Hybrid successive discretisation algorithm used to calculate parameters of the photovoltaic cells and panels for existing datasets

This paper presents a new hybrid successive discretisation algorithm, used to calculate the parameters of the photovoltaic cells and panels, by the one diode model and the two diode model. Nine known datasets from the specialised literature were used to validate the new algorithm and then it was fir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET renewable power generation Jg. 15; H. 15; S. 3661 - 3687
Hauptverfasser: Cotfas, Daniel T., Deaconu, Adrian M., Cotfas, Petru A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Wiley 01.11.2021
Schlagworte:
ISSN:1752-1416, 1752-1424
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper presents a new hybrid successive discretisation algorithm, used to calculate the parameters of the photovoltaic cells and panels, by the one diode model and the two diode model. Nine known datasets from the specialised literature were used to validate the new algorithm and then it was firstly applied for two new datasets. For the first time only one algorithm is applied to extract the parameters, in both cases—one and two diode models. The new datasets are for commercial monocrystalline silicon and amorphous silicon photovoltaic cells. The main test used to prove the performance of HDSA is the root mean square error. Other four tests were used for comparison: the mean absolute error, the mean bias error, t‐statistic, and the coefficient of determination. The hybrid successive discretisation algorithm proved its accuracy and reliability for parameter extraction of different types of photovoltaic cells and panels for all datasets used. Comparing the hybrid successive discretisation algorithm with the best algorithms from the specialised literature shows an improvement of the root mean square error by up to10.4% for the one diode model and by up to 7.5% for the two diode model, respectively.
AbstractList This paper presents a new hybrid successive discretisation algorithm, used to calculate the parameters of the photovoltaic cells and panels, by the one diode model and the two diode model. Nine known datasets from the specialised literature were used to validate the new algorithm and then it was firstly applied for two new datasets. For the first time only one algorithm is applied to extract the parameters, in both cases—one and two diode models. The new datasets are for commercial monocrystalline silicon and amorphous silicon photovoltaic cells. The main test used to prove the performance of HDSA is the root mean square error. Other four tests were used for comparison: the mean absolute error, the mean bias error, t‐statistic, and the coefficient of determination. The hybrid successive discretisation algorithm proved its accuracy and reliability for parameter extraction of different types of photovoltaic cells and panels for all datasets used. Comparing the hybrid successive discretisation algorithm with the best algorithms from the specialised literature shows an improvement of the root mean square error by up to10.4% for the one diode model and by up to 7.5% for the two diode model, respectively.
Abstract This paper presents a new hybrid successive discretisation algorithm, used to calculate the parameters of the photovoltaic cells and panels, by the one diode model and the two diode model. Nine known datasets from the specialised literature were used to validate the new algorithm and then it was firstly applied for two new datasets. For the first time only one algorithm is applied to extract the parameters, in both cases—one and two diode models. The new datasets are for commercial monocrystalline silicon and amorphous silicon photovoltaic cells. The main test used to prove the performance of HDSA is the root mean square error. Other four tests were used for comparison: the mean absolute error, the mean bias error, t‐statistic, and the coefficient of determination. The hybrid successive discretisation algorithm proved its accuracy and reliability for parameter extraction of different types of photovoltaic cells and panels for all datasets used. Comparing the hybrid successive discretisation algorithm with the best algorithms from the specialised literature shows an improvement of the root mean square error by up to10.4% for the one diode model and by up to 7.5% for the two diode model, respectively.
Author Cotfas, Petru A.
Deaconu, Adrian M.
Cotfas, Daniel T.
Author_xml – sequence: 1
  givenname: Daniel T.
  orcidid: 0000-0002-9606-8442
  surname: Cotfas
  fullname: Cotfas, Daniel T.
  email: dtcotfas@unitbv.ro
  organization: Transilvania University of Brasov
– sequence: 2
  givenname: Adrian M.
  surname: Deaconu
  fullname: Deaconu, Adrian M.
  organization: Transilvania University of Brasov
– sequence: 3
  givenname: Petru A.
  surname: Cotfas
  fullname: Cotfas, Petru A.
