Linear algebra for computing Gröbner bases of linear recursive multidimensional sequences
The so-called Berlekamp–Massey–Sakata algorithm computes a Gröbner basis of a 0-dimensional ideal of relations satisfied by an input table. It extends the Berlekamp–Massey algorithm to n-dimensional tables, for n>1. We investigate this problem and design several algorithms for computing such a Gr...
Saved in:
| Published in: | Journal of symbolic computation Vol. 83; no. Supplement C; pp. 36 - 67 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.11.2017
Elsevier |
| Subjects: | |
| ISSN: | 0747-7171, 1095-855X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The so-called Berlekamp–Massey–Sakata algorithm computes a Gröbner basis of a 0-dimensional ideal of relations satisfied by an input table. It extends the Berlekamp–Massey algorithm to n-dimensional tables, for n>1.
We investigate this problem and design several algorithms for computing such a Gröbner basis of an ideal of relations using linear algebra techniques. The first one performs a lot of table queries and is analogous to a change of variables on the ideal of relations.
As each query to the table can be expensive, we design a second algorithm requiring fewer queries, in general. This FGLM-like algorithm allows us to compute the relations of the table by extracting a full rank submatrix of a multi-Hankel matrix (a multivariate generalization of Hankel matrices).
Under some additional assumptions, we make a third, adaptive, algorithm and reduce further the number of table queries. Then, we relate the number of queries of this third algorithm to the geometry of the final staircase and we show that it is essentially linear in the size of the output when the staircase is convex. As a direct application to this, we decode n-cyclic codes, a generalization in dimension n of Reed Solomon codes.
We show that the multi-Hankel matrices are heavily structured when using the LEX ordering and that we can speed up the computations using fast algorithms for quasi-Hankel matrices. Finally, we design algorithms for computing the generating series of a linear recursive table. |
|---|---|
| AbstractList | The so-called Berlekamp–Massey–Sakata algorithm computes a Gröbner basis of a 0-dimensional ideal of relations satisfied by an input table. It extends the Berlekamp–Massey algorithm to n-dimensional tables, for n>1.
We investigate this problem and design several algorithms for computing such a Gröbner basis of an ideal of relations using linear algebra techniques. The first one performs a lot of table queries and is analogous to a change of variables on the ideal of relations.
As each query to the table can be expensive, we design a second algorithm requiring fewer queries, in general. This FGLM-like algorithm allows us to compute the relations of the table by extracting a full rank submatrix of a multi-Hankel matrix (a multivariate generalization of Hankel matrices).
Under some additional assumptions, we make a third, adaptive, algorithm and reduce further the number of table queries. Then, we relate the number of queries of this third algorithm to the geometry of the final staircase and we show that it is essentially linear in the size of the output when the staircase is convex. As a direct application to this, we decode n-cyclic codes, a generalization in dimension n of Reed Solomon codes.
We show that the multi-Hankel matrices are heavily structured when using the LEX ordering and that we can speed up the computations using fast algorithms for quasi-Hankel matrices. Finally, we design algorithms for computing the generating series of a linear recursive table. The so-called Berlekamp~-- Massey~-- Sakata algorithmcomputes a Gröbner basis of a $0$-dimensional ideal of relations satisfied by an inputtable. It extends the Berlekamp~-- Massey algorithmto $n$-dimensional tables, for $n>1$.We investigate this problem and design several algorithms forcomputing such a Gröbner basis of an ideal of relations using linearalgebra techniques.The first one performs a lot of table queries andis analogous to a change of variables on the ideal of relations.As each query to the table can be expensive,we design a second algorithmrequiring fewer queries, in general.This \textsc{FGLM}-like algorithm allows us to compute the relations of thetable by extracting a full rank submatrix of a \emph{multi-Hankel}matrix (a multivariate generalization of Hankel matrices).Under someadditional assumptions, we make a third, adaptive, algorithm and reducefurther the number of table queries.Then, we relate the number of queries ofthis third algorithm to the\emph{geometry} of the final staircase and we show that it isessentially linear in the size of the output when the staircase is convex.As a direct application to this, we decode $n$-cyclic codes, ageneralization in dimension $n$ of Reed Solomon codes. We show that the multi-Hankelmatrices are heavily structured when using the \textsc{LEX} orderingand that we can speed up the computations using fast algorithms forquasi-Hankel matrices.Finally, we designalgorithms for computing the generating series of a linear recursivetable. |
| Author | Boyer, Brice Faugère, Jean-Charles Berthomieu, Jérémy |
| Author_xml | – sequence: 1 givenname: Jérémy surname: Berthomieu fullname: Berthomieu, Jérémy email: jeremy.berthomieu@lip6.fr – sequence: 2 givenname: Brice surname: Boyer fullname: Boyer, Brice email: brice.boyer@lip6.fr – sequence: 3 givenname: Jean-Charles surname: Faugère fullname: Faugère, Jean-Charles email: jean-charles.faugere@inria.fr |
| BackLink | https://inria.hal.science/hal-01253934$$DView record in HAL |
| BookMark | eNp9kM9Kw0AQhxepYFt9AG979ZC4k2STLJ5K0VYIeFEQL8tmM6kb8qfupgVfzBfwxUyIePDQ0wzD7xv4fQsya7sWCbkG5gOD-LbyK6f9YFh9AJ8xfkbmwAT3Us5fZ2TOkijxEkjggiycqxhjIgr5nLxlpkVlqap3mFtFy85S3TX7Q2_aHd3Y76-8RUtz5dDRrqT1FLeoD9aZI9LmUPemMA22znStqqnDjwO2Gt0lOS9V7fDqdy7Jy8P983rrZU-bx_Uq83SYRL1XFkHC04ALBM4UFMgKETMUUQC5iDCMmUKthdBxrNJSlamGPISCl3EgChbn4ZLcTH_fVS331jTKfspOGbldZXK8MQh4KMLoGA5ZmLLads5ZLP8AYHIUKSs5iJSjSAkgB5EDk_xjtOlVP7TtrTL1SfJuInGofzRopdNmdFOYQWAvi86coH8AYB2Rgw |
| CitedBy_id | crossref_primary_10_1007_s10208_021_09535_7 crossref_primary_10_1016_j_jco_2020_101502 crossref_primary_10_1016_j_jsc_2021_11_001 crossref_primary_10_1016_j_jsc_2019_09_001 crossref_primary_10_1016_j_jsc_2021_07_002 crossref_primary_10_1016_j_jsc_2022_08_014 |
| Cites_doi | 10.1002/sapm1946251261 10.1145/2500122 10.1109/18.86974 10.1016/S0024-3795(99)00251-7 10.1109/18.476246 10.1016/S0012-365X(00)00147-3 10.1090/S0002-9947-1952-0049591-8 10.1016/0024-3795(89)90032-3 10.1017/S0305004100012354 10.1016/j.laa.2010.06.046 10.1016/j.jsc.2012.05.008 10.1006/jsco.1993.1051 10.1007/978-3-319-32859-1_11 10.1007/BF01876039 10.1016/j.laa.2013.06.016 10.1109/TIT.1968.1054109 10.1016/S0747-7171(88)80033-6 10.1109/TIT.1969.1054260 10.1109/18.59953 10.1016/0890-5401(90)90039-K |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd Attribution |
| Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Attribution |
| DBID | AAYXX CITATION 1XC VOOES |
| DOI | 10.1016/j.jsc.2016.11.005 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1095-855X |
| EndPage | 67 |
| ExternalDocumentID | oai:HAL:hal-01253934v3 10_1016_j_jsc_2016_11_005 S0747717116301249 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6I. 6OB 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE IXB J1W KOM LG5 M25 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSV SSW SSZ T5K TN5 UPT WUQ XPP YQT ZMT ZU3 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 1XC VOOES |
| ID | FETCH-LOGICAL-c374t-fd2758259e150a1de0d960e9421b94e360aecc99c66a8faf8c1b31d5f629d06b3 |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000402227900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0747-7171 |
| IngestDate | Tue Oct 14 20:17:39 EDT 2025 Tue Nov 18 22:04:58 EST 2025 Sat Nov 29 07:14:06 EST 2025 Fri Feb 23 02:31:31 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Supplement C |
| Keywords | Multidimensional linear recursive sequence The FGLM algorithm The BMS algorithm Gröbner basis computation 0-dimensional ideal FGLM algorithm Berlekamp - Massey - Sakata algorithm multidimensional linear recurrent sequence 0$-dimensional ideal |
| Language | English |
| License | Attribution: http://creativecommons.org/licenses/by |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c374t-fd2758259e150a1de0d960e9421b94e360aecc99c66a8faf8c1b31d5f629d06b3 |
| ORCID | 0000-0002-9011-2211 |
| OpenAccessLink | https://inria.hal.science/hal-01253934 |
| PageCount | 32 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01253934v3 crossref_primary_10_1016_j_jsc_2016_11_005 crossref_citationtrail_10_1016_j_jsc_2016_11_005 elsevier_sciencedirect_doi_10_1016_j_jsc_2016_11_005 |
| PublicationCentury | 2000 |
| PublicationDate | November-December 2017 2017-11-00 2017-11 |
| PublicationDateYYYYMMDD | 2017-11-01 |
| PublicationDate_xml | – month: 11 year: 2017 text: November-December 2017 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of symbolic computation |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Brachat, Comon, Mourrain, Tsigaridas (br0050) 2010; 433 Lakshman (br0200) 1990 Bousquet-Mélou, Petkovšek (br0040) 2000; 225 Daleo, N.S., Hauenstein, J.D., 2015. Numerically testing generically reduced projective schemes for the arithmetic Gorenstein property. Presented at MACIS 2015. Bostan, Jeannerod, Schost (br0030) 2007 Wiener (br0320) 1964 Gianni, Mora (br0130) 1989; vol. 356 Jonckheere, Ma (br0150) 1989; 125 Berlekamp (br0010) 1968; 14 Saints, Heegard (br0260) 1995; 41 Kaltofen, Pan (br0160) 1991 Fasino, Tilli (br0090) 2000; 306 Fitzpatrick, Norton (br0120) 1990; 36 Sakata (br0290) 1991; 37 Sakata (br0270) 1988; 5 Sakata (br0280) 1990; 84 Ruzsa (br0250) 1994; 65 Koutschan (br0190) 2013 Faugère, Gianni, Lazard, Mora (br0100) 1993; 16 Serra-Capizzano (br0310) 2002; vol. 135 Berthomieu, Boyer, Faugère (br0020) 2015 Macaulay (br0220) 1934; 30 Sakata (br0300) 2009 Levinson (br0210) 1947; 25 Massey (br0230) 1969; it-15 Faugère, Mou (br0110) 2011 Chabanne, Norton (br0060) 1992 Elkadi, Mourrain (br0080) 2007; vol. 59 Kaltofen, Yuhasz (br0170) 2013; 439 Gorenstein (br0140) 1952; 72 Poteaux, Schost (br0240) 2013; 50 Kaltofen, Yuhasz (br0180) 2013; 9 Fitzpatrick (10.1016/j.jsc.2016.11.005_br0120) 1990; 36 Kaltofen (10.1016/j.jsc.2016.11.005_br0180) 2013; 9 10.1016/j.jsc.2016.11.005_br0070 Koutschan (10.1016/j.jsc.2016.11.005_br0190) 2013 Levinson (10.1016/j.jsc.2016.11.005_br0210) 1947; 25 Bousquet-Mélou (10.1016/j.jsc.2016.11.005_br0040) 2000; 225 Chabanne (10.1016/j.jsc.2016.11.005_br0060) Sakata (10.1016/j.jsc.2016.11.005_br0270) 1988; 5 Poteaux (10.1016/j.jsc.2016.11.005_br0240) 2013; 50 Macaulay (10.1016/j.jsc.2016.11.005_br0220) 1934; 30 Jonckheere (10.1016/j.jsc.2016.11.005_br0150) 1989; 125 Saints (10.1016/j.jsc.2016.11.005_br0260) 1995; 41 Kaltofen (10.1016/j.jsc.2016.11.005_br0160) 1991 Massey (10.1016/j.jsc.2016.11.005_br0230) 1969; it-15 Elkadi (10.1016/j.jsc.2016.11.005_br0080) 2007; vol. 59 Bostan (10.1016/j.jsc.2016.11.005_br0030) 2007 Faugère (10.1016/j.jsc.2016.11.005_br0110) 2011 Berlekamp (10.1016/j.jsc.2016.11.005_br0010) 1968; 14 Sakata (10.1016/j.jsc.2016.11.005_br0280) 1990; 84 Berthomieu (10.1016/j.jsc.2016.11.005_br0020) 2015 Gorenstein (10.1016/j.jsc.2016.11.005_br0140) 1952; 72 Sakata (10.1016/j.jsc.2016.11.005_br0290) 1991; 37 Faugère (10.1016/j.jsc.2016.11.005_br0100) 1993; 16 Kaltofen (10.1016/j.jsc.2016.11.005_br0170) 2013; 439 Ruzsa (10.1016/j.jsc.2016.11.005_br0250) 1994; 65 Sakata (10.1016/j.jsc.2016.11.005_br0300) 2009 Gianni (10.1016/j.jsc.2016.11.005_br0130) 1989; vol. 356 Fasino (10.1016/j.jsc.2016.11.005_br0090) 2000; 306 Wiener (10.1016/j.jsc.2016.11.005_br0320) 1964 Brachat (10.1016/j.jsc.2016.11.005_br0050) 2010; 433 Lakshman (10.1016/j.jsc.2016.11.005_br0200) 1990 Serra-Capizzano (10.1016/j.jsc.2016.11.005_br0310) 2002; vol. 135 |
| References_xml | – volume: 439 start-page: 2515 year: 2013 end-page: 2526 ident: br0170 article-title: A fraction free matrix Berlekamp/Massey algorithm publication-title: Linear Algebra Appl. – volume: 41 start-page: 1733 year: 1995 end-page: 1751 ident: br0260 article-title: Algebraic–geometric codes and multidimensional cyclic codes: theory and algorithms for decoding using Gröbner bases publication-title: IEEE Trans. Inf. Theory – volume: 36 start-page: 1480 year: 1990 end-page: 1487 ident: br0120 article-title: Finding a basis for the characteristic ideal of an n-dimensional linear recurring sequence publication-title: IEEE Trans. Inf. Theory – start-page: 61 year: 2015 end-page: 68 ident: br0020 article-title: Linear algebra for computing Gröbner bases of linear recursive multidimensional sequences publication-title: 40th International Symposium on Symbolic and Algebraic Computation – volume: 433 start-page: 1851 year: 2010 end-page: 1872 ident: br0050 article-title: Symmetric tensor decomposition publication-title: Linear Algebra Appl. – start-page: 555 year: 1990 end-page: 563 ident: br0200 article-title: On the complexity of computing a Gröbner basis for the radical of a zero dimensional ideal publication-title: Proc. of the 22nd Annual ACM STOC – year: 1992 ident: br0060 article-title: On the key equation for – start-page: 171 year: 2013 end-page: 194 ident: br0190 article-title: Creative telescoping for holonomic functions publication-title: Computer Algebra in Quantum Field Theory – volume: 84 start-page: 207 year: 1990 end-page: 239 ident: br0280 article-title: Extension of the Berlekamp–Massey algorithm to publication-title: Inf. Comput. – volume: 16 start-page: 329 year: 1993 end-page: 344 ident: br0100 article-title: Efficient computation of zero-dimensional Gröbner bases by change of ordering publication-title: J. Symb. Comput. – volume: 65 start-page: 379 year: 1994 end-page: 388 ident: br0250 article-title: Generalized arithmetical progressions and sumsets publication-title: Acta Math. Hung. – volume: 30 start-page: 27 year: 1934 end-page: 46 ident: br0220 article-title: Modern algebra and polynomial ideals publication-title: Math. Proc. Camb. Philos. Soc. – volume: 50 start-page: 110 year: 2013 end-page: 138 ident: br0240 article-title: On the complexity of computing with 0-dimensional triangular sets publication-title: J. Symb. Comput. – year: 1964 ident: br0320 article-title: Extrapolation, Interpolation, and Smoothing of Stationary Time Series – volume: vol. 356 start-page: 247 year: 1989 end-page: 257 ident: br0130 article-title: Algebraic solution of systems of polynomial equations using Gröbner bases publication-title: Proc. of AAECC-5 – volume: vol. 59 year: 2007 ident: br0080 article-title: Introduction à la résolution des systèmes polynomiaux publication-title: Math. Appl. – volume: 9 start-page: 33:1 year: 2013 end-page: 33:24 ident: br0180 article-title: On the matrix Berlekamp–Massey algorithm publication-title: ACM Trans. Algorithms – start-page: 115 year: 2011 end-page: 122 ident: br0110 article-title: Fast algorithm for change of ordering of zero-dimensional Gröbner bases with sparse multiplication matrices publication-title: Proc. of the 36th ISSAC – volume: 72 start-page: 414 year: 1952 end-page: 436 ident: br0140 article-title: An arithmetic theory of adjoint plane curves publication-title: Trans. Am. Math. Soc. – volume: 37 start-page: 1200 year: 1991 end-page: 1203 ident: br0290 article-title: Decoding binary 2-D cyclic codes by the 2-D Berlekamp–Massey algorithm publication-title: IEEE Trans. Inf. Theory – volume: 14 start-page: 242 year: 1968 ident: br0010 article-title: Nonbinary BCH decoding publication-title: IEEE Trans. Inf. Theory – start-page: 180 year: 1991 end-page: 191 ident: br0160 article-title: Processor efficient parallel solution of linear systems over an abstract field publication-title: SPAA '91 – volume: vol. 135 start-page: 293 year: 2002 end-page: 315 ident: br0310 article-title: More inequalities and asymptotics for matrix valued linear positive operators: the noncommutative case publication-title: Toeplitz Matrices and Singular Integral Equations – volume: 125 start-page: 65 year: 1989 end-page: 76 ident: br0150 article-title: A simple Hankel interpretation of the Berlekamp–Massey algorithm publication-title: Linear Algebra Appl. – reference: Daleo, N.S., Hauenstein, J.D., 2015. Numerically testing generically reduced projective schemes for the arithmetic Gorenstein property. Presented at MACIS 2015. – volume: it-15 start-page: 122 year: 1969 end-page: 127 ident: br0230 article-title: Shift-register synthesis and BCH decoding publication-title: IEEE Trans. Inf. Theory – volume: 225 start-page: 51 year: 2000 end-page: 75 ident: br0040 article-title: Linear recurrences with constant coefficients: the multivariate case publication-title: Discrete Math. – volume: 25 start-page: 261 year: 1947 end-page: 278 ident: br0210 article-title: The Wiener RMS (Root-Mean-Square) error criterion in the filter design and prediction publication-title: J. Math. Phys. – volume: 5 start-page: 321 year: 1988 end-page: 337 ident: br0270 article-title: Finding a minimal set of linear recurring relations capable of generating a given finite two-dimensional array publication-title: J. Symb. Comput. – volume: 306 start-page: 155 year: 2000 end-page: 163 ident: br0090 article-title: Spectral clustering properties of block multilevel Hankel matrices publication-title: Linear Algebra Appl. – start-page: 143 year: 2009 end-page: 163 ident: br0300 article-title: The BMS algorithm publication-title: Gröbner Bases, Coding, and Cryptography – start-page: 33 year: 2007 end-page: 40 ident: br0030 article-title: Solving Toeplitz- and Vandermonde-like linear systems with large displacement rank publication-title: ISSAC'07 – volume: vol. 135 start-page: 293 year: 2002 ident: 10.1016/j.jsc.2016.11.005_br0310 article-title: More inequalities and asymptotics for matrix valued linear positive operators: the noncommutative case – start-page: 180 year: 1991 ident: 10.1016/j.jsc.2016.11.005_br0160 article-title: Processor efficient parallel solution of linear systems over an abstract field – volume: 25 start-page: 261 year: 1947 ident: 10.1016/j.jsc.2016.11.005_br0210 article-title: The Wiener RMS (Root-Mean-Square) error criterion in the filter design and prediction publication-title: J. Math. Phys. doi: 10.1002/sapm1946251261 – start-page: 115 year: 2011 ident: 10.1016/j.jsc.2016.11.005_br0110 article-title: Fast algorithm for change of ordering of zero-dimensional Gröbner bases with sparse multiplication matrices – start-page: 171 year: 2013 ident: 10.1016/j.jsc.2016.11.005_br0190 article-title: Creative telescoping for holonomic functions – year: 1964 ident: 10.1016/j.jsc.2016.11.005_br0320 – ident: 10.1016/j.jsc.2016.11.005_br0060 – volume: 9 start-page: 33:1 issue: 4 year: 2013 ident: 10.1016/j.jsc.2016.11.005_br0180 article-title: On the matrix Berlekamp–Massey algorithm publication-title: ACM Trans. Algorithms doi: 10.1145/2500122 – volume: 37 start-page: 1200 issue: 4 year: 1991 ident: 10.1016/j.jsc.2016.11.005_br0290 article-title: Decoding binary 2-D cyclic codes by the 2-D Berlekamp–Massey algorithm publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.86974 – start-page: 555 year: 1990 ident: 10.1016/j.jsc.2016.11.005_br0200 article-title: On the complexity of computing a Gröbner basis for the radical of a zero dimensional ideal – volume: 306 start-page: 155 issue: 1–3 year: 2000 ident: 10.1016/j.jsc.2016.11.005_br0090 article-title: Spectral clustering properties of block multilevel Hankel matrices publication-title: Linear Algebra Appl. doi: 10.1016/S0024-3795(99)00251-7 – volume: 41 start-page: 1733 issue: 6 year: 1995 ident: 10.1016/j.jsc.2016.11.005_br0260 article-title: Algebraic–geometric codes and multidimensional cyclic codes: theory and algorithms for decoding using Gröbner bases publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.476246 – volume: 225 start-page: 51 issue: 1–3 year: 2000 ident: 10.1016/j.jsc.2016.11.005_br0040 article-title: Linear recurrences with constant coefficients: the multivariate case publication-title: Discrete Math. doi: 10.1016/S0012-365X(00)00147-3 – volume: 72 start-page: 414 year: 1952 ident: 10.1016/j.jsc.2016.11.005_br0140 article-title: An arithmetic theory of adjoint plane curves publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1952-0049591-8 – volume: 125 start-page: 65 issue: 0 year: 1989 ident: 10.1016/j.jsc.2016.11.005_br0150 article-title: A simple Hankel interpretation of the Berlekamp–Massey algorithm publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(89)90032-3 – volume: 30 start-page: 27 year: 1934 ident: 10.1016/j.jsc.2016.11.005_br0220 article-title: Modern algebra and polynomial ideals publication-title: Math. Proc. Camb. Philos. Soc. doi: 10.1017/S0305004100012354 – volume: 433 start-page: 1851 issue: 11–12 year: 2010 ident: 10.1016/j.jsc.2016.11.005_br0050 article-title: Symmetric tensor decomposition publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2010.06.046 – volume: vol. 356 start-page: 247 year: 1989 ident: 10.1016/j.jsc.2016.11.005_br0130 article-title: Algebraic solution of systems of polynomial equations using Gröbner bases – volume: 50 start-page: 110 issue: 0 year: 2013 ident: 10.1016/j.jsc.2016.11.005_br0240 article-title: On the complexity of computing with 0-dimensional triangular sets publication-title: J. Symb. Comput. doi: 10.1016/j.jsc.2012.05.008 – volume: vol. 59 year: 2007 ident: 10.1016/j.jsc.2016.11.005_br0080 article-title: Introduction à la résolution des systèmes polynomiaux – volume: 16 start-page: 329 issue: 4 year: 1993 ident: 10.1016/j.jsc.2016.11.005_br0100 article-title: Efficient computation of zero-dimensional Gröbner bases by change of ordering publication-title: J. Symb. Comput. doi: 10.1006/jsco.1993.1051 – ident: 10.1016/j.jsc.2016.11.005_br0070 doi: 10.1007/978-3-319-32859-1_11 – volume: 65 start-page: 379 issue: 4 year: 1994 ident: 10.1016/j.jsc.2016.11.005_br0250 article-title: Generalized arithmetical progressions and sumsets publication-title: Acta Math. Hung. doi: 10.1007/BF01876039 – start-page: 61 year: 2015 ident: 10.1016/j.jsc.2016.11.005_br0020 article-title: Linear algebra for computing Gröbner bases of linear recursive multidimensional sequences – start-page: 33 year: 2007 ident: 10.1016/j.jsc.2016.11.005_br0030 article-title: Solving Toeplitz- and Vandermonde-like linear systems with large displacement rank – volume: 439 start-page: 2515 issue: 9 year: 2013 ident: 10.1016/j.jsc.2016.11.005_br0170 article-title: A fraction free matrix Berlekamp/Massey algorithm publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2013.06.016 – volume: 14 start-page: 242 issue: 2 year: 1968 ident: 10.1016/j.jsc.2016.11.005_br0010 article-title: Nonbinary BCH decoding publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1968.1054109 – volume: 5 start-page: 321 issue: 3 year: 1988 ident: 10.1016/j.jsc.2016.11.005_br0270 article-title: Finding a minimal set of linear recurring relations capable of generating a given finite two-dimensional array publication-title: J. Symb. Comput. doi: 10.1016/S0747-7171(88)80033-6 – volume: it-15 start-page: 122 year: 1969 ident: 10.1016/j.jsc.2016.11.005_br0230 article-title: Shift-register synthesis and BCH decoding publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1969.1054260 – volume: 36 start-page: 1480 issue: 6 year: 1990 ident: 10.1016/j.jsc.2016.11.005_br0120 article-title: Finding a basis for the characteristic ideal of an n-dimensional linear recurring sequence publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.59953 – start-page: 143 year: 2009 ident: 10.1016/j.jsc.2016.11.005_br0300 article-title: The BMS algorithm – volume: 84 start-page: 207 issue: 2 year: 1990 ident: 10.1016/j.jsc.2016.11.005_br0280 article-title: Extension of the Berlekamp–Massey algorithm to N dimensions publication-title: Inf. Comput. doi: 10.1016/0890-5401(90)90039-K |
| SSID | ssj0009435 |
| Score | 2.247318 |
| Snippet | The so-called Berlekamp–Massey–Sakata algorithm computes a Gröbner basis of a 0-dimensional ideal of relations satisfied by an input table. It extends the... The so-called Berlekamp~-- Massey~-- Sakata algorithmcomputes a Gröbner basis of a $0$-dimensional ideal of relations satisfied by an inputtable. It extends... |
| SourceID | hal crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 36 |
| SubjectTerms | 0-dimensional ideal Computer Science Gröbner basis computation Multidimensional linear recursive sequence Symbolic Computation The BMS algorithm The FGLM algorithm |
| Title | Linear algebra for computing Gröbner bases of linear recursive multidimensional sequences |
| URI | https://dx.doi.org/10.1016/j.jsc.2016.11.005 https://inria.hal.science/hal-01253934 |
| Volume | 83 |
| WOSCitedRecordID | wos000402227900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-855X dateEnd: 20180228 omitProxy: false ssIdentifier: ssj0009435 issn: 0747-7171 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECVcp4deuhdJNxBFTw0UiFoo8mgXSdMgCHpIAaMXgRSpxoYjB_KC5Bv6P_2B_liHi2TVhYPm0IsgCCJNaJ6Hs_ENQu-l0FFYEBWkmhZBwpkIhCQ0UKFg2hCSZdKSuJ5mZ2dsNOJfer0fzVmY1TSrKnZ9za_-q6jhGQjbHJ29g7jbSeEB3IPQ4Qpih-s_CR68S0POY_p3gCdsywgL27rBhZpMZnxIZaXrfbOD2UqOqRtSm9i7LWe3ZYbKEP870o79tuJ6izE7v7mUhmHY_9Qf6f2hrhcXs8uxXlrIuNS8z9B3zlPMbhx6hvV4jbYjsfxu32QuVn6iRRX4EoFuwAI2QdIGLJxeAw8mAC-SdJUwiztaNKad_dh16_hL07ugw-RgMjdElIQeGC7WMF1va00qf2O3a2sQm_K2SQ5T5GYK8IZyy4e7E2UpZ320M_h8ODpZczgnrl9rs_4mSW7LBTfWsc3MuXfRBOytAXP-GD30wsIDh5gnqKerp-hR09UDeyX_DH1zAMIeQBgAhFsA4U_1r58GPNiCB89K7MCDW_DgTfDgFjzP0dejw_OPx4HvwBEUcZYsglLBl2DgIWvwGwRROlTg8WqeRETyRMc0FKACOC8oFawUJSuIjIlKSxpxFVIZv0D9albpXYSJKMqUSVbySCfgN0tJiaSqzKgMs0yTPRQ2HywvPD296ZIyzbcKag99aIdcOW6W215OGink3rh0RmMOiLpt2DuQWDu9IWM_Hpzm5hmYdmnM42QVv7zLQl6hB-t_xWvUX9RL_QbdL1aL8bx-6zH3G0mRp8w |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+algebra+for+computing+Gr%C3%B6bner+bases+of+linear+recursive+multidimensional+sequences&rft.jtitle=Journal+of+symbolic+computation&rft.au=Berthomieu%2C+J%C3%A9r%C3%A9my&rft.au=Boyer%2C+Brice&rft.au=Faug%C3%A8re%2C+Jean-Charles&rft.date=2017-11-01&rft.issn=0747-7171&rft.volume=83&rft.spage=36&rft.epage=67&rft_id=info:doi/10.1016%2Fj.jsc.2016.11.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jsc_2016_11_005 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-7171&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-7171&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-7171&client=summon |