Linear algebra for computing Gröbner bases of linear recursive multidimensional sequences

The so-called Berlekamp–Massey–Sakata algorithm computes a Gröbner basis of a 0-dimensional ideal of relations satisfied by an input table. It extends the Berlekamp–Massey algorithm to n-dimensional tables, for n>1. We investigate this problem and design several algorithms for computing such a Gr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of symbolic computation Ročník 83; číslo Supplement C; s. 36 - 67
Hlavní autoři: Berthomieu, Jérémy, Boyer, Brice, Faugère, Jean-Charles
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.11.2017
Elsevier
Témata:
ISSN:0747-7171, 1095-855X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The so-called Berlekamp–Massey–Sakata algorithm computes a Gröbner basis of a 0-dimensional ideal of relations satisfied by an input table. It extends the Berlekamp–Massey algorithm to n-dimensional tables, for n>1. We investigate this problem and design several algorithms for computing such a Gröbner basis of an ideal of relations using linear algebra techniques. The first one performs a lot of table queries and is analogous to a change of variables on the ideal of relations. As each query to the table can be expensive, we design a second algorithm requiring fewer queries, in general. This FGLM-like algorithm allows us to compute the relations of the table by extracting a full rank submatrix of a multi-Hankel matrix (a multivariate generalization of Hankel matrices). Under some additional assumptions, we make a third, adaptive, algorithm and reduce further the number of table queries. Then, we relate the number of queries of this third algorithm to the geometry of the final staircase and we show that it is essentially linear in the size of the output when the staircase is convex. As a direct application to this, we decode n-cyclic codes, a generalization in dimension n of Reed Solomon codes. We show that the multi-Hankel matrices are heavily structured when using the LEX ordering and that we can speed up the computations using fast algorithms for quasi-Hankel matrices. Finally, we design algorithms for computing the generating series of a linear recursive table.
AbstractList The so-called Berlekamp–Massey–Sakata algorithm computes a Gröbner basis of a 0-dimensional ideal of relations satisfied by an input table. It extends the Berlekamp–Massey algorithm to n-dimensional tables, for n>1. We investigate this problem and design several algorithms for computing such a Gröbner basis of an ideal of relations using linear algebra techniques. The first one performs a lot of table queries and is analogous to a change of variables on the ideal of relations. As each query to the table can be expensive, we design a second algorithm requiring fewer queries, in general. This FGLM-like algorithm allows us to compute the relations of the table by extracting a full rank submatrix of a multi-Hankel matrix (a multivariate generalization of Hankel matrices). Under some additional assumptions, we make a third, adaptive, algorithm and reduce further the number of table queries. Then, we relate the number of queries of this third algorithm to the geometry of the final staircase and we show that it is essentially linear in the size of the output when the staircase is convex. As a direct application to this, we decode n-cyclic codes, a generalization in dimension n of Reed Solomon codes. We show that the multi-Hankel matrices are heavily structured when using the LEX ordering and that we can speed up the computations using fast algorithms for quasi-Hankel matrices. Finally, we design algorithms for computing the generating series of a linear recursive table.
The so-called Berlekamp~-- Massey~-- Sakata algorithmcomputes a Gröbner basis of a $0$-dimensional ideal of relations satisfied by an inputtable. It extends the Berlekamp~-- Massey algorithmto $n$-dimensional tables, for $n>1$.We investigate this problem and design several algorithms forcomputing such a Gröbner basis of an ideal of relations using linearalgebra techniques.The first one performs a lot of table queries andis analogous to a change of variables on the ideal of relations.As each query to the table can be expensive,we design a second algorithmrequiring fewer queries, in general.This \textsc{FGLM}-like algorithm allows us to compute the relations of thetable by extracting a full rank submatrix of a \emph{multi-Hankel}matrix (a multivariate generalization of Hankel matrices).Under someadditional assumptions, we make a third, adaptive, algorithm and reducefurther the number of table queries.Then, we relate the number of queries ofthis third algorithm to the\emph{geometry} of the final staircase and we show that it isessentially linear in the size of the output when the staircase is convex.As a direct application to this, we decode $n$-cyclic codes, ageneralization in dimension $n$ of Reed Solomon codes. We show that the multi-Hankelmatrices are heavily structured when using the \textsc{LEX} orderingand that we can speed up the computations using fast algorithms forquasi-Hankel matrices.Finally, we designalgorithms for computing the generating series of a linear recursivetable.
