Physics-informed machine learning in prognostics and health management: State of the art and challenges

•Systematic bibliometric analysis of PIML in PHM.•Novel perspectives for PIML from the “Informed knowledge forms” and “Informed methods”.•Taxonomy of PIML approaches in PHM.•Highlight remaining challenges and future perspectives based on this review. Prognostics and health management (PHM) plays a c...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematical modelling Vol. 124; pp. 325 - 352
Main Authors: DENG, Weikun, NGUYEN, Khanh T.P., MEDJAHER, Kamal, GOGU, Christian, MORIO, Jérôme
Format: Journal Article
Language:English
Published: Elsevier Inc 01.12.2023
Elsevier
Subjects:
ISSN:0307-904X, 1872-8480
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Systematic bibliometric analysis of PIML in PHM.•Novel perspectives for PIML from the “Informed knowledge forms” and “Informed methods”.•Taxonomy of PIML approaches in PHM.•Highlight remaining challenges and future perspectives based on this review. Prognostics and health management (PHM) plays a constructive role in the equipment’s entire life health service. It has long benefited from intensive research into physics modeling and machine learning methods. However, in practice, the existing solutions often encounter difficulties caused by sparse data & incomplete system failure knowledge. Pure machine learning or physics-based methods can sometimes be infeasible in such situations. As a result, there has been a growing interest in developing physics-informed machine learning (PIML) models which allow incorporating different forms of physics knowledge at different positions of the machine learning pipeline. This combination provides significant assistance for detection, diagnostic, and prognostics. However, to the best of our knowledge, the bibliometrics analyses and the comprehensive review of the existing research concerning PIML in PHM remain vacant. Our review is therefore dedicated to filling these gaps. We synthesize the concept of PIML in PHM, and propose a taxonomy of PIML approaches from the perspective of “Expression forms of informed knowledge” and “Knowledge informed methods”. The findings and discussions presented in this paper enable us to clarify the current state of the art and the emerging opportunities of PIML approaches, especially for building PHM systems that can work under the “small data and scarce physics knowledge” paradigm.
AbstractList Prognostics and health management (PHM) plays a constructive role in the equipment’s entire life health service. It has long benefited from intensive research into physics modeling and machine learning methods. However, in practice, the existing solutions often encounter difficulties caused by sparse data & incomplete system failure knowledge. Pure machine learning or physics-based methods can sometimes be infeasible in such situations. As a result, there has been a growing interest in developing physics-informed machine learning (PIML) models which allow incorporating different forms of physics knowledge at different positions of the machine learning pipeline. This combination provides significant assistance for detection, diagnostic, and prognostics. However, to the best of our knowledge, the bibliometrics analyses and the comprehensive review of the existing research concerning PIML in PHM remain vacant. Our review is therefore dedicated to filling these gaps. We synthesize the concept of PIML in PHM, and propose a taxonomy of PIML approaches from the perspective of “Expression forms of informed knowledge” and “Knowledge informed methods”. The findings and discussions presented in this paper enable us to clarify the current state of the art and the emerging opportunities of PIML approaches, especially for building PHM systems that can work under the “small data and scarce physics knowledge” paradigm.
•Systematic bibliometric analysis of PIML in PHM.•Novel perspectives for PIML from the “Informed knowledge forms” and “Informed methods”.•Taxonomy of PIML approaches in PHM.•Highlight remaining challenges and future perspectives based on this review. Prognostics and health management (PHM) plays a constructive role in the equipment’s entire life health service. It has long benefited from intensive research into physics modeling and machine learning methods. However, in practice, the existing solutions often encounter difficulties caused by sparse data & incomplete system failure knowledge. Pure machine learning or physics-based methods can sometimes be infeasible in such situations. As a result, there has been a growing interest in developing physics-informed machine learning (PIML) models which allow incorporating different forms of physics knowledge at different positions of the machine learning pipeline. This combination provides significant assistance for detection, diagnostic, and prognostics. However, to the best of our knowledge, the bibliometrics analyses and the comprehensive review of the existing research concerning PIML in PHM remain vacant. Our review is therefore dedicated to filling these gaps. We synthesize the concept of PIML in PHM, and propose a taxonomy of PIML approaches from the perspective of “Expression forms of informed knowledge” and “Knowledge informed methods”. The findings and discussions presented in this paper enable us to clarify the current state of the art and the emerging opportunities of PIML approaches, especially for building PHM systems that can work under the “small data and scarce physics knowledge” paradigm.
