Hybrid successive discretisation algorithm used to calculate parameters of the photovoltaic cells and panels for existing datasets
This paper presents a new hybrid successive discretisation algorithm, used to calculate the parameters of the photovoltaic cells and panels, by the one diode model and the two diode model. Nine known datasets from the specialised literature were used to validate the new algorithm and then it was fir...
Gespeichert in:
| Veröffentlicht in: | IET renewable power generation Jg. 15; H. 15; S. 3661 - 3687 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Wiley
01.11.2021
|
| Schlagworte: | |
| ISSN: | 1752-1416, 1752-1424 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper presents a new hybrid successive discretisation algorithm, used to calculate the parameters of the photovoltaic cells and panels, by the one diode model and the two diode model. Nine known datasets from the specialised literature were used to validate the new algorithm and then it was firstly applied for two new datasets. For the first time only one algorithm is applied to extract the parameters, in both cases—one and two diode models. The new datasets are for commercial monocrystalline silicon and amorphous silicon photovoltaic cells. The main test used to prove the performance of HDSA is the root mean square error. Other four tests were used for comparison: the mean absolute error, the mean bias error, t‐statistic, and the coefficient of determination. The hybrid successive discretisation algorithm proved its accuracy and reliability for parameter extraction of different types of photovoltaic cells and panels for all datasets used. Comparing the hybrid successive discretisation algorithm with the best algorithms from the specialised literature shows an improvement of the root mean square error by up to10.4% for the one diode model and by up to 7.5% for the two diode model, respectively. |
|---|---|
| AbstractList | This paper presents a new hybrid successive discretisation algorithm, used to calculate the parameters of the photovoltaic cells and panels, by the one diode model and the two diode model. Nine known datasets from the specialised literature were used to validate the new algorithm and then it was firstly applied for two new datasets. For the first time only one algorithm is applied to extract the parameters, in both cases—one and two diode models. The new datasets are for commercial monocrystalline silicon and amorphous silicon photovoltaic cells. The main test used to prove the performance of HDSA is the root mean square error. Other four tests were used for comparison: the mean absolute error, the mean bias error, t‐statistic, and the coefficient of determination. The hybrid successive discretisation algorithm proved its accuracy and reliability for parameter extraction of different types of photovoltaic cells and panels for all datasets used. Comparing the hybrid successive discretisation algorithm with the best algorithms from the specialised literature shows an improvement of the root mean square error by up to10.4% for the one diode model and by up to 7.5% for the two diode model, respectively. Abstract This paper presents a new hybrid successive discretisation algorithm, used to calculate the parameters of the photovoltaic cells and panels, by the one diode model and the two diode model. Nine known datasets from the specialised literature were used