Author Boyer, Brice
Faugère, Jean-Charles
Berthomieu, Jérémy
Author_xml – sequence: 1
  givenname: Jérémy
  surname: Berthomieu
  fullname: Berthomieu, Jérémy
  email: jeremy.berthomieu@lip6.fr
– sequence: 2
  givenname: Brice
  surname: Boyer
  fullname: Boyer, Brice
  email: brice.boyer@lip6.fr
– sequence: 3
  givenname: Jean-Charles
  surname: Faugère
  fullname: Faugère, Jean-Charles
  email: jean-charles.faugere@inria.fr
BackLink https://inria.hal.science/hal-01253934$$DView record in HAL
BookMark eNp9kM9Kw0AQhxepYFt9AG979ZC4k2STLJ5K0VYIeFEQL8tmM6kb8qfupgVfzBfwxUyIePDQ0wzD7xv4fQsya7sWCbkG5gOD-LbyK6f9YFh9AJ8xfkbmwAT3Us5fZ2TOkijxEkjggiycqxhjIgr5nLxlpkVlqap3mFtFy85S3TX7Q2_aHd3Y76-8RUtz5dDRrqT1FLeoD9aZI9LmUPemMA22znStqqnDjwO2Gt0lOS9V7fDqdy7Jy8P983rrZU-bx_Uq83SYRL1XFkHC04ALBM4UFMgKETMUUQC5iDCMmUKthdBxrNJSlamGPISCl3EgChbn4ZLcTH_fVS331jTKfspOGbldZXK8MQh4KMLoGA5ZmLLads5ZLP8AYHIUKSs5iJSjSAkgB5EDk_xjtOlVP7TtrTL1SfJuInGofzRopdNmdFOYQWAvi86coH8AYB2Rgw
CitedBy_id crossref_primary_10_1007_s10208_021_09535_7
crossref_primary_10_1016_j_jco_2020_101502
crossref_primary_10_1016_j_jsc_2021_11_001
crossref_primary_10_1016_j_jsc_2019_09_001
crossref_primary_10_1016_j_jsc_2021_07_002
crossref_primary_10_1016_j_jsc_2022_08_014
Cites_doi 10.1002/sapm1946251261
10.1145/2500122
10.1109/18.86974
10.1016/S0024-3795(99)00251-7
10.1109/18.476246
10.1016/S0012-365X(00)00147-3
10.1090/S0002-9947-1952-0049591-8
10.1016/0024-3795(89)90032-3
10.1017/S0305004100012354
10.1016/j.laa.2010.06.046
10.1016/j.jsc.2012.05.008
10.1006/jsco.1993.1051
10.1007/978-3-319-32859-1_11
10.1007/BF01876039
10.1016/j.laa.2013.06.016
10.1109/TIT.1968.1054109
10.1016/S0747-7171(88)80033-6
10.1109/TIT.1969.1054260
10.1109/18.59953
10.1016/0890-5401(90)90039-K
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Attribution
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Attribution
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.jsc.2016.11.005
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1095-855X
EndPage 67
ExternalDocumentID oai:HAL:hal-01253934v3
10_1016_j_jsc_2016_11_005
S0747717116301249
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6OB
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M25
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSW
SSZ
T5K
TN5
UPT
WUQ
XPP
YQT
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
1XC
VOOES
ID FETCH-LOGICAL-c374t-fd2758259e150a1de0d960e9421b94e360aecc99c66a8faf8c1b31d5f629d06b3
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000402227900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0747-7171
IngestDate Tue Oct 14 20:17:39 EDT 2025
Tue Nov 18 22:04:58 EST 2025
Sat Nov 29 07:14:06 EST 2025
Fri Feb 23 02:31:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Supplement C