Author MEDJAHER, Kamal
GOGU, Christian
MORIO, Jérôme
NGUYEN, Khanh T.P.
DENG, Weikun
Author_xml – sequence: 1
  givenname: Weikun
  orcidid: 0000-0002-5195-4184
  surname: DENG
  fullname: DENG, Weikun
  email: weikun.deng@enit.fr
  organization: Laboratoire Génie de Production, LGP, Université de Toulouse, INP-ENIT, 47 Av. d’Azereix, Tarbes, 65016, France
– sequence: 2
  givenname: Khanh T.P.
  surname: NGUYEN
  fullname: NGUYEN, Khanh T.P.
  organization: Laboratoire Génie de Production, LGP, Université de Toulouse, INP-ENIT, 47 Av. d’Azereix, Tarbes, 65016, France
– sequence: 3
  givenname: Kamal
  surname: MEDJAHER
  fullname: MEDJAHER, Kamal
  organization: Laboratoire Génie de Production, LGP, Université de Toulouse, INP-ENIT, 47 Av. d’Azereix, Tarbes, 65016, France
– sequence: 4
  givenname: Christian
  surname: GOGU
  fullname: GOGU, Christian
  organization: Institut Clément Ader (ICA), Université de Toulouse, ISAE-SUPAERO, UPS, CNRS, INSA, Mines Albi, 3 rue Caroline Aigle, Toulouse 31400, France
– sequence: 5
  givenname: Jérôme
  surname: MORIO
  fullname: MORIO, Jérôme
  organization: ONERA/DTIS, Université de Toulouse, Toulouse F-31055, France
BackLink https://hal.science/hal-04290849$$DView record in HAL
BookMark eNp9kMFq3DAQhkVJoZu0D9CbrjnYlSzbspNTCEkTWGggLfQmZqWRrcWWFkkE8vbVdksPOeQ0zPB9M8x_Ts588EjIV85qznj_bV_DYa0b1oiayZpx_oFs-CCbamgHdkY2TDBZjaz9_Ymcp7RnjHWl25DpaX5NTqfKeRviioauoGfnkS4I0Ts_UefpIYbJh5QLSMEbOiMseS6ohwlX9PmKPmfISIOleUYKMf_l9AzLgn7C9Jl8tLAk_PKvXpBf93c_bx-q7Y_vj7c320oL2eZK4453Ru4aC1Kg7AfRS9NJGHmPWjQCTW92YE0HtoVuNw6DhqHvpO3LoLNCXJDL095yWR2iWyG-qgBOPdxs1XHG2mZkQzu-8MLyE6tjSCmi_S9wpo6pqr0qqapjqopJVVItjnzjaFc-d8HnCG5517w-mVjef3EYVdIOvUbjIuqsTHDv2H8Ayw6VnA
CitedBy_id crossref_primary_10_1016_j_ress_2025_111730
crossref_primary_10_1088_1361_6501_add48e
crossref_primary_10_1016_j_ress_2025_111379
crossref_primary_10_1016_j_ymssp_2024_112192
crossref_primary_10_1115_1_4065483
crossref_primary_10_1016_j_cnsns_2024_107911
crossref_primary_10_3390_en18174637
crossref_primary_10_1016_j_apenergy_2025_126427
crossref_primary_10_1016_j_ymssp_2025_112625
crossref_primary_10_1007_s10462_025_11303_w
crossref_primary_10_1088_1742_6596_2745_1_012003
crossref_primary_10_1016_j_inffus_2024_102761
crossref_primary_10_1016_j_ress_2025_111004
crossref_primary_10_1109_TCYB_2024_3487934
crossref_primary_10_1016_j_apm_2024_115742
crossref_primary_10_1016_j_ress_2024_110454
crossref_primary_10_1016_j_apm_2024_115906
crossref_primary_10_1016_j_engfailanal_2025_109896
crossref_primary_10_1186_s10033_024_01036_2
crossref_primary_10_1016_j_ymssp_2024_111920
crossref_primary_10_1007_s10845_024_02536_7
crossref_primary_10_1007_s00170_025_15007_x
crossref_primary_10_1016_j_inffus_2025_103427
crossref_primary_10_1016_j_ymssp_2024_112293
crossref_primary_10_1016_j_adapen_2025_100223
crossref_primary_10_1109_JSEN_2025_3577708
crossref_primary_10_1016_j_ress_2024_110385
crossref_primary_10_1038_s41598_025_16528_x