  organization: Transilvania University of Brasov
BookMark eNp9UctqHDEQFMEBv3LxF-hsWFvSSBrNMZj4AQYHY59Fj9SzK6MdLZLW8V7z5ZndtX0IIacuuquKouuYHIxpRELOOLvgTHaXeTUXF1wILb6QI94qMeNSyINPzPUhOS7lhTHVMaOPyO_bTZ-Dp2XtHJYSXpH6UFzGGgrUkEYKcZ5yqIslXRf0tCbqILp1hIp0BRmWWDEXmgZaF9NmkWp6TbFCcNRhjIXC6CfiiBMcUqb4FkoN45x6qFCwllPydYBY8Nv7PCHP1z-erm5n9w83d1ff72eu2YaX0isclDKoDYJiSnBo0JjOtI0XMJ2k1KJrtNZ9z9B3uncSQRpshRy6tjkhd3tfn-DFrnJYQt7YBMHuFinPLeQaXERroO0ANZdOt5NHA0714LkxvlXMeZy82N7L5VRKxsG6UHf_qhlCtJzZbR9224fd9TFJzv-SfET4J5nvyb9CxM1_mPbx543Ya_4AFQWg0Q
CitedBy_id crossref_primary_10_1088_2631_8695_ad3f6f
crossref_primary_10_3390_app15137403
crossref_primary_10_1016_j_enconman_2023_117373
crossref_primary_10_1016_j_solener_2024_112353
crossref_primary_10_1109_TIM_2025_3551857
crossref_primary_10_3390_math11040967
crossref_primary_10_1016_j_ijhydene_2024_06_424
crossref_primary_10_1088_1402_4896_addc4f
crossref_primary_10_1016_j_egyr_2024_10_052
crossref_primary_10_1038_s41598_025_85115_x
crossref_primary_10_1155_er_5792330
crossref_primary_10_3390_axioms12010070
crossref_primary_10_3390_math11092205
crossref_primary_10_1002_ese3_1109
crossref_primary_10_1016_j_renene_2025_123427
crossref_primary_10_1016_j_rineng_2025_104268
crossref_primary_10_1007_s43621_025_01679_8
crossref_primary_10_3390_s22186989
crossref_primary_10_1109_ACCESS_2024_3439344
crossref_primary_10_1016_j_egyr_2023_11_012
crossref_primary_10_1080_15567036_2022_2125126
crossref_primary_10_1155_2021_3608138
crossref_primary_10_1016_j_ijleo_2023_171467
Cites_doi 10.1155/2013/362619
10.1016/j.enconman.2019.06.037
10.1016/j.solener.2006.11.002
10.1155/2019/3923691
10.1016/j.solener.2017.10.063
10.1371/journal.pone.0216201
10.1109/ICEICE.2011.5777246
10.1002/er.5756
10.1016/j.apenergy.2017.05.029
10.1016/j.enconman.2016.12.082
10.1155/2020/6669579
10.1016/j.solener.2016.10.044
10.1016/j.apenergy.2016.08.083
10.1016/j.solener.2012.08.018
10.1016/j.apenergy.2017.11.078
10.1016/j.solener.2019.01.025
10.1007/s00500-016-2307-7
10.1016/j.energy.2020.117804
10.1088/0957-0233/12/11/322
10.1016/j.jpowsour.2019.05.089
10.1016/j.enconman.2020.112595
10.1016/j.rser.2017.10.107
10.3390/rs11232795
10.1016/j.solener.2015.11.035
10.1016/j.solener.2013.05.007
10.1016/j.enconman.2019.111870
10.1016/0365-1789(63)90063-8
10.1016/0960-1481(94)E0021-V
10.1109/ISETC.2018.8584016
10.1016/0038-092X(93)90124-7
10.3390/en10070865
10.1049/rpg2.12059
10.1016/0038-1101(86)90212-1
10.1016/j.ijhydene.2013.12.110
10.1016/j.enconman.2015.05.074
10.1016/j.enconman.2016.09.085
10.1016/j.rser.2015.11.051
10.1080/01425918608909835
10.1016/j.solener.2017.08.006
10.1016/j.rser.2013.08.017
10.1016/j.enconman.2019.02.003
10.1063/1.4941791
10.1016/j.energy.2020.118644
10.1016/j.renene.2012.01.082
10.1016/j.solener.2014.07.013
10.1016/j.enconman.2015.11.041
10.1016/j.rser.2016.03.051
10.1016/j.enconman.2017.12.033
10.1016/j.measurement.2016.06.060
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/rpg2.12262