to validate the new algorithm and then it was firstly applied for two new datasets. For the first time only one algorithm is applied to extract the parameters, in both cases—one and two diode models. The new datasets are for commercial monocrystalline silicon and amorphous silicon photovoltaic cells. The main test used to prove the performance of HDSA is the root mean square error. Other four tests were used for comparison: the mean absolute error, the mean bias error, t‐statistic, and the coefficient of determination. The hybrid successive discretisation algorithm proved its accuracy and reliability for parameter extraction of different types of photovoltaic cells and panels for all datasets used. Comparing the hybrid successive discretisation algorithm with the best algorithms from the specialised literature shows an improvement of the root mean square error by up to10.4% for the one diode model and by up to 7.5% for the two diode model, respectively. |
| Author | Cotfas, Petru A. Deaconu, Adrian M. Cotfas, Daniel T. |
| Author_xml | – sequence: 1 givenname: Daniel T. orcidid: 0000-0002-9606-8442 surname: Cotfas fullname: Cotfas, Daniel T. email: dtcotfas@unitbv.ro organization: Transilvania University of Brasov – sequence: 2 givenname: Adrian M. surname: Deaconu fullname: Deaconu, Adrian M. organization: Transilvania University of Brasov – sequence: 3 givenname: Petru A. surname: Cotfas fullname: Cotfas, Petru A. organization: Transilvania University of Brasov |
| BookMark | eNp9UctqHDEQFMEBv3LxF-hsWFvSSBrNMZj4AQYHY59Fj9SzK6MdLZLW8V7z5ZndtX0IIacuuquKouuYHIxpRELOOLvgTHaXeTUXF1wILb6QI94qMeNSyINPzPUhOS7lhTHVMaOPyO_bTZ-Dp2XtHJYSXpH6UFzGGgrUkEYKcZ5yqIslXRf0tCbqILp1hIp0BRmWWDEXmgZaF9NmkWp6TbFCcNRhjIXC6CfiiBMcUqb4FkoN45x6qFCwllPydYBY8Nv7PCHP1z-erm5n9w83d1ff72eu2YaX0isclDKoDYJiSnBo0JjOtI0XMJ2k1KJrtNZ9z9B3uncSQRpshRy6tjkhd3tfn-DFrnJYQt7YBMHuFinPLeQaXERroO0ANZdOt5NHA0714LkxvlXMeZy82N7L5VRKxsG6UHf_qhlCtJzZbR9224fd9TFJzv-SfET4J5nvyb9CxM1_mPbx543Ya_4AFQWg0Q |
| CitedBy_id | crossref_primary_10_1088_2631_8695_ad3f6f crossref_primary_10_3390_app15137403 crossref_primary_10_1016_j_enconman_2023_117373 crossref_primary_10_1016_j_solener_2024_112353 crossref_primary_10_1109_TIM_2025_3551857 crossref_primary_10_3390_math11040967 crossref_primary_10_1016_j_ijhydene_2024_06_424 crossref_primary_10_1088_1402_4896_addc4f crossref_primary_10_1016_j_egyr_2024_10_052 crossref_primary_10_1038_s41598_025_85115_x crossref_primary_10_1155_er_5792330 crossref_primary_10_3390_axioms12010070 crossref_primary_10_3390_math11092205 crossref_primary_10_1002_ese3_1109 crossref_primary_10_1016_j_renene_2025_123427 crossref_primary_10_1016_j_rineng_2025_104268 crossref_primary_10_1007_s43621_025_01679_8 crossref_primary_10_3390_s22186989 crossref_primary_10_1109_ACCESS_2024_3439344 crossref_primary_10_1016_j_egyr_2023_11_012 crossref_primary_10_1080_15567036_2022_2125126 crossref_primary_10_1155_2021_3608138 crossref_primary_10_1016_j_ijleo_2023_171467 |