crossref_primary_10_1007_s10462_024_10820_4
crossref_primary_10_1016_j_jmapro_2024_02_054
crossref_primary_10_1016_j_rser_2023_114224
crossref_primary_10_1007_s12541_025_01343_1
crossref_primary_10_1016_j_jmsy_2025_03_023
crossref_primary_10_1016_j_apenergy_2025_125314
crossref_primary_10_1016_j_ymssp_2025_112683
crossref_primary_10_1007_s12008_025_02364_w
crossref_primary_10_59400_sv_v59i1_1685
crossref_primary_10_1016_j_apm_2024_115683
crossref_primary_10_70322_ism_2025_10008
crossref_primary_10_1016_j_ress_2025_110850
crossref_primary_10_3390_machines13040267
crossref_primary_10_1016_j_apm_2024_115844
crossref_primary_10_1016_j_aei_2024_102787
crossref_primary_10_1038_s41598_025_03786_y
crossref_primary_10_1016_j_ress_2025_111108
crossref_primary_10_1016_j_ymssp_2024_111420
crossref_primary_10_1016_j_ymssp_2025_113304
crossref_primary_10_1186_s10033_024_01173_8
crossref_primary_10_3390_act14080382
Cites_doi 10.1016/j.ymssp.2021.108575
10.1016/j.eswa.2020.114316
10.1016/j.ymssp.2018.02.016
10.1016/j.ress.2021.107938
10.1007/s00170-018-3157-5
10.1007/s00163-020-00336-7
10.1109/JSAC.2019.2951964
10.1016/j.asoc.2018.05.015
10.1016/j.jpowsour.2021.230526
10.36001/ijphm.2020.v11i1.2594
10.1016/j.inffus.2019.12.001
10.1016/j.compind.2021.103523
10.1109/TIE.2017.2762639
10.1016/j.jmatprotec.2021.117472
10.1016/j.oceaneng.2022.111299
10.1109/TII.2021.3089333
10.1016/j.renene.2019.06.103
10.1016/j.jcp.2020.109942
10.1016/j.jmsy.2021.03.025
10.1016/j.engappai.2020.103996
10.1016/j.ress.2020.107194
10.1016/j.ymssp.2022.109760
10.1063/1.5031520
10.1016/j.jsv.2021.116196
10.1016/j.tafmec.2019.102447
10.1016/j.engstruct.2021.111882
10.1016/j.tafmec.2020.102872
10.1109/TSMC.2020.3048950
10.1088/1748-9326/abfde9
10.1016/j.ymssp.2022.109772
10.1007/s12289-022-01677-5
10.1016/j.ijfatigue.2021.106352
10.1149/2.0281914jes
10.1016/j.compind.2019.07.004
10.1016/j.jmsy.2020.09.005
10.1007/s10921-020-00705-1
10.1016/j.apenergy.2019.113525
10.33737/jgpps/134845
10.1007/s10846-020-01295-w
10.1002/acs.2784
10.1016/j.compfluid.2018.07.021
10.1016/j.aei.2021.101404
10.1109/ACCESS.2020.2972859
10.1016/j.ress.2022.109067
10.1016/j.ymssp.2021.108709
10.1115/1.4047213
10.1177/1475921720921135
10.1016/j.automatica.2019.108705
10.1016/j.apmt.2020.100898
10.1016/j.neucom.2020.07.088
10.1109/JSEN.2019.2898634
10.1016/j.measurement.2019.107106
10.1016/j.ress.2022.108898
10.1177/1687814016664660
10.1016/j.inffus.2018.10.005
10.1111/mice.12685
10.1016/j.ymssp.2021.108153
10.1016/j.neucom.2021.04.122
10.1016/j.engappai.2020.103678
10.1089/big.2020.0071
10.1016/j.ress.2021.107961
10.26434/chemrxiv.14661180.v1
10.1016/j.ymssp.2021.108779
10.1177/1475921720927488
10.1016/j.compstruc.2020.106458
10.1016/j.engstruct.2020.110704
10.1186/s10033-021-00587-y
10.1016/j.cossms.2019.100797
10.1016/j.ymssp.2017.11.016
10.36001/ijphm.2021.v12i2.2938
10.1016/j.engappai.2021.104295
10.1016/j.cma.2021.113885
10.36001/ijphm.2019.v10i2.2727
10.1109/ICPHM53196.2022.9815692