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1752-1424
EndPage 3687
ExternalDocumentID oai_doaj_org_article_8a79ae614c674ea3ac5bad188d750cde
10_1049_rpg2_12262
RPG212262
Genre article
GroupedDBID .DC
0R~
1OC
24P
29I
4.4
5GY
6IK
7XC
8FE
8FG
8FH
AAHHS
AAHJG
AAJGR
ABJCF
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADZOD
AEEZP
AENEX
AEQDE
AEUYN
AFKRA
AFRAH
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
ATCPS
AVUZU
BENPR
BGLVJ
BHPHI
CCPQU
CS3
DU5
EBS
EJD
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IEP
IFIPE
IGS
IPLJI
ITC
JAVBF
L6V
LAI
M43
M7S
MCNEO
O9-
OCL
OK1
P2P
P62
PATMY
PTHSS
PYCSY
RIE
RNS
ROL
RUI
S0W
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3752-44d5ef558e68ea50521a3e889873d2aef5446293666bb0ed96bc4ea48e724f973
IEDL.DBID 24P
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000678711100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1752-1416
IngestDate Mon Nov 10 04:35:11 EST 2025
Tue Nov 18 21:56:03 EST 2025
Wed Oct 29 21:30:00 EDT 2025
Wed Jan 22 16:27:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3752-44d5ef558e68ea50521a3e889873d2aef5446293666bb0ed96bc4ea48e724f973
ORCID 0000-0002-9606-8442
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frpg2.12262
PageCount 27
ParticipantIDs doaj_primary_oai_doaj_org_article_8a79ae614c674ea3ac5bad188d750cde
crossref_citationtrail_10_1049_rpg2_12262
crossref_primary_10_1049_rpg2_12262
wiley_primary_10_1049_rpg2_12262_RPG212262
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle IET renewable power generation
PublicationYear 2021
Publisher Wiley
Publisher_xml – name: Wiley
References 2019; 2019
2013; 28
2016; 108
2019; 11
2015; 101
2019; 14
2020; 203
2018; 82
2016; 182
2017; 157
2020; 208
2016; 140
2013; 2013
2018; 211
2013; 94
1986; 4
2019; 435
2020; 211
2020; 45
2001; 12
2019; 196
2017; 200
2019; 197
2011
2016; 129
2017; 21
2016; 124
2016; 93
2019; 185
2017; 135
1995; 6
2016; 56
2014; 108
2021; 15
2019; 180
2020; 2020
1993; 51
2018; 157
2017; 10
2018; 159
1963; 3
1986; 29
2018
2007; 81
2016; 61
2014
2014; 39
2012; 44
2016; 8
2012; 86
e_1_2_6_51_1
e_1_2_6_32_1
Ma J. (e_1_2_6_40_1) 2014
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 10
  start-page: 865
  issue: 7
  year: 2017
  article-title: A chaotic improved artificial bee colony for parameter estimation of photovoltaic cells
  publication-title: Energies
– volume: 21
  start-page: 7519
  year: 2017
  end-page: 7541
  article-title: Biogeography‐based learning particle swarm optimization
  publication-title: Soft Computing
– volume: 14
  issue: 5
  year: 2019
  article-title: Simple and efficient estimation of photovoltaic cells and modules parameters using approximation and correction technique
  publication-title: PLoS One
– volume: 56
  start-page: 494
  year: 2016
  end-page: 509
  article-title: Solar cell parameters extraction based on single and double‐diode models: A review
  publication-title: Renewable Sustainable Energy Rev.