Keywords Multidimensional linear recursive sequence
The FGLM algorithm
The BMS algorithm
Gröbner basis computation
0-dimensional ideal
FGLM algorithm
Berlekamp - Massey - Sakata algorithm
multidimensional linear recurrent sequence
0$-dimensional ideal
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c374t-fd2758259e150a1de0d960e9421b94e360aecc99c66a8faf8c1b31d5f629d06b3
ORCID 0000-0002-9011-2211
OpenAccessLink https://inria.hal.science/hal-01253934
PageCount 32
ParticipantIDs hal_primary_oai_HAL_hal_01253934v3
crossref_primary_10_1016_j_jsc_2016_11_005
crossref_citationtrail_10_1016_j_jsc_2016_11_005
elsevier_sciencedirect_doi_10_1016_j_jsc_2016_11_005
PublicationCentury 2000
PublicationDate November-December 2017
2017-11-00
2017-11
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: November-December 2017
PublicationDecade 2010
PublicationTitle Journal of symbolic computation
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Brachat, Comon, Mourrain, Tsigaridas (br0050) 2010; 433
Lakshman (br0200) 1990
Bousquet-Mélou, Petkovšek (br0040) 2000; 225
Daleo, N.S., Hauenstein, J.D., 2015. Numerically testing generically reduced projective schemes for the arithmetic Gorenstein property. Presented at MACIS 2015.
Bostan, Jeannerod, Schost (br0030) 2007
Wiener (br0320) 1964
Gianni, Mora (br0130) 1989; vol. 356
Jonckheere, Ma (br0150) 1989; 125
Berlekamp (br0010) 1968; 14
Saints, Heegard (br0260) 1995; 41
Kaltofen, Pan (br0160) 1991
Fasino, Tilli (br0090) 2000; 306
Fitzpatrick, Norton (br0120) 1990; 36
Sakata (br0290) 1991; 37
Sakata (br0270) 1988; 5
Sakata (br0280) 1990; 84
Ruzsa (br0250) 1994; 65
Koutschan (br0190) 2013
Faugère, Gianni, Lazard, Mora (br0100) 1993; 16
Serra-Capizzano (br0310) 2002; vol. 135
Berthomieu, Boyer, Faugère (br0020) 2015
Macaulay (br0220) 1934; 30
Sakata (br0300) 2009
Levinson (br0210) 1947; 25
Massey (br0230) 1969; it-15
Faugère, Mou (br0110) 2011
Chabanne, Norton (br0060) 1992
Elkadi, Mourrain (br0080) 2007; vol. 59
Kaltofen, Yuhasz (br0170) 2013; 439
Gorenstein (br0140) 1952; 72
Poteaux, Schost (br0240) 2013; 50
Kaltofen, Yuhasz (br0180) 2013; 9
Fitzpatrick (10.1016/j.jsc.2016.11.005_br0120) 1990; 36
Kaltofen (10.1016/j.jsc.2016.11.005_br0180) 2013; 9
10.1016/j.jsc.2016.11.005_br0070
Koutschan (10.1016/j.jsc.2016.11.005_br0190) 2013
Levinson (10.1016/j.jsc.2016.11.005_br0210) 1947; 25
Bousquet-Mélou (10.1016/j.jsc.2016.11.005_br0040) 2000; 225
Chabanne (10.1016/j.jsc.2016.11.005_br0060)
Sakata (10.1016/j.jsc.2016.11.005_br0270) 1988; 5
Poteaux (10.1016/j.jsc.2016.11.005_br0240) 2013; 50
Macaulay (10.1016/j.jsc.2016.11.005_br0220) 1934; 30
Jonckheere (10.1016/j.jsc.2016.11.005_br0150) 1989; 125
Saints (10.1016/j.jsc.2016.11.005_br0260) 1995; 41
Kaltofen (10.1016/j.jsc.2016.11.005_br0160) 1991