10.1016/j.engstruct.2020.111582
10.1115/1.4036907
10.1016/j.jmsy.2021.10.013
10.1016/j.jcp.2021.110414
10.1016/j.ymssp.2021.108426
10.3390/app9173473
10.1016/j.cma.2022.114587
10.1016/j.jmsy.2021.11.003
10.1016/j.jcp.2018.10.045
10.1016/j.ymssp.2021.108453
10.1007/s40789-018-0203-8
10.1016/j.ifacol.2021.11.152
10.1016/j.ymssp.2022.108907
10.1016/j.asoc.2020.106665
10.1016/j.jmsy.2019.09.013
10.1016/j.cma.2020.112892
10.1784/insi.2015.57.7.395
10.1016/j.ress.2021.108114
10.1007/s00158-022-03410-x
10.1016/j.jcp.2021.110624
10.24251/HICSS.2019.416
10.1007/s11831-021-09539-0
10.1016/j.ymssp.2021.107614
10.1063/5.0038929
10.1016/j.ymssp.2020.107552
10.3390/s22239494
10.1007/s11831-020-09405-5
10.1016/j.arcontrol.2016.09.008
10.1016/j.ress.2021.108119
10.1016/j.measurement.2019.04.093
10.1109/TPWRS.2020.2988352
10.1504/IJHM.2021.118005
10.3390/en15020558
10.1016/j.jcp.2019.109136
10.1016/j.enggeo.2020.105857
10.1016/j.ijrmms.2020.104568
10.21203/rs.3.rs-863306/v1
10.1016/j.ymssp.2020.107374
10.2514/1.J059250
10.1109/ACCESS.2020.2987324
10.1016/j.ymssp.2017.11.024
10.1016/j.compstruc.2021.106678
10.1016/j.ymssp.2022.108917
10.1016/j.asoc.2016.03.013
10.1109/TBDATA.2015.2465959
10.1016/j.neucom.2020.11.042
10.1002/stc.2358
10.1007/s00158-022-03425-4
10.3390/math9182336
10.1038/s42254-021-00314-5
10.1061/AJRUA6.0001053
10.1016/j.measurement.2021.109631
10.1016/j.measurement.2020.107929
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2023 Elsevier Inc.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.apm.2023.07.011
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-8480
EndPage 352
ExternalDocumentID oai:HAL:hal-04290849v1
10_1016_j_apm_2023_07_011
S0307904X23003086
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
LY7
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WH7
WUQ
XJT
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
1XC
VOOES
ID FETCH-LOGICAL-c374t-ceb15d7b2fa73e768367d57a916ec323ed6dbafd5af4a5b988ca8657f6af45f33
ISICitedReferencesCount 57
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001061367700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0307-904X
IngestDate Sat Nov 29 14:59:24 EST 2025
Tue Nov 18 22:40:48 EST 2025
Sat Nov 29 07:21:20 EST 2025
Fri Feb 23 02:35:59 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords ANN
CNN
DNN
GNN
NMAE
Physics-informed machine learning
SVM
Knowledge
PDE
RNN
PHM
PBM
MSE
Physics-embedded algorithm structure
LSTM
NODE
RUL
RMSE
Prognostics and health management
PCA
FCN
MAE
ROM
Physics-constraint learning
CRA
KSVD
NMSE
VAE
Physics-informed input space
PIML
DRM
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c374t-ceb15d7b2fa73e768367d57a916ec323ed6dbafd5af4a5b988ca8657f6af45f33
ORCID 0000-0002-5195-4184
0000-0002-7278-5631
0000-0003-4086-9053
0000-0001-7895-5569
OpenAccessLink https://hal.science/hal-04290849
PageCount 28
ParticipantIDs hal_primary_oai_HAL_hal_04290849v1
crossref_primary_10_1016_j_apm_2023_07_011