| Cites_doi | 10.1155/2013/362619 10.1016/j.enconman.2019.06.037 10.1016/j.solener.2006.11.002 10.1155/2019/3923691 10.1016/j.solener.2017.10.063 10.1371/journal.pone.0216201 10.1109/ICEICE.2011.5777246 10.1002/er.5756 10.1016/j.apenergy.2017.05.029 10.1016/j.enconman.2016.12.082 10.1155/2020/6669579 10.1016/j.solener.2016.10.044 10.1016/j.apenergy.2016.08.083 10.1016/j.solener.2012.08.018 10.1016/j.apenergy.2017.11.078 10.1016/j.solener.2019.01.025 10.1007/s00500-016-2307-7 10.1016/j.energy.2020.117804 10.1088/0957-0233/12/11/322 10.1016/j.jpowsour.2019.05.089 10.1016/j.enconman.2020.112595 10.1016/j.rser.2017.10.107 10.3390/rs11232795 10.1016/j.solener.2015.11.035 10.1016/j.solener.2013.05.007 10.1016/j.enconman.2019.111870 10.1016/0365-1789(63)90063-8 10.1016/0960-1481(94)E0021-V 10.1109/ISETC.2018.8584016 10.1016/0038-092X(93)90124-7 10.3390/en10070865 10.1049/rpg2.12059 10.1016/0038-1101(86)90212-1 10.1016/j.ijhydene.2013.12.110 10.1016/j.enconman.2015.05.074 10.1016/j.enconman.2016.09.085 10.1016/j.rser.2015.11.051 10.1080/01425918608909835 10.1016/j.solener.2017.08.006 10.1016/j.rser.2013.08.017 10.1016/j.enconman.2019.02.003 10.1063/1.4941791 10.1016/j.energy.2020.118644 10.1016/j.renene.2012.01.082 10.1016/j.solener.2014.07.013 10.1016/j.enconman.2015.11.041 10.1016/j.rser.2016.03.051 10.1016/j.enconman.2017.12.033 10.1016/j.measurement.2016.06.060 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology |
| Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology |
| DBID | 24P AAYXX CITATION DOA |
| DOI | 10.1049/rpg2.12262 |
| DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1752-1424 |
| EndPage | 3687 |
| ExternalDocumentID | oai_doaj_org_article_8a79ae614c674ea3ac5bad188d750cde 10_1049_rpg2_12262 RPG212262 |
| Genre | article |
| GroupedDBID | .DC 0R~ 1OC 24P 29I 4.4 5GY 6IK 7XC 8FE 8FG 8FH AAHHS AAHJG AAJGR ABJCF ABMDY ABQXS ACCFJ ACCMX ACESK ACGFS ACIWK ACXQS ADZOD AEEZP AENEX AEQDE AEUYN AFKRA AFRAH AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS ATCPS AVUZU BENPR BGLVJ BHPHI CCPQU CS3 DU5 EBS EJD GROUPED_DOAJ HCIFZ HZ~ IAO IEP IFIPE IGS IPLJI ITC JAVBF L6V LAI M43 M7S MCNEO O9- OCL OK1 P2P P62 PATMY PTHSS PYCSY RIE RNS ROL RUI S0W AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN |
| ID | FETCH-LOGICAL-c3752-44d5ef558e68ea50521a3e889873d2aef5446293666bb0ed96bc4ea48e724f973 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000678711100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1752-1416 |
| IngestDate | Mon Nov 10 04:35:11 EST 2025 Tue Nov 18 21:56:03 EST 2025 Wed Oct 29 21:30:00 EDT 2025 Wed Jan 22 16:27:35 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3752-44d5ef558e68ea50521a3e889873d2aef5446293666bb0ed96bc4ea48e724f973 |
| ORCID | 0000-0002-9606-8442 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frpg2.12262 |
| PageCount | 27 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8a79ae614c674ea3ac5bad188d750cde crossref_citationtrail_10_1049_rpg2_12262 crossref_primary_10_1049_rpg2_12262 wiley_primary_10_1049_rpg2_12262_RPG212262 |
| PublicationCentury | 2000 |
| PublicationDate | November 2021 2021-11-00 2021-11-01 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | IET renewable power generation |
| PublicationYear | 2021 |
| Publisher | Wiley |
| Publisher_xml | – name: Wiley |
| References | 2019; 2019 2013; 28 2016; 108 2019; 11 2015; 101 2019; 14 2020; 203 2018; 82 2016; 182 2017; 157 2020; 208 2016; 140 2013; 2013 2018; 211 2013; 94 1986; 4 2019; 435 2020; 211 2020; 45 2001; 12 2019; 196 2017; 200 2019; 197 2011 2016; 129 2017; 21 2016; 124 2016; 93 2019; 185 2017; 135 1995; 6 2016; 56 2014; 108 2021; 15 2019; 180 2020; 2020 1993; 51 2018; 157 2017; 10 2018; 159 1963; 3 1986; 29 2018 2007; 81 2016; 61 2014 2014; 39 2012; 44 2016; 8 2012; 86 e_1_2_6_51_1 e_1_2_6_32_1 Ma J. (e_1_2_6_40_1) 2014 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