Massey (10.1016/j.jsc.2016.11.005_br0230) 1969; it-15
Elkadi (10.1016/j.jsc.2016.11.005_br0080) 2007; vol. 59
Bostan (10.1016/j.jsc.2016.11.005_br0030) 2007
Faugère (10.1016/j.jsc.2016.11.005_br0110) 2011
Berlekamp (10.1016/j.jsc.2016.11.005_br0010) 1968; 14
Sakata (10.1016/j.jsc.2016.11.005_br0280) 1990; 84
Berthomieu (10.1016/j.jsc.2016.11.005_br0020) 2015
Gorenstein (10.1016/j.jsc.2016.11.005_br0140) 1952; 72
Sakata (10.1016/j.jsc.2016.11.005_br0290) 1991; 37
Faugère (10.1016/j.jsc.2016.11.005_br0100) 1993; 16
Kaltofen (10.1016/j.jsc.2016.11.005_br0170) 2013; 439
Ruzsa (10.1016/j.jsc.2016.11.005_br0250) 1994; 65
Sakata (10.1016/j.jsc.2016.11.005_br0300) 2009
Gianni (10.1016/j.jsc.2016.11.005_br0130) 1989; vol. 356
Fasino (10.1016/j.jsc.2016.11.005_br0090) 2000; 306
Wiener (10.1016/j.jsc.2016.11.005_br0320) 1964
Brachat (10.1016/j.jsc.2016.11.005_br0050) 2010; 433
Lakshman (10.1016/j.jsc.2016.11.005_br0200) 1990
Serra-Capizzano (10.1016/j.jsc.2016.11.005_br0310) 2002; vol. 135
References_xml – volume: 439
  start-page: 2515
  year: 2013
  end-page: 2526
  ident: br0170
  article-title: A fraction free matrix Berlekamp/Massey algorithm
  publication-title: Linear Algebra Appl.
– volume: 41
  start-page: 1733
  year: 1995
  end-page: 1751
  ident: br0260
  article-title: Algebraic–geometric codes and multidimensional cyclic codes: theory and algorithms for decoding using Gröbner bases
  publication-title: IEEE Trans. Inf. Theory
– volume: 36
  start-page: 1480
  year: 1990
  end-page: 1487
  ident: br0120
  article-title: Finding a basis for the characteristic ideal of an n-dimensional linear recurring sequence
  publication-title: IEEE Trans. Inf. Theory
– start-page: 61
  year: 2015
  end-page: 68
  ident: br0020
  article-title: Linear algebra for computing Gröbner bases of linear recursive multidimensional sequences
  publication-title: 40th International Symposium on Symbolic and Algebraic Computation
– volume: 433
  start-page: 1851
  year: 2010
  end-page: 1872
  ident: br0050
  article-title: Symmetric tensor decomposition
  publication-title: Linear Algebra Appl.
– start-page: 555
  year: 1990
  end-page: 563
  ident: br0200
  article-title: On the complexity of computing a Gröbner basis for the radical of a zero dimensional ideal
  publication-title: Proc. of the 22nd Annual ACM STOC
– year: 1992
  ident: br0060
  article-title: On the key equation for
– start-page: 171
  year: 2013
  end-page: 194
  ident: br0190
  article-title: Creative telescoping for holonomic functions
  publication-title: Computer Algebra in Quantum Field Theory
– volume: 84
  start-page: 207
  year: 1990
  end-page: 239
  ident: br0280
  article-title: Extension of the Berlekamp–Massey algorithm to
  publication-title: Inf. Comput.