crossref_citationtrail_10_1016_j_apm_2023_07_011
elsevier_sciencedirect_doi_10_1016_j_apm_2023_07_011
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
2023-12
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationTitle Applied mathematical modelling
PublicationYear 2023
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Guc, Chen (bib0169) 2021; 54
Gálvez, Seneviratne, Galar (bib0162) 2021; 4
Jan Hagendorfer (bib0190) 2021
Bills, Sripad, Fredericks, Guttenberg, Charles, Frank, Viswanathan (bib0217) 2020
Tartakovsky, Tipireddy (bib0152) 2019
Zhou, Hong, Jin (bib0045) 2019; 9
Rai, Sahu (bib0072) 2020; 8
Nascimento, Viana (bib0186) 2020; 58
Zheng (bib0044) 2015; 1
Zhang, Gao (bib0191) 2021; 34
Wang, Fan, Kazmer, Gao (bib0206) 2017; 139
Chen, Rao, Feng, Zuo (bib0124) 2022; 171
Sun, Peng, Huang, Li, Long, Wang, Zhao (bib0130) 2021; 18
Hlaing, Morato, Nielsen, Amirafshari, Kolios, Rigo (bib0187) 2022
Raissi, Perdikaris, Karniadakis (bib0139) 2017
P. P.Bonissone, Prognostics & health management at ge
Liao, Yang, Wang, Ren (bib0166) 2020; 7
Shukla, Di Leoni, Blackshire, Sparkman, Karniadakis (bib0037) 2020; 39
Dourado, Viana (bib0117) 2020
Karpatne, Watkins, Read, Kumar (bib0094) 2017
Guo, Agarwal, Cooper, Tian, Gao, Grace, Guo (bib0106) 2022; 62
With physics-informed ai, machine operators can trust and verify
.
von Hahn, Mechefske (bib0123) 2022
Wang, Zheng, Wang, Lu, Jia, Li, Li (bib0214) 2023
Lyathakula, Yuan (bib0055) 2021
Li, Zhao, Sun, Cheng, Chen, Yan, Gao (bib0172) 2021; 52
Goswami, Yin, Yu, Karniadakis (bib0129) 2022; 391
Talukdar, Deka, Doddi, Materassi, Chertkov, Salapaka (bib0105) 2020; 112
Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang (bib0164) 2021; 3
Li, Jia, Feng, Zhu, Miller, Chen, Lee (bib0183) 2020; 151
Xu, Kohtz, Boakye, Gardoni, Wang (bib0029) 2022
Kipchirchir, Do, Njiri, Söffker (bib0049) 2021
Jeong, Yu, Mansour, Vesslinov, Meehan (bib0209) 2020
Viana, Nascimento, Dourado, Yucesan (bib0115) 2021; 245
Ritto, Rochinha (bib0196) 2021; 155
Behjat, Zeng, Rai, Matei, Doermann, Chowdhury (bib0100) 2020; 96
Zhang, Zhang, Wang, Habetler (bib0004) 2020; 8
Stiasny, Misyris, Chatzivasileiadis (bib0140) 2021
Fink, Wang, Svensen, Dersin, Lee, Ducoffe (bib0003) 2020; 92
Wang, Yu (bib0082) 2021
S.K.A.A. Rohit Tripathy, Ilias Bilionis, Physics-informed learning for multiscale systems (pilgrims)
Zhang, Rai, Chowdhury, Doermann (bib0047) 2021; 428
Cross, Gibson, Jones, Pitchforth, Zhang, Rogers (bib0135) 2022
Thelen, Zhang, Fink, Lu, Ghosh, Youn, Todd, Mahadevan, Hu, Hu (bib0193) 2023; 66
Star, McKee (bib0178) 2021; 12
Zhang (bib0061) 2012
Xu, Bao, Zhang, Li (bib0215) 2021; 20
Kharazmi, Zhang, Karniadakis (bib0104) 2019
Zhou, Diehl, Tang (bib0171) 2023; 185
Finegan, Zhu, Feng, Keyser, Ulmefors, Li, Bazant, Cooper (bib0071) 2020
Perez-Sanjines, Peeters, Verstraeten, Antoni, Nowé, Helsen (bib0200) 2023; 185
A.I. Ozdagli, X. Koutsoukos, Model-based damage detection through physics-guided learning for dynamic systems.
