 2009
  end-page: 1482
  article-title: Penalty methods for time domain computational dynamics based on positive and negative inertia
  publication-title: Computers & Structures
– volume: 255
  start-page: 883
  issue: 5
  year: 2002
  end-page: 898
  article-title: Existence of natural frequencies of systems with artificial restraints and their convergence in asymptotic modelling
  publication-title: Journal of Sound and Vibration
– volume: 45
  start-page: 157
  issue: 2‐3
  year: 2010
  end-page: 166
  article-title: Imposition of time‐dependent boundary conditions in FEM formulations for elastodynamics: critical assessment of penalty‐type methods
  publication-title: Computational Mechanics
– volume: 29
  start-page: 3701
  issue: 257
  year: 1986
  end-page: 3709
  article-title: A penalty function type of virtual work principle for impact contact problems of two bodies
  publication-title: Bulletin of the JSME
– ident: e_1_2_12_13_1
  doi: 10.1007/s00466-002-0353-8
– ident: e_1_2_12_11_1
  doi: 10.1299/jsme1958.29.731
– ident: e_1_2_12_5_1
  doi: 10.1002/nme.1620310309
– ident: e_1_2_12_7_1
  doi: 10.1016/j.compstruc.2009.05.011
– ident: e_1_2_12_10_1
  doi: 10.1299/jsme1958.29.3701
– ident: e_1_2_12_9_1
  doi: 10.1299/jsme1958.26.1849
– volume-title: Finite Element Procedures
  year: 1996
  ident: e_1_2_12_2_1
– ident: e_1_2_12_6_1
  doi: 10.1098/rspa.2005.1472
– ident: e_1_2_12_14_1
  doi: 10.1016/0045-7825(85)90126-4
– ident: e_1_2_12_4_1
  doi: 10.1007/s00466-009-0428-x
– volume-title: The Finite Element Method
  year: 2000
  ident: e_1_2_12_12_1
– ident: e_1_2_12_3_1
  doi: 10.1006/jsvi.2001.4191
– ident: e_1_2_12_8_1
  doi: 10.1098/rspa.2009.0350
SSID ssj0011503
Score 2.0982316
Snippet SUMMARY It is well known that use of standard penalty methods can decrease the critical time step of time domain dynamic finite element analyses. The bipenalty...
It is well known that use of standard penalty methods can decrease the critical time step of time domain dynamic finite element analyses. The bipenalty method...
Peer Reviewed
SourceID csuc
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Index Database
Enrichment Source
Publisher
StartPage 269
SubjectTerms 74 Mechanics of deformable solids
74S Numerical methods
Algebra
Anàlisi numèrica
Bipenalty method
Classificació AMS
Constraints
Critical time step
Exact sciences and technology
Explicit time integration
Finite element methods
Fundamental areas of phenomenology (including applications)
Linear and multilinear algebra, matrix theory
Matemàtiques i estadística
Mathematics
Methods of scientific computing (including symbolic computation, algebraic computation)
Mètodes numèrics
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods and algorithms
Partial differential equations, initial value problems and time-dependant initial-boundary value problems
Penalty method
Physics
Resistència de materials
Sciences and techniques of general use
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Àrees temàtiques de la UPC