| References_xml | – volume: 10 start-page: 865 issue: 7 year: 2017 article-title: A chaotic improved artificial bee colony for parameter estimation of photovoltaic cells publication-title: Energies – volume: 21 start-page: 7519 year: 2017 end-page: 7541 article-title: Biogeography‐based learning particle swarm optimization publication-title: Soft Computing – volume: 14 issue: 5 year: 2019 article-title: Simple and efficient estimation of photovoltaic cells and modules parameters using approximation and correction technique publication-title: PLoS One – volume: 56 start-page: 494 year: 2016 end-page: 509 article-title: Solar cell parameters extraction based on single and double‐diode models: A review publication-title: Renewable Sustainable Energy Rev. – volume: 39 start-page: 3837 year: 2014 end-page: 3854 article-title: An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models publication-title: Int. J. Hydrogen Energy – volume: 44 start-page: 238 year: 2012 end-page: 245 article-title: Optimal extraction of solar cell parameters using pattern search publication-title: Renewable Energy – volume: 8 year: 2016 article-title: Solar cell parameters identification using hybrid Nelder–Mead and modified particle swarm optimization publication-title: J. Renewable Sustainable Energy – year: 2014 – volume: 157 start-page: 116 year: 2017 end-page: 124 article-title: An improved optimization technique for estimation of solar photovoltaic parameters publication-title: Sol. Energy – volume: 108 start-page: 520 year: 2016 end-page: 528 article-title: Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm publication-title: Energy Convers. Manage. – volume: 11 start-page: 2795 issue: 23 year: 2019 article-title: Modified search strategies assisted crossover whale optimization algorithm with selection operator for parameter extraction of solar photovoltaic models publication-title: Remote Sensing – volume: 15 start-page: 701 issue: 3 year: 2021 end-page: 715 article-title: Artificial ecosystem‐based optimizer to electrically characterize PV generating systems under various operating conditions reinforced by experimental validations publication-title: IET Renewable Power Gener. – volume: 211 year: 2020 article-title: Comprehensive learning Jaya algorithm for parameter extraction of photovoltaic models publication-title: Energy – volume: 2019 year: 2019 article-title: Application of supply‐demand‐based optimization for parameter extraction of solar photovoltaic models publication-title: Complexity – volume: 81 start-page: 856 issue: 7 year: 2007 end-page: 863 article-title: Review and tests of methods for the determination of the solar cell junction ideality factors publication-title: Sol. Energy – volume: 6 start-page: 129 issue: 2 year: 1995 end-page: 238 article-title: Review and test of methods for determination of the solar cell series resistance publication-title: Renewable Energy – volume: 140 start-page: 265 year: 2016 end-page: 276 article-title: Parameter extraction of two diode solar PV model using fireworks algorithm publication-title: Sol. Energy – volume: 182 start-page: 47 year: 2016 end-page: 57 article-title: Parameters identification of photovoltaic models using hybrid adaptive Nelder–Mead simplex algorithm based on eagle strategy publication-title: Appl. Energy – volume: 124 start-page: 216 year: 2016 end-page: 226 article-title: Solar photovoltaic technology