Zamzam, Sidiropoulos (bib0095) 2020; 35
Blasch, Tiley, Sparkman, Donegan, Cherry (bib0101) 2020; volume 11423
Yucesan, Viana, Manin, Mahfoud (bib0107) 2021; 154
Accessed Nov 14, 2019.
Odot, Haferssas, Cotin (bib0096) 2021
Lai, Mylonas, Nagarajaiah, Chatzi (bib0156) 2021; 508
Berri, Dalla Vedova, Mainini (bib0016) 2021; 132
Sepasdar, Karpatne, Shakiba (bib0210) 2021
A.D.P. Dourado, F. Viana, Ensemble of hybrid neural networks to compensate for epistemic uncertainties: A case study in system prognosis (2021).
Ioannidis, Marques, Giannakis (bib0212) 2019
Neuer (bib0145) 2020
Matei, Zeng, Chowdhury, Rai, de Kleer (bib0102) 2021; 101
Gong, Tang, Yu, Tian (bib0033) 2021
Giorgiani Nascimento, Viana (bib0158) 2019
de Calle, Ferreiro, Arnaiz, Sierra (bib0014) 2019; 112
Cubillo, Perinpanayagam, Esperon-Miguez (bib0056) 2016; 8
Yucesan, Viana (bib0148) 2019; volume 11
Diez-Olivan, Del Ser, Galar, Sierra (bib0040) 2019; 50
Sadoughi, Hu (bib0063) 2019; 19
Arias Chao (bib0010) 2021
Singh, Keyvanlou, Sadhu (bib0005) 2021; 232
Tipireddy, Tartakovsky (bib0149) 2018
Shin, Darbon, Karniadakis (bib0103) 2020
Boushaba, Cauet, Chamroo, Etien, Rambault (bib0165) 2022; 22
Borkowski, Sorini, Chattopadhyay (bib0109) 2022; 258
Pagnier, Chertkov (bib0020) 2021
Guo, Ye, Yang (bib0079) 2020
Baseman, DeBardeleben, Blanchard, Moore, Tkachenko, Ferreira, Siddiqua, Sridharan (bib0154) 2018
R.M. Michael Eidell, S. Choudhry, Pcoe datasets
De Groote, Van Hoecke, Crevecoeur (bib0161) 2022; 166
Lei, Li, Guo, Li, Yan, Lin (bib0019) 2018; 104
Kim, An, Choi (bib0001) 2017
Chao, Kulkarni, Goebel, Fink (bib0013) 2019
Sherman, Mellors, Morris (bib0151) 2019
Vesselinov (bib0134) 2019
S. Liu, B.B. Kappes, B. Amin-ahmadi, O. Benafan, X. Zhang, A.P. Stebner, Physics-informed machine learning for composition-process-property alloy design: shape memory alloy demonstration, arXiv preprint arXiv:2003.01878(2020).