– volume: 39
  start-page: 3837
  year: 2014
  end-page: 3854
  article-title: An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models
  publication-title: Int. J. Hydrogen Energy
– volume: 44
  start-page: 238
  year: 2012
  end-page: 245
  article-title: Optimal extraction of solar cell parameters using pattern search
  publication-title: Renewable Energy
– volume: 8
  year: 2016
  article-title: Solar cell parameters identification using hybrid Nelder–Mead and modified particle swarm optimization
  publication-title: J. Renewable Sustainable Energy
– year: 2014
– volume: 157
  start-page: 116
  year: 2017
  end-page: 124
  article-title: An improved optimization technique for estimation of solar photovoltaic parameters
  publication-title: Sol. Energy
– volume: 108
  start-page: 520
  year: 2016
  end-page: 528
  article-title: Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm
  publication-title: Energy Convers. Manage.
– volume: 11
  start-page: 2795
  issue: 23
  year: 2019
  article-title: Modified search strategies assisted crossover whale optimization algorithm with selection operator for parameter extraction of solar photovoltaic models
  publication-title: Remote Sensing
– volume: 15
  start-page: 701
  issue: 3
  year: 2021
  end-page: 715
  article-title: Artificial ecosystem‐based optimizer to electrically characterize PV generating systems under various operating conditions reinforced by experimental validations
  publication-title: IET Renewable Power Gener.
– volume: 211
  year: 2020
  article-title: Comprehensive learning Jaya algorithm for parameter extraction of photovoltaic models
  publication-title: Energy
– volume: 2019
  year: 2019
  article-title: Application of supply‐demand‐based optimization for parameter extraction of solar photovoltaic models
  publication-title: Complexity
– volume: 81
  start-page: 856
  issue: 7
  year: 2007
  end-page: 863
  article-title: Review and tests of methods for the determination of the solar cell junction ideality factors
  publication-title: Sol. Energy
– volume: 6
  start-page: 129
  issue: 2
  year: 1995
  end-page: 238
  article-title: Review and test of methods for determination of the solar cell series resistance
  publication-title: Renewable Energy
– volume: 140
  start-page: 265
  year: 2016
  end-page: 276
  article-title: Parameter extraction of two diode solar PV model using fireworks algorithm
  publication-title: Sol. Energy
– volume: 182
  start-page: 47
  year: 2016
  end-page: 57
  article-title: Parameters identification of photovoltaic models using hybrid adaptive Nelder–Mead simplex algorithm based on eagle strategy
  publication-title: Appl. Energy
– volume: 124
  start-page: 216
  year: 2016
  end-page: 226
  article-title: Solar photovoltaic technology on rough low carbon steel substrates for building integrated photovoltaics: A complete fabrication sequence panel
  publication-title: Sol. Energy
– volume: 211
  start-page: 774
  year: 2018
  end-page: 791
  article-title: A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization
  publication-title: Appl. Energy
– volume: 4
  start-page: 1
  issue: 1
  year: 1986
  article-title: Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers
  publication-title: Int J Sol. Energy
– volume: 82
  start-page: 3503
  issue: 3
  year: 2018
  end-page: 3525
  article-title: Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems
  publication-title: Renewable Sustainable Energy Rev.
– volume: 200
  start-page: 141
  year: 2017
  end-page: 154
  article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm
  publication-title: Appl. Energy
– volume: 12
  start-page: 1922
  issue: 11
  year: 2001
  end-page: 1925
  article-title: Solar cell parameter extraction using genetic algorithms
  publication-title: Meas. Sci. Technol.
– start-page: 1
  year: 2018
  end-page: 4
  article-title: Using the genetic algorithm to determine the parameters of photovoltaic cells and panels
– volume: 51
  start-page: 298
  issue: 4
  year: 1993
  end-page: 291
  article-title: Improved statistical procedure for the evaluation of solar radiation estimation models
  publication-title: Sol. Energy
– volume: 2020
  year: 2020
  article-title: Calculation of seven photovoltaic cells parameters using parallelized successive discretization algorithm
  publication-title: Int. J. Photoenergy
– volume: 61
  start-page: 213
  year: 2016
  end-page: 221
  article-title: Methods and techniques to determine the dynamic parameters of solar cells: review
  publication-title: Renewable Sustainable Energy Rev.
– volume: 2013
  year: 2013
  article-title: Parameter estimation of photovoltaic models via cuckoo search
  publication-title: J. Appl. Math.