– volume: 16
  start-page: 329
  year: 1993
  end-page: 344
  ident: br0100
  article-title: Efficient computation of zero-dimensional Gröbner bases by change of ordering
  publication-title: J. Symb. Comput.
– volume: 65
  start-page: 379
  year: 1994
  end-page: 388
  ident: br0250
  article-title: Generalized arithmetical progressions and sumsets
  publication-title: Acta Math. Hung.
– volume: 30
  start-page: 27
  year: 1934
  end-page: 46
  ident: br0220
  article-title: Modern algebra and polynomial ideals
  publication-title: Math. Proc. Camb. Philos. Soc.
– volume: 50
  start-page: 110
  year: 2013
  end-page: 138
  ident: br0240
  article-title: On the complexity of computing with 0-dimensional triangular sets
  publication-title: J. Symb. Comput.
– year: 1964
  ident: br0320
  article-title: Extrapolation, Interpolation, and Smoothing of Stationary Time Series
– volume: vol. 356
  start-page: 247
  year: 1989
  end-page: 257
  ident: br0130
  article-title: Algebraic solution of systems of polynomial equations using Gröbner bases
  publication-title: Proc. of AAECC-5
– volume: vol. 59
  year: 2007
  ident: br0080
  article-title: Introduction à la résolution des systèmes polynomiaux
  publication-title: Math. Appl.
– volume: 9
  start-page: 33:1
  year: 2013
  end-page: 33:24
  ident: br0180
  article-title: On the matrix Berlekamp–Massey algorithm
  publication-title: ACM Trans. Algorithms
– start-page: 115
  year: 2011
  end-page: 122
  ident: br0110
  article-title: Fast algorithm for change of ordering of zero-dimensional Gröbner bases with sparse multiplication matrices
  publication-title: Proc. of the 36th ISSAC
– volume: 72
  start-page: 414
  year: 1952
  end-page: 436
  ident: br0140
  article-title: An arithmetic theory of adjoint plane curves
  publication-title: Trans. Am. Math. Soc.
– volume: 37
  start-page: 1200
  year: 1991
  end-page: 1203
  ident: br0290
  article-title: Decoding binary 2-D cyclic codes by the 2-D Berlekamp–Massey algorithm
  publication-title: IEEE Trans. Inf. Theory
– volume: 14
  start-page: 242
  year: 1968
  ident: br0010
  article-title: Nonbinary BCH decoding
  publication-title: IEEE Trans. Inf. Theory
– start-page: 180
  year: 1991
  end-page: 191
  ident: br0160
  article-title: Processor efficient parallel solution of linear systems over an abstract field
  publication-title: SPAA '91
– volume: vol. 135
  start-page: 293
  year: 2002
  end-page: 315
  ident: br0310
  article-title: More inequalities and asymptotics for matrix valued linear positive operators: the noncommutative case
  publication-title: Toeplitz Matrices and Singular Integral Equations
– volume: 125
  start-page: 65
  year: 1989
  end-page: 76
  ident: br0150
  article-title: A simple Hankel interpretation of the Berlekamp–Massey algorithm
  publication-title: Linear Algebra Appl.
– reference: Daleo, N.S., Hauenstein, J.D., 2015. Numerically testing generically reduced projective schemes for the arithmetic Gorenstein property. Presented at MACIS 2015.
– volume: it-15
  start-page: 122
  year: 1969
  end-page: 127
  ident: br0230
  article-title: Shift-register synthesis and BCH decoding
  publication-title: IEEE Trans. Inf. Theory
– volume: 225
  start-page: 51
  year: 2000
  end-page: 75
  ident: br0040
  article-title: Linear recurrences with constant coefficients: the multivariate case
  publication-title: Discrete Math.
– volume: 25
  start-page: 261
  year: 1947
  end-page: 278
  ident: br0210
  article-title: The Wiener RMS (Root-Mean-Square) error criterion in the filter design and prediction
  publication-title: J. Math. Phys.
– volume: 5
  start-page: 321
  year: 1988
  end-page: 337
  ident: br0270
  article-title: Finding a minimal set of linear recurring relations capable of generating a given finite two-dimensional array
  publication-title: J. Symb. Comput.
– volume: 306
  start-page: 155
  year: 2000
  end-page: 163
  ident: br0090
  article-title: Spectral clustering properties of block multilevel Hankel matrices
  publication-title: Linear Algebra Appl.
– start-page: 143
  year: 2009
  end-page: 163
  ident: br0300
  article-title: The BMS algorithm
  publication-title: Gröbner Bases, Coding, and Cryptography
– start-page: 33
  year: 2007
  end-page: 40
  ident: br0030
  article-title: Solving Toeplitz- and Vandermonde-like linear systems with large displacement rank
  publication-title: ISSAC'07
– volume: vol. 135
  start-page: 293
  year: 2002
  ident: 10.1016/j.jsc.2016.11.005_br0310
  article-title: More inequalities and asymptotics for matrix valued linear positive operators: the noncommutative case
– start-page: 180
  year: 1991
  ident: 10.1016/j.jsc.2016.11.005_br0160
  article-title: Processor efficient parallel solution of linear systems over an abstract field
– volume: 25
  start-page: 261
  year: 1947
  ident: 10.1016/j.jsc.2016.11.005_br0210
  article-title: The Wiener RMS (Root-Mean-Square) error criterion in the filter design and prediction
  publication-title: J. Math. Phys.
  doi: 10.1002/sapm1946251261
– start-page: 115
  year: 2011
  ident: 10.1016/j.jsc.2016.11.005_br0110
  article-title: Fast algorithm for change of ordering of zero-dimensional Gröbner bases with sparse multiplication matrices
– start-page: 171
  year: 2013
  ident: 10.1016/j.jsc.2016.11.005_br0190
  article-title: Creative telescoping for holonomic functions
– year: 1964
  ident: 10.1016/j.jsc.2016.11.005_br0320
– ident: 10.1016/j.jsc.2016.11.005_br0060
– volume: 9
  start-page: 33:1
  issue: 4
  year: 2013
  ident: 10.1016/j.jsc.2016.11.005_br0180
  article-title: On the matrix Berlekamp–Massey algorithm
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/2500122
– volume: 37
  start-page: 1200
  issue: 4
  year: 1991
  ident: 10.1016/j.jsc.2016.11.005_br0290
  article-title: Decoding binary 2-D cyclic codes by the 2-D Berlekamp–Massey algorithm
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.86974
– start-page: 555
  year: 1990
  ident: 10.1016/j.jsc.2016.11.005_br0200
  article-title: On the complexity of computing a Gröbner basis for the radical of a zero dimensional ideal
– volume: 306
  start-page: 155
  issue: 1–3
  year: 2000
  ident: 10.1016/j.jsc.2016.11.005_br0090
  article-title: Spectral clustering properties of block multilevel Hankel matrices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(99)00251-7
– volume: 41
  start-page: 1733
  issue: 6
  year: 1995
  ident: 10.1016/j.jsc.2016.11.005_br0260
  article-title: Algebraic–geometric codes and multidimensional cyclic codes: theory and algorithms for decoding using Gröbner bases
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.476246
– volume: 225
  start-page: 51
  issue: 1–3
  year: 2000
  ident: 10.1016/j.jsc.2016.11.005_br0040
  article-title: Linear recurrences with constant coefficients: the multivariate case
  publication-title: Discrete Math.
  doi: 10.1016/S0012-365X(00)00147-3
– volume: 72
  start-page: 414
  year: 1952
  ident: 10.1016/j.jsc.2016.11.005_br0140
  article-title: An arithmetic theory of adjoint plane curves
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1952-0049591-8
– volume: 125
  start-page: 65
  issue: 0
  year: 1989
  ident: 10.1016/j.jsc.2016.11.005_br0150
  article-title: A simple Hankel interpretation of the Berlekamp–Massey algorithm
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(89)90032-3
– volume: 30
  start-page: 27
  year: 1934
  ident: 10.1016/j.jsc.2016.11.005_br0220
  article-title: Modern algebra and polynomial ideals
  publication-title: Math. Proc. Camb. Philos. Soc.
  doi: 10.1017/S0305004100012354
– volume: 433
  start-page: 1851
  issue: 11–12
  year: 2010
  ident: 10.1016/j.jsc.2016.11.005_br0050
  article-title: Symmetric tensor decomposition
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2010.06.046
– volume: vol. 356
  start-page: 247
  year: 1989
  ident: 10.1016/j.jsc.2016.11.005_br0130
  article-title: Algebraic solution of systems of polynomial equations using Gröbner bases
– volume: 50
  start-page: 110
  issue: 0
  year: 2013
  ident: 10.1016/j.jsc.2016.11.005_br0240
  article-title: On the complexity of computing with 0-dimensional triangular sets
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2012.05.008
– volume: vol. 59
  year: 2007
  ident: 10.1016/j.jsc.2016.11.005_br0080
  article-title: Introduction à la résolution des systèmes polynomiaux
– volume: 16
  start-page: 329
  issue: 4
  year: 1993
  ident: 10.1016/j.jsc.2016.11.005_br0100
  article-title: Efficient computation of zero-dimensional Gröbner bases by change of ordering
  publication-title: J. Symb. Comput.
  doi: 10.1006/jsco.1993.1051
– ident: 10.1016/j.jsc.2016.11.005_br0070
  doi: 10.1007/978-3-319-32859-1_11
– volume: 65
  start-page: 379
  issue: 4
  year: 1994
  ident: 10.1016/j.jsc.2016.11.005_br0250
  article-title: Generalized arithmetical progressions and sumsets
  publication-title: Acta Math. Hung.
  doi: 10.1007/BF01876039
– start-page: 61
  year: 2015
  ident: 10.1016/j.jsc.2016.11.005_br0020
  article-title: Linear algebra for computing Gröbner bases of linear recursive multidimensional sequences
– start-page: 33
  year: 2007
  ident: 10.1016/j.jsc.2016.11.005_br0030
  article-title: Solving Toeplitz- and Vandermonde-like linear systems with large displacement rank
– volume: 439
  start-page: 2515
  issue: 9
  year: 2013
  ident: 10.1016/j.jsc.2016.11.005_br0170
  article-title: A fraction free matrix Berlekamp/Massey algorithm
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2013.06.016
– volume: 14
  start-page: 242
  issue: 2
  year: 1968
  ident: 10.1016/j.jsc.2016.11.005_br0010
  article-title: Nonbinary BCH decoding
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1968.1054109
– volume: 5
  start-page: 321
  issue: 3
  year: 1988
  ident: 10.1016/j.jsc.2016.11.005_br0270
  article-title: Finding a minimal set of linear recurring relations capable of generating a given finite two-dimensional array
  publication-title: J. Symb. Comput.
  doi: 10.1016/S0747-7171(88)80033-6
– volume: it-15
  start-page: 122
  year: 1969
  ident: 10.1016/j.jsc.2016.11.005_br0230
  article-title: Shift-register synthesis and BCH decoding
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1969.1054260
– volume: 36
  start-page: 1480
  issue: 6
  year: 1990
  ident: 10.1016/j.jsc.2016.11.005_br0120
  article-title: Finding a basis for the characteristic ideal of an n-dimensional linear recurring sequence
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.59953
– start-page: 143
  year: 2009
  ident: 10.1016/j.jsc.2016.11.005_br0300
  article-title: The BMS algorithm
– volume: 84
  start-page: 207
  issue: 2
  year: 1990
  ident: 10.1016/j.jsc.2016.11.005_br0280
  article-title: Extension of the Berlekamp–Massey algorithm to N dimensions
  publication-title: Inf. Comput.
  doi: 10.1016/0890-5401(90)90039-K
SSID ssj0009435
Score 2.247318
Snippet The so-called Berlekamp–Massey–Sakata algorithm computes a Gröbner basis of a 0-dimensional ideal of relations satisfied by an input table. It extends the...