Nascimento, Fricke, Viana (bib0120) 2020; 96
Shen, Chowdhury, Banerjee, Terejanu (bib0197) 2023
Sadoughi, Hu (bib0064) 2018
Yucesan, Dourado, Viana (bib0018) 2021; 50
Firoozi, Sattarzadeh, Dey (bib0067) 2021
Nabian, Gladstone, Meidani (bib0127) 2021
Karandikar, Schmitz, Smith (bib0076) 2021; 59
Yao, Gao, Liu (bib0091) 2020; 363
Chen, Ma, Yan, Zheng, Zhang (bib0041) 2019
Atamuradov, Medjaher, Dersin, Lamoureux, Zerhouni (bib0031) 2017; 8
Eshkevari, Takáč, Pakzad, Jahani (bib0050) 2021; 229
Kim, Na, Youn (bib0167) 2022; 167
Wang, Li, Zhao, Gao (bib0078) 2020; 57
Deng, Nguyen, Gogu, Morio, Medjaher (bib0181) 2022; volume 7
Muralidhar, Bu, Cao, He, Ramakrishnan, Tafti, Karpatne (bib0073) 2020; 8
Reniers, Mulder, Howey (bib0017) 2019; 166
Khan, Yairi (bib0007) 2018; 107
Tetali, Alguri, Harley (bib0150) 2019
Zhao, Wen, Sun, Sun, Yang, Cao, Dai, Wang (bib0015) 2018; 5
Seo, Meng, Liu (bib0099) 2019
Chakraborty (bib0159) 2021; 426
Nouri, Artozoul, Caillaud, Ammar, Chinesta, Köser (bib0060) 2022; 15
Jia, Willard, Karpatne, Read, Zwart, Steinbach, Kumar (bib0083) 2019
Swischuk, Mainini, Peherstorfer, Willcox (bib0066) 2019; 179
Sun, Peng, Lin, Wang, Zhao, Huang (bib0081) 2021
Zhao, Kang, Tang, Pecht (bib0213) 2017; 65
Rasheed, San, Kvamsdal (bib0011) 2019
Chao, Kulkarni, Goebel, Fink (bib0054) 2022; 217
Kapteyn, Knezevic, Willcox (bib0195) 2020
Pfaff, Fortunato, Sanchez-Gonzalez, Battaglia (bib0069) 2020
Bolandi, Sreekumar, Li, Lajnef, Boddeti (bib0176) 2022
Pawar, San, Vedula, Rasheed, Kvamsdal (bib0039) 2021
Dourado, Viana (bib0121) 2019; volume 11
R. Giorgiani do Nascimento, Hybrid physics-informed neural networks for dynamical systems (2020).
Liu, Chen, Du, Tegmark (bib0138) 2021
Chen, Hu, Cheng, Zhang, Zhang (bib0208) 2019; 146
Tidriri, Chatti, Verron, Tiplica (bib0216) 2016; 42
Akrim, Gogu, Guillebot de Nerville, Strahle, Waffa Pagou, Salaun, Vingerhoeds (bib0219) 2022
Liu, Meyendorf, Mrad (bib0048) 2018; volume 1949
Feng, Xu, Han, Li, Incecik (bib0070) 2021; 383
de Silva, Callaham, Jonker, Goebel, Klemisch, McDonald, Hicks, Kutz, Brunton, Aravkin (bib0128) 2020
Goswami, Yin, Yu, Karniadakis (bib0114) 2021
Lizama Molina, Yoon, Jiang, Pyrak-Nolte (bib0153) 2019
Cofre-Martel, Droguett, Modarres (bib0177) 2020
Alizadeh, Allen, Mistree (bib0202) 2020; 31
Singh, Yang, Behjat, Rai, Chowdhury, Matei (bib0038) 2019
Pan, Jing, Wu, Kong (bib0062) 2022; 217
Krishnapriyan, Gholami, Zhe, Kirby, Mahoney (bib0157) 2021
Hou, Wang, Chen, Wang, Peng, Tsui (bib0168) 2022; 169
Goswami, Anitescu, Chakraborty, Rabczuk (bib0147) 2020; 106