– volume: 108
  start-page: 238
  year: 2014
  end-page: 251
  article-title: Parameter extraction of solar cell models using mutative‐ scale parallel chaos optimization algorithm
  publication-title: Sol. Energy
– volume: 196
  start-page: 545
  year: 2019
  end-page: 556
  article-title: Application of successive discretization algorithm for determining photovoltaic cells parameters
  publication-title: Energy Convers. Manage.
– volume: 29
  start-page: 329
  issue: 3
  year: 1986
  end-page: 337
  article-title: A comparative study of extraction methods for solar cell model parameters
  publication-title: Solid‐State Electronics
– volume: 94
  start-page: 209
  year: 2013
  end-page: 220
  article-title: Parameter extraction of solar cell models using repaired adaptive differential evolution
  publication-title: Sol Energy
– volume: 197
  year: 2019
  article-title: Important notes on parameter estimation of solar photovoltaic cell
  publication-title: Energy Convers. Manage.
– volume: 185
  start-page: 866
  year: 2019
  end-page: 890
  article-title: Collaborative swarm intelligence to estimate PV parameters
  publication-title: Energy Convers. Manage.
– volume: 435
  year: 2019
  article-title: A review on meta‐heuristics methods for estimating parameters of solar cells
  publication-title: J. Power Sources
– volume: 157
  start-page: 460
  year: 2018
  end-page: 479
  article-title: Parameter extraction of solar cell models using improved shuffled complex evolution algorithm
  publication-title: Energy Convers. Manage.
– volume: 93
  start-page: 94
  year: 2016
  end-page: 101
  article-title: Design and implementation of RELab system to study the solar and wind energy
  publication-title: Measurement
– volume: 159
  start-page: 78
  year: 2018
  end-page: 87
  article-title: Enhanced leader particle swarm optimisation (ELPSO): An efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules
  publication-title: Sol. Energy
– volume: 3
  start-page: 455
  issue: 2
  year: 1963
  end-page: 479
  article-title: Series resistance effects on solar cell measurements
  publication-title: Advanced Energy Conversion
– volume: 135
  start-page: 463
  year: 2017
  end-page: 476
  article-title: A new hybrid bee pollinator flower pollination algorithm for solar parameter estimation
  publication-title: Energy Convers. Manage.
– volume: 180
  start-page: 192
  year: 2019
  end-page: 206
  article-title: Hybridizing cuckoo search algorithm with biogeography‐based optimization for estimating photovoltaic model parameters
  publication-title: Sol. Energy
– volume: 203
  year: 2020
  article-title: Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models
  publication-title: Energy
– volume: 86
  start-page: 3241
  issue: 11
  year: 2012
  end-page: 3249
  article-title: Parameter identification for solar cell models using harmony search‐based algorithms
  publication-title: Sol. Energy
– volume: 28
  start-page: 588
  year: 2013
  end-page: 596
  article-title: Methods to determine the dc parameters of solar cells: a critical review
  publication-title: Renewable Sustainable Energy Rev.
– volume: 208
  year: 2020
  article-title: Comprehensive overview of meta‐heuristic algorithm applications on PV cell parameter identification
  publication-title: Energy Convers. Manage.
– volume: 101
  start-page: 410
  year: 2015
  end-page: 422
  article-title: Flower pollination Algorithm based solar PV parameter estimation
  publication-title: Energy Convers. Manage.
– volume: 129
  start-page: 262
  year: 2016
  end-page: 274
  article-title: Time varying acceleration coefficients particle swarm optimisation (TVACPSO): a new optimisation algorithm for estimating parameters of PV cells and modules
  publication-title: Energy Convers Manage
– volume: 45
  start-page: 590
  year: 2020
  end-page: 604
  article-title: Artificial electric field algorithm to extract nine parameters of triple‐diode photovoltaic model
  publication-title: Int. J. Energy Res.
