Admissibility of the constant-coverage probability estimator for estimating the coverage function of certain confidence interval

Consider a confidence interval for a randomly chosen linear combination of the elements of the mean vector of a p-dimensional normal distribution. The constant coverage probability is the usual estimator for the coverage function of this interval. Wang (1995) have shown that this estimator is inadmi...

Full description

Saved in:
Bibliographic Details
Published in:Statistics & probability letters Vol. 36; no. 4; pp. 365 - 372
Main Author: Wang, Hsiuying
Format: Journal Article
Language:English
Published: Elsevier B.V 03.01.1998
Elsevier
Series:Statistics & Probability Letters
Subjects:
ISSN:0167-7152, 1879-2103
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Consider a confidence interval for a randomly chosen linear combination of the elements of the mean vector of a p-dimensional normal distribution. The constant coverage probability is the usual estimator for the coverage function of this interval. Wang (1995) have shown that this estimator is inadmissible under the squared error loss, if p ⩾ 5. In this paper, we consider the case where p ⩽ 4 and prove that it is admissible under the same loss.
AbstractList Consider a confidence interval for a randomly chosen linear combination of the elements of the mean vector of a p-dimensional normal distribution. The constant coverage probability is the usual estimator for the coverage function of this interval. Wang (1995) have shown that this estimator is inadmissible under the squared error loss, if p [greater-or-equal, slanted] 5. In this paper, we consider the case where p [less-than-or-equals, slant] 4 and prove that it is admissible under the same loss.
Consider a confidence interval for a randomly chosen linear combination of the elements of the mean vector of a p-dimensional normal distribution. The constant coverage probability is the usual estimator for the coverage function of this interval. Wang (1995) have shown that this estimator is inadmissible under the squared error loss, if p ⩾ 5. In this paper, we consider the case where p ⩽ 4 and prove that it is admissible under the same loss.
Author Wang, Hsiuying
Author_xml – sequence: 1
  givenname: Hsiuying
  surname: Wang
  fullname: Wang, Hsiuying
  organization: Department of Business Administration, Chaoyang Institute of Technology, Wufeng, Taichung Country, Taiwan, ROC
BackLink http://econpapers.repec.org/article/eeestapro/v_3a36_3ay_3a1998_3ai_3a4_3ap_3a365-372.htm$$DView record in RePEc
BookMark eNqFkU2LFDEQhoOs4OzqTxD6qIfWfEwmHTzIsqxfLHhQz6E6XdktmUmGJA7MzZ9ueqbZg5c9vFWE1PtQH5fsIqaIjL0W_J3gYvP-RwumN0LLN9a85ZwPqjfP2EoMxvZScHXBVo8lL9hlKb9bkdRarNjf62lHpdBIW6rHLoWuPmDnUywVYu19OmCGe-z2OY2wFGGptIOachealhfF-8W6OMKf6CulODM95goUZ26gCaPHjmLFfIDtS_Y8wLbgqyVfsV-fbn_efOnvvn_-enN913tl1rVHO2oNEEDpaQrCWDB2tNJLEdZaBoNtGr0Ja-nNxigjDQ8gh3HgKgQFYlJX7NuZm3GP3u1zazofHWLrH9p07uAUqE0LxyZh7dASNa2b9qc_7RrYPdRdg-kzzOdUSsbwyBPczTdxp5u4eeHOGne6iTPN9-E_n6cK85ZqBto-6f54dmPb04Ewu-JpXuZEGX11U6InCP8A1MirlA
CitedBy_id crossref_primary_10_1006_jmva_2000_1912
crossref_primary_10_1016_j_jspi_2003_09_029
Cites_doi 10.1214/aos/1176347602
ContentType Journal Article
Copyright 1998
Copyright_xml – notice: 1998
DBID AAYXX
CITATION
DKI
X2L
DOI 10.1016/S0167-7152(97)00083-7
DatabaseName CrossRef
RePEc IDEAS
RePEc
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1879-2103
EndPage 372
ExternalDocumentID eeestapro_v_3a36_3ay_3a1998_3ai_3a4_3ap_3a365_372_htm
10_1016_S0167_7152_97_00083_7
S0167715297000837
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1OL
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYJJ
ABAOU
ABEHJ
ABFNM
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HMJ
HVGLF
HX~
HZ~
H~9
IHE
J1W
KOM
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SSW
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
0R
1
8P
ABFLS
ABPTK
ADALY
DKI
G-
HX
HZ
IPNFZ
K
M
STF
X
X2L
ID FETCH-LOGICAL-c374t-e9b55aafa35ddf179a79b92c21f452f7e55156f42c76737270fa28b803ff3a1d3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000071479200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7152
IngestDate Wed Aug 18 03:10:16 EDT 2021
Tue Nov 18 22:08:09 EST 2025
Sat Nov 29 03:46:00 EST 2025
Fri Feb 23 02:29:00 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Admissibility
62C15
Coverage function
Constant coverage probability estimator
62C10
Confidence interval
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c374t-e9b55aafa35ddf179a79b92c21f452f7e55156f42c76737270fa28b803ff3a1d3
PageCount 8
ParticipantIDs repec_primary_eeestapro_v_3a36_3ay_3a1998_3ai_3a4_3ap_3a365_372_htm
crossref_primary_10_1016_S0167_7152_97_00083_7
crossref_citationtrail_10_1016_S0167_7152_97_00083_7
elsevier_sciencedirect_doi_10_1016_S0167_7152_97_00083_7
PublicationCentury 1900
PublicationDate 1998-01-03
PublicationDateYYYYMMDD 1998-01-03
PublicationDate_xml – month: 01
  year: 1998
  text: 1998-01-03
  day: 03
PublicationDecade 1990
PublicationSeriesTitle Statistics & Probability Letters
PublicationTitle Statistics & probability letters
PublicationYear 1998
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Brown (BIB1) 1990; 18
Brown, Hwang (BIB2) 1990
Wang (BIB3) 1995
Wang (10.1016/S0167-7152(97)00083-7_BIB3) 1995
Brown (10.1016/S0167-7152(97)00083-7_BIB2) 1990
Brown (10.1016/S0167-7152(97)00083-7_BIB1) 1990; 18
References_xml – year: 1990
  ident: BIB2
  article-title: Admissibility of confidence estimators
  publication-title: Proc. 1990 Taipei Symp. in Statistics
– year: 1995
  ident: BIB3
  article-title: Brown's paradox in the estimated confidence approach
  publication-title: Technical Report
– volume: 18
  start-page: 471
  year: 1990
  end-page: 538
  ident: BIB1
  article-title: An ancillarity paradox which appears in multiple linear regression (with discussion)
  publication-title: Ann. Statist.
– year: 1995
  ident: 10.1016/S0167-7152(97)00083-7_BIB3
  article-title: Brown's paradox in the estimated confidence approach
– volume: 18
  start-page: 471
  year: 1990
  ident: 10.1016/S0167-7152(97)00083-7_BIB1
  article-title: An ancillarity paradox which appears in multiple linear regression (with discussion)
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176347602
– year: 1990
  ident: 10.1016/S0167-7152(97)00083-7_BIB2
  article-title: Admissibility of confidence estimators
SSID ssj0002551
Score 1.4853554
Snippet Consider a confidence interval for a randomly chosen linear combination of the elements of the mean vector of a p-dimensional normal distribution. The constant...
Consider a confidence interval for a randomly chosen linear combination of the elements of the mean vector of a p-dimensional normal distribution. The constant...
SourceID repec
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 365
SubjectTerms Admissibility
Confidence interval
Confidence interval Admissibility Coverage function Constant coverage probability estimator
Constant coverage probability estimator
Coverage function
Title Admissibility of the constant-coverage probability estimator for estimating the coverage function of certain confidence interval
URI https://dx.doi.org/10.1016/S0167-7152(97)00083-7
http://econpapers.repec.org/article/eeestapro/v_3a36_3ay_3a1998_3ai_3a4_3ap_3a365-372.htm
Volume 36
WOSCitedRecordID wos000071479200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1879-2103
  dateEnd: 20180430
  omitProxy: false
  ssIdentifier: ssj0002551
  issn: 0167-7152
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Bb9MwFLZKy2EcEAwQY4B84AAHjyZ24vg4TUMDjWkSA3qzHMfWJnVZ1XbVeuNX7vfwHDtOYEIDBIe4bRo_u35f_T5bz-8h9IrmTNvECFIZoQkDC0lEWipSJUVe5UCZTZMb8MshPzoqJhNxPBhct2dhVlNe18XVlZj9V1XDPVC2Ozr7B-qOQuEGvAelQwlqh_K3FO_C4S6C0-u6dQHQngYuiXYum85Px2WSUeEhF2nj3K2-fQBw_6k9RxVrOBPY8kvtPQmcXOvTkjaBJ-ar0LtAdx2VDZGgHcT6bU6bc0SR0X8N-9YHi7PLdWtO3XiZxc9SjntSDntSqu4wn_Pf6jbUgvXv72_CvM0TH9R2x_g5ueCCwMqU9idtHzUlgJP1ZmDqU08EY059XqAbdsJvWXyKzQGbdxGJRUNJCe-MY3RZNAZGX8E4yZWkiuZQrOFyvwpezuBicM2a7zIJ7crT5fkdNEp5JoohGu2-3598iBwBFnJJG3Xetd-dLXvbdeq14G9Ch37FmkZzMzO6x4hOHqD7YSmDdz0EH6KBqTfRvY8xDvBiE210qnuEvv2ATHxhMTyJbyAT91CCIzIxIBN3yAxVQ40WmU5mQCbukIlbZD5Gn9_tn-wdkJAAhGjK2ZIYUWaZUlbRrKosmA7FRSlSnSaWZanlBkYxyy1LNW_SLfGxVWlRFmNqLaimok_QsL6ozVOEeaJSQ3NtcjpmSSJgIU8TVY5paWjFKdtCrB1gqUN0fJekZSp7bpA5l04v0vtsFFTyLbQTq818eJjbKhSt9mTguJ67SoDmbVX3Gm3Hhv4Kks_-iZRttNH9n5-j4XJ-aV6gu3oFmJq_DGj_Do-v7CU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Admissibility+of+the+constant-coverage+probability+estimator+for+estimating+the+coverage+function+of+certain+confidence+interval&rft.jtitle=Statistics+%26+probability+letters&rft.au=Wang%2C+Hsiuying&rft.series=Statistics+%26+Probability+Letters&rft.date=1998-01-03&rft.pub=Elsevier&rft.issn=0167-7152&rft.eissn=1879-2103&rft.volume=36&rft.issue=4&rft.spage=365&rft.epage=372&rft_id=info:doi/10.1016%2FS0167-7152%2897%2900083-7&rft.externalDocID=eeestapro_v_3a36_3ay_3a1998_3ai_3a4_3ap_3a365_372_htm
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7152&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7152&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7152&client=summon