Title A new bipenalty formulation for ensuring time step stability in time domain computational dynamics
URI https://api.istex.fr/ark:/67375/WNG-J8ZR59BN-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.3314
https://recercat.cat/handle/2072/339161
Volume 90
WOSCitedRecordID wos000301536100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7I1gd9sBeVrtoygigIsUkm2cw8Vu22SBukWC2-DJO5wKKbLputdP99z0lmQxcUCj7kMmFmkpyck_lmMvk-gDcmto5b46NKaoEdFJ5FepQbDHfLPXY3nLUtietpUZbi8lJ-DbMq6V-Yjh-iH3CjyGjf1xTgumoO7pCGTt0HzknDeiNFt80GsPH5fHxx2n9DQKjDVxM8cimSFfVsnB6syq41RgPTXBvEqGTeG5ojqRs0k-_0Ldaxa9v4jDf_57K34EmAnOyw85FteODqHdgM8JOF4G524PEdbkJMnfWErs1TqA4Z4m9WTWYO61osGWHdoPxF-4wUM6ggI7F6hvc2w1XHAb5kk7o7bK-mGvdNqyQRRiGZXdZ6iid5Bhfjo2-fTqIgzxAZ0s2NrLBcGuGI8EVaZ2LnCG4aabmVibA2977gCRdCc2_xZSZdVY1ynxktEZQl_DkM6qva7QKzI-0TlwlNvbfCJTIrjLFopUJ4nyZuCO9Wz0mZwF1OEhq_Vce6nCo0qyKzDuF1n3PW8XX8Jc97etQKmxQ3N3qhiGK7T9CSxkWKWRE6J0N42zpEX5ue_6LJcEWufpTH6ov4eZ7Lj6X6PoT9NY_pCyCoHEkuBdbUOsY_r0uVZ0e0fXHfjC_hEeK3lD5upfErGCzm124PHpo_i0kz3w_xcAtFhhAc
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD6UraA-WK2K66WOIApCbJJJNjP4VLVr1d0gpbXFl2EyF1h002WzFfffe05udEFB8CFXZibJyTkz30wm3wfw3ITWcWt8UEgtsIPCk0CPUoPhbrnH7oaztiZxnWR5Ls7P5ZcteNP9C9PwQ_QDbhQZdX1NAU4D0vtXWEPn7jXnJGK9naAXpQPYfn88Pp30HxEQ6_BuhkcqRdRxz4bxfpd3ozUamOrSIEgl-_6iSZK6Qjv5RuBiE7zWrc9457_u-zbcakEnO2i85A5suXIXdloAytrwrnbh5hV2Qjya9pSu1V0oDhgicFbMFg7LWq0Zod1W-4v2GWlmUEZGcvUMH26Bq4YFfM1mZXPaXsw17ptaS6Idh2R2Xeo5XuQenI4PT94dBa1AQ2BIOTewwnJphCPKF2mdCZ0jwGmk5VZGwtrU-4xHXAjNvcXqTLqiGKU-MVoiLIv4fRiUF6V7AMyOtI9cIjT13zIXySQzxqKVMuF9HLkhvOxelDItezmJaPxQDe9yrNCsisw6hGd9ykXD2PGHNK_oXStsVNzS6JUiku3-gJY4zGJMiuA5GsKL2iP60vTyO02Hy1J1ln9Qn8S341S-zdXXIextuEyfAWHlSHIpsKTaM_56XyqfHtL24b8mfArXj06mEzX5mH9-BDcQzcX0qSsOH8Ngtbx0T-Ca-bmaVcu9Njh-A393FAw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD6UrYh9sFoV10sdQRSE2CSTyww-Vdv1tg2lWFt8GSZzgaXudtlsxf33npMbXVAQfEgyCTOTycmcmW8yk-8DeGFC67g1PiilFjhA4Umgs9Sgu1vucbjhrK1JXMd5UYjzc3m8AW-7f2Eafoj-gxt5Rt1ek4O7ufV711hDp-4N5yRivZmkMkOv3Dw4GZ2O-0kExDq8W-GRShF13LNhvNelXeuNBqa6MghSyb6_aJGkrtBOvhG4WAevde8z2v6vct-B2y3oZPtNLbkLG262A9stAGWte1c7sHWNnRDPjnpK1-oelPsMETgrJ3OHeS1XjNBuq_1FYUaaGZSQkVw9w4eb465hAV-xyay5bC-nGsOm1pJov0Myu5rpKd7kPpyODr--_xi0Ag2BIeXcwArLpRGOKF-kdSZ0jgCnkZZbGQlrU-9zHnEhNPcWmzPpyjJLfWK0RFgW8QcwmF3O3ENgNtM-conQNH7LXSST3BiLVsqF93HkhvCqe1HKtOzlJKLxQzW8y7FCsyoy6xCe9zHnDWPHH-K8pnetsFNxC6OXiki2-xPa4jCPMSqC52gIL-sa0eemFxe0HC5P1VnxQX0W309S-a5Q34awu1Zl-gQIKzPJpcCc6prx13Kp4uiQjo_-NeIzuHl8MFLjT8WXx3ALwVxMM11x-AQGy8WVewo3zM_lpFrstr7xG-8eE4c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+bipenalty+formulation+for+ensuring+time+step+stability+in+time+domain+computational+dynamics&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=HETHERINGTON%2C+Jack&rft.au=RODRIGUEZ-FERRAN%2C+Antonio&rft.au=ASKES%2C+Harm&rft.date=2012-04-20&rft.pub=Wiley&rft.issn=0029-5981&rft.volume=90&rft.issue=3&rft.spage=269&rft.epage=310&rft_id=info:doi/10.1002%2Fnme.3314&rft.externalDBID=n%2Fa&rft.externalDocID=25669398
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon