On the Complexity of Calculating Sensitivity Parameters in Boolean Programming Problems
This article shows that, for NP-hard problems, the calculation of even the stability ball of radius 1 for an optimal solution is computationally intensive (i.e., a suitable polynomial algorithm is absent when P ≠ NP). In using greedy algorithms for solving the set covering problem (knapsack problem)...
Uložené v:
| Vydané v: | Cybernetics and systems analysis Ročník 51; číslo 5; s. 714 - 719 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.09.2015
Springer Springer Nature B.V |
| Predmet: | |
| ISSN: | 1060-0396, 1573-8337 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This article shows that, for NP-hard problems, the calculation of even the stability ball of radius 1 for an optimal solution is computationally intensive (i.e., a suitable polynomial algorithm is absent when P ≠ NP). In using greedy algorithms for solving the set covering problem (knapsack problem) with the stability radius r = O(1) , there are polynomial algorithms for calculating the stability ball of radius r for an ln m-approximate solution (1-approximate solution). |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1060-0396 1573-8337 |
| DOI: | 10.1007/s10559-015-9763-4 |