The so-called Berlekamp~-- Massey~-- Sakata algorithmcomputes a Gröbner basis of a $0$-dimensional ideal of relations satisfied by an inputtable. It extends...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 36
SubjectTerms 0-dimensional ideal
Computer Science
Gröbner basis computation
Multidimensional linear recursive sequence
Symbolic Computation
The BMS algorithm
The FGLM algorithm
Title Linear algebra for computing Gröbner bases of linear recursive multidimensional sequences
URI https://dx.doi.org/10.1016/j.jsc.2016.11.005
https://inria.hal.science/hal-01253934
Volume 83
WOSCitedRecordID wos000402227900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-855X
  dateEnd: 20180228
  omitProxy: false
  ssIdentifier: ssj0009435
  issn: 0747-7171
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3batwwEBWbpA996b00vSFKnxoU7JUsS4-7JWkaSig0haUvRpalZJeNN3gvJB_SX-kP9Mc6knzZpCS0hb6YxUiy0JwdzYxGZxB6y6xIHC0LMSyihClpiLQpJcJysL5jbbXJfbGJ9OhIjEbyc6_3vbkLs5qmZSkuLuT5fxU1vANhu6uzfyHudlB4Ab9B6PAEscPzjwQP3qUj53H1O8AT9mmE2pduCKEmdzI-5Hlpqh23g_lMjmnoUrnYu09n92mGhSP-D6QdO23G9Q3G7PzyLHcMw_WnrhzvD021OJ2djc3SQyYczdcn9Gv3KWaXAT3DatyhbV8tT3xLEWLlh0aVpE4RWA9YwCYYXwlYtDdpurSluefNTgm4lqGdCcoYzD8ikmS0rq0FXVO3lK9t3KGsx29bQohOTHYnc8dYGfNdR9oaJd3-12YlfnGTcHMAGzVyRbk30FY_TSQoy63Bx73RYcfmzELl1mbSzXG5Txy89qGbDJ6N0yZ0702Z4wfoXi02PAjYeYh6pnyE7jf1PXCt7h-jbwFKuIYSBijhFkr4Q_Xzh4MR9jDCM4sDjHALI3wdRriF0RP0dX_v-P0BqWtxEE1TtiC2gJUQ4Csb8CBUXJioAN_XSNaPc8kM5ZECZSCl5lwJq6zQcU7jIrG8L4uI5_Qp2ixnpXmGsErTvKBJpHPDWGqZsKafRgrsSK6lktE2ipoFy3RNVO_qpUyzJiNxksEaZ26NwYHNYI230bu2y3lgabmtMWukkNVmZjAfM4DMbd3egMTa4R0t-8HgU-beAVgSKilb0ef_NvYLdLf7p7xEm4tqaV6hO3q1GM-r1zX6fgEL4a2x
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+algebra+for+computing+Gr%C3%B6bner+bases+of+linear+recursive+multidimensional+sequences&rft.jtitle=Journal+of+symbolic+computation&rft.au=Berthomieu%2C+J%C3%A9r%C3%A9my&rft.au=Boyer%2C+Brice&rft.au=Faug%C3%A8re%2C+Jean-Charles&rft.date=2017-11-01&rft.pub=Elsevier+Ltd&rft.issn=0747-7171&rft.eissn=1095-855X&rft.volume=83&rft.spage=36&rft.epage=67&rft_id=info:doi/10.1016%2Fj.jsc.2016.11.005&rft.externalDocID=S0747717116301249
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-7171&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-7171&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-7171&client=summon