on rough low carbon steel substrates for building integrated photovoltaics: A complete fabrication sequence panel publication-title: Sol. Energy – volume: 211 start-page: 774 year: 2018 end-page: 791 article-title: A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization publication-title: Appl. Energy – volume: 4 start-page: 1 issue: 1 year: 1986 article-title: Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers publication-title: Int J Sol. Energy – volume: 82 start-page: 3503 issue: 3 year: 2018 end-page: 3525 article-title: Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems publication-title: Renewable Sustainable Energy Rev. – volume: 200 start-page: 141 year: 2017 end-page: 154 article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm publication-title: Appl. Energy – volume: 12 start-page: 1922 issue: 11 year: 2001 end-page: 1925 article-title: Solar cell parameter extraction using genetic algorithms publication-title: Meas. Sci. Technol. – start-page: 1 year: 2018 end-page: 4 article-title: Using the genetic algorithm to determine the parameters of photovoltaic cells and panels – volume: 51 start-page: 298 issue: 4 year: 1993 end-page: 291 article-title: Improved statistical procedure for the evaluation of solar radiation estimation models publication-title: Sol. Energy – volume: 2020 year: 2020 article-title: Calculation of seven photovoltaic cells parameters using parallelized successive discretization algorithm publication-title: Int. J. Photoenergy – volume: 61 start-page: 213 year: 2016 end-page: 221 article-title: Methods and techniques to determine the dynamic parameters of solar cells: review publication-title: Renewable Sustainable Energy Rev. – volume: 2013 year: 2013 article-title: Parameter estimation of photovoltaic models via cuckoo search publication-title: J. Appl. Math. – volume: 108 start-page: 238 year: 2014 end-page: 251 article-title: Parameter extraction of solar cell models using mutative‐ scale parallel chaos optimization algorithm publication-title: Sol. Energy – volume: 196 start-page: 545 year: 2019 end-page: 556 article-title: Application of successive discretization algorithm for determining photovoltaic cells parameters publication-title: Energy Convers. Manage. – volume: 29 start-page: 329 issue: 3 year: 1986 end-page: 337 article-title: A comparative study of extraction methods for solar cell model parameters publication-title: Solid‐State Electronics – volume: 94 start-page: 209 year: 2013 end-page: 220 article-title: Parameter extraction of solar cell models using repaired adaptive differential evolution publication-title: Sol Energy – volume: 197 year: 2019 article-title: Important notes on parameter estimation of solar photovoltaic cell publication-title: Energy Convers. Manage. – volume: 185 start-page: 866 year: 2019 end-page: 890 article-title: Collaborative swarm intelligence to estimate PV parameters publication-title: Energy Convers. Manage. – volume: 435 year: 2019 article-title: A review on meta‐heuristics methods for estimating parameters of solar cells publication-title: J. Power Sources – volume: 157 start-page: 460 year: 2018 end-page: 479 article-title: Parameter extraction of solar cell models using improved shuffled complex evolution algorithm publication-title: Energy Convers. Manage. – volume: 93 start-page: 94 year: 2016 end-page: 101 article-title: Design and implementation of RELab system to study the solar and wind energy publication-title: Measurement – volume: 159 start-page: 78 year: 2018 end-page: 87 article-title: Enhanced leader particle swarm optimisation (ELPSO): An efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules publication-title: Sol. Energy – volume: 3 start-page: 455 issue: 2 year: 1963 end-page: 479 article-title: Series resistance effects on solar cell measurements publication-title: Advanced Energy Conversion – volume: 135 start-page: 463 year: 2017 end-page: 476 article-title: A new hybrid bee pollinator flower pollination algorithm for solar parameter estimation publication-title: Energy Convers. Manage. – volume: 180 start-page: 192 year: 2019 end-page: 206 article-title: Hybridizing cuckoo search algorithm with biogeography‐based optimization for estimating photovoltaic model parameters publication-title: Sol. Energy – volume: 203 year: 2020 article-title: Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models publication-title: Energy – volume: 86 start-page: 3241 issue: 11 year: 2012 end-page: 3249 article-title: Parameter identification for solar cell models using harmony search‐based algorithms publication-title: Sol. Energy – volume: 28 start-page: 588 year: 2013 end-page: 596 article-title: Methods to determine the dc parameters of solar cells: a critical review publication-title: Renewable Sustainable Energy Rev. – volume: 208 year: 2020 article-title: Comprehensive overview of meta‐heuristic algorithm applications on PV cell parameter identification publication-title: Energy Convers. Manage. – volume: 101 start-page: 410 year: 2015 end-page: 422 article-title: Flower pollination Algorithm based solar PV parameter estimation publication-title: Energy Convers. Manage. – volume: 129 start-page: 262 year: 2016 end-page: 274 article-title: Time varying acceleration coefficients particle swarm optimisation (TVACPSO): a new optimisation algorithm for estimating parameters of PV cells and modules publication-title: Energy Convers Manage – volume: 45 start-page: 590 year: 2020 end-page: 604 article-title: Artificial electric field algorithm to extract nine parameters of triple‐diode photovoltaic model publication-title: Int. J. Energy Res. – start-page: 398 year: 2011 end-page: 402 article-title: Extracting solar cell model parameters based on chaos particle swarm algorithm – ident: e_1_2_6_39_1 doi: 10.1155/2013/362619 – ident: e_1_2_6_13_1 doi: 10.1016/j.enconman.2019.06.037 – ident: e_1_2_6_4_1 doi: 10.1016/j.solener.2006.11.002 – ident: e_1_2_6_38_1 doi: 10.1155/2019/3923691 – ident: e_1_2_6_33_1 doi: 10.1016/j.solener.2017.10.063 – ident: e_1_2_6_41_1 doi: 10.1371/journal.pone.0216201 – ident: e_1_2_6_19_1 doi: 10.1109/ICEICE.2011.5777246 – ident: e_1_2_6_12_1 doi: 10.1002/er.5756 – ident: e_1_2_6_14_1 doi: 10.1016/j.apenergy.2017.05.029 – ident: e_1_2_6_49_1 doi: 10.1016/j.enconman.2016.12.082 – ident: e_1_2_6_45_1 doi: 10.1155/2020/6669579 – ident: e_1_2_6_50_1 doi: 10.1016/j.solener.2016.10.044 – ident: e_1_2_6_28_1 doi: 10.1016/j.apenergy.2016.08.083 – ident: e_1_2_6_25_1 doi: 10.1016/j.solener.2012.08.018 – ident: e_1_2_6_29_1 doi: 10.1016/j.apenergy.2017.11.078 – ident: e_1_2_6_36_1 doi: 10.1016/j.solener.2019.01.025 – ident: e_1_2_6_37_1 doi: 10.1007/s00500-016-2307-7 – ident: e_1_2_6_42_1 doi: 10.1016/j.energy.2020.117804 – ident: e_1_2_6_8_1 doi: 10.1088/0957-0233/12/11/322 – ident: e_1_2_6_10_1 doi: 10.1016/j.jpowsour.2019.05.089 – ident: e_1_2_6_11_1 doi: 10.1016/j.enconman.2020.112595 – ident: e_1_2_6_9_1 doi: 10.1016/j.rser.2017.10.107 – ident: e_1_2_6_35_1 doi: 10.3390/rs11232795 – ident: e_1_2_6_51_1 doi: 10.1016/j.solener.2015.11.035 – ident: e_1_2_6_32_1 doi: 10.1016/j.solener.2013.05.007 – ident: e_1_2_6_27_1 doi: 10.1016/j.enconman.2019.111870 – ident: e_1_2_6_2_1 doi: 10.1016/0365-1789(63)90063-8 – ident: e_1_2_6_3_1 doi: 10.1016/0960-1481(94)E0021-V – ident: e_1_2_6_24_1 doi: 10.1109/ISETC.2018.8584016 – ident: e_1_2_6_46_1 doi: 10.1016/0038-092X(93)90124-7 – ident: e_1_2_6_34_1 doi: 10.3390/en10070865 – ident: e_1_2_6_44_1 doi: 10.1049/rpg2.12059 – ident: e_1_2_6_21_1 doi: 10.1016/0038-1101(86)90212-1 – ident: e_1_2_6_17_1 doi: 10.1016/j.ijhydene.2013.12.110 – ident: e_1_2_6_18_1 doi: 10.1016/j.enconman.2015.05.074 – ident: e_1_2_6_31_1 doi: 10.1016/j.enconman.2016.09.085 – ident: e_1_2_6_7_1 doi: 10.1016/j.rser.2015.11.051 – ident: e_1_2_6_47_1 doi: 10.1080/01425918608909835 – ident: e_1_2_6_48_1 doi: 10.1016/j.solener.2017.08.006 – volume-title: Optimization approaches for parameter estimation and maximum power point tracking (MPPT) of photovoltaic systems year: 2014 ident: e_1_2_6_40_1 – ident: e_1_2_6_5_1 doi: 10.1016/j.rser.2013.08.017 – ident: e_1_2_6_30_1 doi: 10.1016/j.enconman.2019.02.003 – ident: e_1_2_6_16_1 doi: 10.1063/1.4941791 – ident: e_1_2_6_43_1 doi: 10.1016/j.energy.2020.118644 – ident: e_1_2_6_23_1 doi: 10.1016/j.renene.2012.01.082 – ident: e_1_2_6_20_1 doi: 10.1016/j.solener.2014.07.013 – ident: e_1_2_6_15_1 doi: 10.1016/j.enconman.2015.11.041 – ident: e_1_2_6_6_1 doi: 10.1016/j.rser.2016.03.051 – ident: e_1_2_6_26_1 doi: 10.1016/j.enconman.2017.12.033 – ident: e_1_2_6_22_1 doi: 10.1016/j.measurement.2016.06.060 |
| SSID | ssj0059086 |
| Score | 2.414495 |
| Snippet | This paper presents a new hybrid successive discretisation algorithm, used to calculate the parameters of the photovoltaic cells and panels, by the one diode... Abstract This paper presents a new hybrid successive discretisation algorithm, used to calculate the parameters of the photovoltaic cells and panels, by the... |
| SourceID | doaj crossref wiley |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 3661 |
| SubjectTerms | Amorphous and glassy semiconductors Elemental semiconductors Interpolation and function approximation (numerical analysis) Photoelectric conversion; solar cells and arrays Reliability Solar cells and arrays |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS9xAEF5EfNAH0dbiaS0D7UuF6GWzud19rKX2no5DLPgWNrsTFTQ5LjnBV_9yZzZ3oiDtS99CMrDJ7DA_sjPfJ8S3Mi9LLKlSRZ9SgZJWw8Q45xLLh1ZKS-crFckm9GRirq7s9BXVF_eE9fDAveJOjdPWIQURP9IKXeZ8XrqQGhMo1vmA7H2H2q6Kqd4HM5F3nCvSuUxSyjlWwKTKns5n1_IkpaxDvglFEbH_bYYaQ8z5jthe5obwo3-nXbGG9Qex9Qox8KN4Gj_yiBW0i0h0SK4KeK6WRxH7thxwd9cNFfw397BoMUDXAO0CN5t2CIzzfc_9Ly00FVDqB7ObpmvIQ3Xu1gP_xG_B1YEEa4qZQAktMFQmt0YD95K22LV74s_5r8uf42RJo5D4jL9fqZBjlecGRwYdE9elLkNjrNFZkI4eUUlIUZ8KmbIcYrCj0pOmlUEtVWV19kms102N-wLkMEf05AKcD8oGyjV8WsmRN6zw3FQD8X2l0cIvMcaZ6uKuiGfdyhas_SJqfyC-vsjOemSNd6XOeGNeJBgNO94gGymWNlL8y0YG4jhu61_WKS6mv2W8OvgfKx6KTcnNL3Fo8bNY7-YLPBIb_oGsYf4l2uozdQHwjw priority: 102 providerName: Directory of Open Access Journals |
| Title | Hybrid successive discretisation algorithm used to calculate parameters of the photovoltaic cells and panels for existing datasets |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frpg2.12262 https://doaj.org/article/8a79ae614c674ea3ac5bad188d750cde |
| Volume | 15 |
| WOSCitedRecordID | wos000678711100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 1752-1424 dateEnd: 20241231 omitProxy: false ssIdentifier: ssj0059086 issn: 1752-1416 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1752-1424 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0059086 issn: 1752-1416 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1752-1424 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0059086 issn: 1752-1416 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhzaE9tE0fdJs0CNJLC25XsrySIJe0NI_LsoSU5mb0GG8CyXqxvYFe-8szI-9uGyiFkosx9hgLjTT6Rpr5hrH3vvAePHqqEAQ6KKIaZsY5l1k6tFJaulCpVGxCj8fm4sJONtjBKhem54dYb7jRzEj2mia4830VEgS1qMRmPpWfBKIHNMCPhMg1jWmpJis7TMW8U26RLmQmEHesyEmV_fz723vLUWLtv49S0zJz9OxhDXzOni7hJT_sx8M224DZC_bkD9LBl-zXyU_K0uLtItVKRGvHKTWXshn7yB7urqd1c9Vd3vBFC5F3NUdFUrxqB5yowm8ohKbldcURPfL5Zd3VaOQ6dxU4nQO03M0iCmL7W46YmBPbJkVXcwpHbaFrX7HvR9_Ov55ky0oMWcip-5SKBVRFYWBkwFHtO-FyMMYanUfp8BV6lQgc0BfyfgjRjnxQ4JQBLVVldf6abc7qGbxhXA4LgIBWxIWobES4EkQlR8GQvgpTDdiHlULKsKQpp2oZ12U6Lle2pH4tU78O2P5adt6Tc_xV6gvpdS1BhNrpQd1My-X8LI3T1gFilTDS2PLchcK7KIyJCKlChAH7mHT9j_-UZ5Njme7e_o_wDnssKU4m5Tfuss2uWcA7thVuUevNXhrSe2mnAK8_Tsd3lHH9kw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9RAEF5KW1AfbP2Fp7UO6ItC7GWzuew-VrE9sR6HVOhb2OxOroX2ciQ5oa_9y53Z5E4LIhTfQjIhm53d2W92Z74R4m2RFgUW5Kmii8lBicthpK21keFDK5VJ60oVik1kk4k-OzPTPjaHc2E6foj1hhvPjGCveYLzhnTncComyawXM_khJvhAFnhL0TLDBQykmq4MMVfzDslFWSqjmIDHip1UmYPf795ajwJt_22YGtaZo53_bOGueNgDTDjsRsQjsYHzx-LBH7SDT8TN-JrztKBZhmqJZO-Ak3M5n7GL7QF7Oavqi_b8CpYNemgrIFVyxGqLwGThVxxE00BVAuFHWJxXbUVmrrUXDvgkoAE79yRIP9AAoWJgvk2OrwYOSG2wbZ6KH0efTz-No74WQ-QS7j-lfIplmmocabRc_S62CWptdJZ4aekR-ZUEHcgbKoohejMqnEKrNGZSlSZLnonNeTXH5wLkMEV0ZEes88p4AiwuLuXIaVZYqsuBeLfSSO56onKul3GZhwNzZXLu1zz060C8WcsuOnqOv0p9ZMWuJZhSO9yo6lnez9Bc28xYpGHkRhm1PLEuLayPtfYEqpzHgXgflP2P7-Tfp8cyXL24i_BrcW98-u0kP_ky-fpS3JccNROyHffEZlsv8ZXYdj9pBNT7YXz_AqGt_3E |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA9yipwP59eJe37cgL4o1NumyTZ59GvvRFkWUbi3kibTvYO77dJ2BV_9y51Ju6sHIohvpZ3SNJNMfpPM_EaI56UuSyzJU0WfkoOSVuPEOOcSy4dWKpfOVyoWm8hnM3N6audDbA7nwvT8ENsNN54Z0V7zBMdVqHqHUzFJZrNayFcpwQeywNeVJiPLxM5qvjHEXM07JhflWiYpAY8NO6myR7_evbIeRdr-qzA1rjPT2__ZwjtibwCY8LofEXfFNVzeE7d-ox28L36cfOc8LWjXsVoi2Tvg5FzOZ-xje8BdLOrmvDu7hHWLAboaSJUcsdohMFn4JQfRtFBXQPgRVmd1V5OZ69y5Bz4JaMEtAwnSD7RAqBiYb5Pjq4EDUlvs2n3xdfr-y9uTZKjFkPiM-0-poLHS2uDEoOPqd6nL0Bhr8ixIR4_IryToQN5QWY4x2EnpFTplMJeqsnn2QOws6yU-FCDHGtGTHXE-KBsIsPi0khNvWGHaVCPxYqORwg9E5Vwv46KIB-bKFtyvRezXkXi2lV319Bx_lHrDit1KMKV2vFE3i2KYoYVxuXVIaMVPcmp55rwuXUiNCQSqfMCReBmV_ZfvFJ_nxzJeHfyL8KG4OX83LT59mH18JHYlB83EZMfHYqdr1vhE3PDfaAA0T-Pw_glH__71 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+successive+discretisation+algorithm+used+to+calculate+parameters+of+the+photovoltaic+cells+and+panels+for+existing+datasets&rft.jtitle=IET+renewable+power+generation&rft.au=Cotfas%2C+Daniel+T.&rft.au=Deaconu%2C+Adrian+M.&rft.au=Cotfas%2C+Petru+A.&rft.date=2021-11-01&rft.issn=1752-1416&rft.eissn=1752-1424&rft.volume=15&rft.issue=15&rft.spage=3661&rft.epage=3687&rft_id=info:doi/10.1049%2Frpg2.12262&rft.externalDBID=10.1049%252Frpg2.12262&rft.externalDocID=RPG212262 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1752-1416&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1752-1416&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1752-1416&client=summon |