Map construction algorithm based on dense point cloud

In order to address the issue of the difficulty in constructing maps from sensor‐acquired point clouds, a map construction algorithm is proposed for the effective conversion from sparse point clouds to dense point clouds. First, it constructs a dense point cloud map in real‐time using colour and dep...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET image processing Ročník 18; číslo 14; s. 4492 - 4502
Hlavní autoři: Liu, Chengjie, Li, Xuemei, Lv, Shangsong, Liu, Bin, Li, Min
Médium: Journal Article
Jazyk:angličtina
Vydáno: Wiley 01.12.2024
Témata:
ISSN:1751-9659, 1751-9667
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In order to address the issue of the difficulty in constructing maps from sensor‐acquired point clouds, a map construction algorithm is proposed for the effective conversion from sparse point clouds to dense point clouds. First, it constructs a dense point cloud map in real‐time using colour and depth information of keyframes. Then, it generates an accurate point cloud map by voxel filtering and coordinate conversion. Finally, the point cloud map is converted into an octree map using OctoMap. This article uses the TUM dataset for simulation analysis to verify the effectiveness of the algorithm. The results demonstrate that the algorithm can construct dense point cloud maps with high positioning accuracy in sparse point cloud scenarios. The algorithm improves the positioning accuracy by more than 15% under the fr1_xyz, fr1_room, fr1_desk2, fr1_desk1, fr2_desk and fr3_str_tex_near sequences, compared to ORB‐SLAM2, ORB‐SLAM3 and GX ORB‐SLAM2 algorithm In this work, we propose a method to construct a dense point cloud map in real‐time using colour and depth information of keyframes. Then, it generates an accurate point cloud map by voxel filtering and coordinate conversion. Finally, the point cloud map is converted into an octree map using OctoMap.
ISSN:1751-9659
1751-9667
DOI:10.1049/ipr2.13260