– start-page: 398
  year: 2011
  end-page: 402
  article-title: Extracting solar cell model parameters based on chaos particle swarm algorithm
– ident: e_1_2_6_39_1
  doi: 10.1155/2013/362619
– ident: e_1_2_6_13_1
  doi: 10.1016/j.enconman.2019.06.037
– ident: e_1_2_6_4_1
  doi: 10.1016/j.solener.2006.11.002
– ident: e_1_2_6_38_1
  doi: 10.1155/2019/3923691
– ident: e_1_2_6_33_1
  doi: 10.1016/j.solener.2017.10.063
– ident: e_1_2_6_41_1
  doi: 10.1371/journal.pone.0216201
– ident: e_1_2_6_19_1
  doi: 10.1109/ICEICE.2011.5777246
– ident: e_1_2_6_12_1
  doi: 10.1002/er.5756
– ident: e_1_2_6_14_1
  doi: 10.1016/j.apenergy.2017.05.029
– ident: e_1_2_6_49_1
  doi: 10.1016/j.enconman.2016.12.082
– ident: e_1_2_6_45_1
  doi: 10.1155/2020/6669579
– ident: e_1_2_6_50_1
  doi: 10.1016/j.solener.2016.10.044
– ident: e_1_2_6_28_1
  doi: 10.1016/j.apenergy.2016.08.083
– ident: e_1_2_6_25_1
  doi: 10.1016/j.solener.2012.08.018
– ident: e_1_2_6_29_1
  doi: 10.1016/j.apenergy.2017.11.078
– ident: e_1_2_6_36_1
  doi: 10.1016/j.solener.2019.01.025
– ident: e_1_2_6_37_1
  doi: 10.1007/s00500-016-2307-7
– ident: e_1_2_6_42_1
  doi: 10.1016/j.energy.2020.117804
– ident: e_1_2_6_8_1
  doi: 10.1088/0957-0233/12/11/322
– ident: e_1_2_6_10_1
  doi: 10.1016/j.jpowsour.2019.05.089
– ident: e_1_2_6_11_1
  doi: 10.1016/j.enconman.2020.112595
– ident: e_1_2_6_9_1
  doi: 10.1016/j.rser.2017.10.107
– ident: e_1_2_6_35_1
  doi: 10.3390/rs11232795
– ident: e_1_2_6_51_1
  doi: 10.1016/j.solener.2015.11.035
– ident: e_1_2_6_32_1
  doi: 10.1016/j.solener.2013.05.007
– ident: e_1_2_6_27_1
  doi: 10.1016/j.enconman.2019.111870
– ident: e_1_2_6_2_1
  doi: 10.1016/0365-1789(63)90063-8
– ident: e_1_2_6_3_1
  doi: 10.1016/0960-1481(94)E0021-V
– ident: e_1_2_6_24_1
  doi: 10.1109/ISETC.2018.8584016
– ident: e_1_2_6_46_1
  doi: 10.1016/0038-092X(93)90124-7
– ident: e_1_2_6_34_1
  doi: 10.3390/en10070865
– ident: e_1_2_6_44_1
  doi: 10.1049/rpg2.12059
– ident: e_1_2_6_21_1
  doi: 10.1016/0038-1101(86)90212-1
– ident: e_1_2_6_17_1
  doi: 10.1016/j.ijhydene.2013.12.110
– ident: e_1_2_6_18_1
  doi: 10.1016/j.enconman.2015.05.074
– ident: e_1_2_6_31_1
  doi: 10.1016/j.enconman.2016.09.085
– ident: e_1_2_6_7_1
  doi: 10.1016/j.rser.2015.11.051
– ident: e_1_2_6_47_1
  doi: 10.1080/01425918608909835
– ident: e_1_2_6_48_1
  doi: 10.1016/j.solener.2017.08.006
– volume-title: Optimization approaches for parameter estimation and maximum power point tracking (MPPT) of photovoltaic systems
  year: 2014
  ident: e_1_2_6_40_1
– ident: e_1_2_6_5_1
  doi: 10.1016/j.rser.2013.08.017
– ident: e_1_2_6_30_1
  doi: 10.1016/j.enconman.2019.02.003
– ident: e_1_2_6_16_1
  doi: 10.1063/1.4941791
– ident: e_1_2_6_43_1
  doi: 10.1016/j.energy.2020.118644
– ident: e_1_2_6_23_1
  doi: 10.1016/j.renene.2012.01.082
– ident: e_1_2_6_20_1
  doi: 10.1016/j.solener.2014.07.013
– ident: e_1_2_6_15_1
  doi: 10.1016/j.enconman.2015.11.041
– ident: e_1_2_6_6_1
  doi: 10.1016/j.rser.2016.03.051
– ident: e_1_2_6_26_1
  doi: 10.1016/j.enconman.2017.12.033
– ident: e_1_2_6_22_1
  doi: 10.1016/j.measurement.2016.06.060
SSID ssj0059086
Score 2.414495
Snippet This paper presents a new hybrid successive discretisation algorithm, used to calculate the parameters of the photovoltaic cells and panels, by the one diode...
Abstract This paper presents a new hybrid successive discretisation algorithm, used to calculate the parameters of the photovoltaic cells and panels, by the...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 3661
SubjectTerms Amorphous and glassy semiconductors
Elemental semiconductors
Interpolation and function approximation (numerical analysis)
Photoelectric conversion; solar cells and arrays
Reliability
Solar cells and arrays
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS9xAEF5EfNAH0dbiaS0D7UuF6GWzud19rKX2no5DLPgWNrsTFTQ5LjnBV_9yZzZ3oiDtS99CMrDJ7DA_sjPfJ8S3Mi9LLKlSRZ9SgZJWw8Q45xLLh1ZKS-crFckm9GRirq7s9BXVF_eE9fDAveJOjdPWIQURP9IKXeZ8XrqQGhMo1vmA7H2H2q6Kqd4HM5F3nCvSuUxSyjlWwKTKns5n1_IkpaxDvglFEbH_bYYaQ8z5jthe5obwo3-nXbGG9Qex9Qox8KN4Gj_yiBW0i0h0SK4KeK6WRxH7thxwd9cNFfw397BoMUDXAO0CN5t2CIzzfc_9Ly00FVDqB7ObpmvIQ3Xu1gP_xG_B1YEEa4qZQAktMFQmt0YD95K22LV74s_5r8uf42RJo5D4jL9fqZBjlecGRwYdE9elLkNjrNFZkI4eUUlIUZ8KmbIcYrCj0pOmlUEtVWV19kms102N-wLkMEf05AKcD8oGyjV8WsmRN6zw3FQD8X2l0cIvMcaZ6uKuiGfdyhas_SJqfyC-vsjOemSNd6XOeGNeJBgNO94gGymWNlL8y0YG4jhu61_WKS6mv2W8OvgfKx6KTcnNL3Fo8bNY7-YLPBIb_oGsYf4l2uozdQHwjw
  priority: 102
  providerName: Directory of Open Access Journals
Title Hybrid successive discretisation algorithm used to calculate parameters of the photovoltaic cells and panels for existing datasets
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frpg2.12262
https://doaj.org/article/8a79ae614c674ea3ac5bad188d750cde
Volume 15
WOSCitedRecordID wos000678711100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1752-1424
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0059086
  issn: 1752-1416
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1752-1424
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059086
  issn: 1752-1416
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1752-1424
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059086
  issn: 1752-1416
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhzaE9tE0fdJs0CNJLC25XsrySIJe0NI_LsoSU5mb0GG8CyXqxvYFe-8szI-9uGyiFkosx9hgLjTT6Rpr5hrH3vvAePHqqEAQ6KKIaZsY5l1k6tFJaulCpVGxCj8fm4sJONtjBKhem54dYb7jRzEj2mia4830VEgS1qMRmPpWfBKIHNMCPhMg1jWmpJis7TMW8U26RLmQmEHesyEmV_fz723vLUWLtv49S0zJz9OxhDXzOni7hJT_sx8M224DZC_bkD9LBl-zXyU_K0uLtItVKRGvHKTWXshn7yB7urqd1c9Vd3vBFC5F3NUdFUrxqB5yowm8ohKbldcURPfL5Zd3VaOQ6dxU4nQO03M0iCmL7W46YmBPbJkVXcwpHbaFrX7HvR9_Ov55ky0oMWcip-5SKBVRFYWBkwFHtO-FyMMYanUfp8BV6lQgc0BfyfgjRjnxQ4JQBLVVldf6abc7qGbxhXA4LgIBWxIWobES4EkQlR8GQvgpTDdiHlULKsKQpp2oZ12U6Lle2pH4tU78O2P5adt6Tc_xV6gvpdS1BhNrpQd1My-X8LI3T1gFilTDS2PLchcK7KIyJCKlChAH7mHT9j_-UZ5Njme7e_o_wDnssKU4m5Tfuss2uWcA7thVuUevNXhrSe2mnAK8_Tsd3lHH9kw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9RAEF5KW1AfbP2Fp7UO6ItC7GWzuew-VrE9sR6HVOhb2OxOroX2ciQ5oa_9y53Z5E4LIhTfQjIhm53d2W92Z74R4m2RFgUW5Kmii8lBicthpK21keFDK5VJ60oVik1kk4k-OzPTPjaHc2E6foj1hhvPjGCveYLzhnTncComyawXM_khJvhAFnhL0TLDBQykmq4MMVfzDslFWSqjmIDHip1UmYPf795ajwJt_22YGtaZo53_bOGueNgDTDjsRsQjsYHzx-LBH7SDT8TN-JrztKBZhmqJZO-Ak3M5n7GL7QF7Oavqi_b8CpYNemgrIFVyxGqLwGThVxxE00BVAuFHWJxXbUVmrrUXDvgkoAE79yRIP9AAoWJgvk2OrwYOSG2wbZ6KH0efTz-No74WQ-QS7j-lfIplmmocabRc_S62CWptdJZ4aekR-ZUEHcgbKoohejMqnEKrNGZSlSZLnonNeTXH5wLkMEV0ZEes88p4AiwuLuXIaVZYqsuBeLfSSO56onKul3GZhwNzZXLu1zz060C8WcsuOnqOv0p9ZMWuJZhSO9yo6lnez9Bc28xYpGHkRhm1PLEuLayPtfYEqpzHgXgflP2P7-Tfp8cyXL24i_BrcW98-u0kP_ky-fpS3JccNROyHffEZlsv8ZXYdj9pBNT7YXz_AqGt_3E
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA9yipwP59eJe37cgL4o1NumyTZ59GvvRFkWUbi3kibTvYO77dJ2BV_9y51Ju6sHIohvpZ3SNJNMfpPM_EaI56UuSyzJU0WfkoOSVuPEOOcSy4dWKpfOVyoWm8hnM3N6audDbA7nwvT8ENsNN54Z0V7zBMdVqHqHUzFJZrNayFcpwQeywNeVJiPLxM5qvjHEXM07JhflWiYpAY8NO6myR7_evbIeRdr-qzA1rjPT2__ZwjtibwCY8LofEXfFNVzeE7d-ox28L36cfOc8LWjXsVoi2Tvg5FzOZ-xje8BdLOrmvDu7hHWLAboaSJUcsdohMFn4JQfRtFBXQPgRVmd1V5OZ69y5Bz4JaMEtAwnSD7RAqBiYb5Pjq4EDUlvs2n3xdfr-y9uTZKjFkPiM-0-poLHS2uDEoOPqd6nL0Bhr8ixIR4_IryToQN5QWY4x2EnpFTplMJeqsnn2QOws6yU-FCDHGtGTHXE-KBsIsPi0khNvWGHaVCPxYqORwg9E5Vwv46KIB-bKFtyvRezXkXi2lV319Bx_lHrDit1KMKV2vFE3i2KYoYVxuXVIaMVPcmp55rwuXUiNCQSqfMCReBmV_ZfvFJ_nxzJeHfyL8KG4OX83LT59mH18JHYlB83EZMfHYqdr1vhE3PDfaAA0T-Pw_glH__71
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+successive+discretisation+algorithm+used+to+calculate+parameters+of+the+photovoltaic+cells+and+panels+for+existing+datasets&rft.jtitle=IET+renewable+power+generation&rft.au=Cotfas%2C+Daniel+T.&rft.au=Deaconu%2C+Adrian+M.&rft.au=Cotfas%2C+Petru+A.&rft.date=2021-11-01&rft.issn=1752-1416&rft.eissn=1752-1424&rft.volume=15&rft.issue=15&rft.spage=3661&rft.epage=3687&rft_id=info:doi/10.1049%2Frpg2.12262&rft.externalDBID=10.1049%252Frpg2.12262&rft.externalDocID=RPG212262
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1752-1416&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1752-1416&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1752-1416&client=summon