Marcus (bib0144) 2021; 1338
Sarih, Tchangani, Medjaher, Péré (bib0194) 2019
Zio (bib0008) 2022; 218
Eker, Camci, Jennions (bib0182) 2019; 10
Yang, Bai, Liu, Liu, Yu (bib0173) 2021; 181
Xu, Noh (bib0199) 2020
Zhang, Zhang, Wang, Zhong (bib0218) 2020
Nor, Pedapait, Muhammad (bib0009) 2021
Liao, Köttig (bib0051) 2016; 44
Green, Langham, Agustin, Quinn, Leeb (bib0201) 2022
Giorgiani do Nascimento, Viana, Corbetta, Kulkarni (bib0179) 2021
Meng, Jing, Yan, Pedrycz (bib0042) 2020; 57
Chen, Gao, Wang, Yan (bib0137) 2021; 16
Yang, Sanchez, Zhang, Roeder, Bowlan, Crochet, Farrar, Mascareñas (bib0088) 2019; 26
M. Sepe, A. Graziano, M. Badora, A. Di Stazio, L. Bellani, M. Compare, E. Zio, A physics-informed machine learning framework for predictive maintenance applied to turbomachinery assets (2021).
Hu, Yang, Yan, Xiang, Zhou, Xuan (bib0175) 2020; 142
Rezaeianjouybari, Shang (bib0002) 2020; 163
Daw, Thomas, Carey, Read, Appling, Karpatne (bib0086) 2020
Khan, Hwang, Kim (bib0006) 2021; 9
Scapino, Zondag, Diriken, Rindt, Van Bael, Sciacovelli (bib0012) 2019; 253
Viana, Subramaniyan (bib0125) 2021; 28
Zhang, Sun, Guo (bib0080) 2022; 166
Yucesan, Viana (bib0116) 2020; 11
Wang, Liang, Zheng, Gao, Zhang (bib0036) 2020; 145
Weiderer, Tomé, Lang (bib0057) 2020; 54
Ness, Paul, Sun, Zhang (bib0059) 2022; 302
Freeman, Tang, Huang, VanZwieten (bib0146) 2022; 254
Li, Deka (bib0132) 2021
Rojas, Bitterncourt, Boldrini (bib0133) 2021
Sangid (bib0046) 2020; 24
Yang, Tartakovsky, Tartakovsky (bib0111) 2018
Siddiqui (bib0052) 2017; 8
Jagtap, Kawaguchi, Karniadakis (bib0108) 2020; 404
Mohanty, Vilim (bib0027) 2021
El Mir, Perinpanayagam (bib0110) 2021
von Rueden, Mayer, Beckh, Georgiev, Giesselbach, Heese, Kirsch, Pfrommer, Pick, Ramamurthy (bib0141) 2019
Jiao, Zhao, Lin, Liang (bib0207) 2020; 417
Xu, Noh (bib0112) 2021; 151
Li, Huang, Li, Zhou, Mi (bib0065) 2018; 72
Willard, Jia, Xu, Steinbach, Kumar (bib0032) 2020; 1
Chao, Adey, Fink (bib0160) 2021; 454
Das, Dutta, Putcha, Majumdar, Adak (bib0118) 2020; 6
Ewald, Venkat, Asokkumar, Benedictus, Boller, Groves (bib0174) 2022; 165
Zhang, Liu, Sun (bib0085) 2020; 215
Schröder, Dimitrov, Verelst, Sørensen (bib0126) 2022; 15
W.Z. Levente Klein, Peeking into ai’s ‘black box’ brain – with physics
Russell, Wang (bib0131) 2022; 168
Xia, Shao, Williams, Lu, Shu, de Silva (bib0170) 2021; 215
Srikonda, Rastogi, Oestensen (bib0058) 2020
Nguyen, Oterkus, Oterkus (bib0077) 2021; 112
Chakraborty (bib0136) 2020
Chakravarty, Misra, Rai (bib0142) 2021; 137
Chen (bib0035) 2016
Chen, Liu (bib0092) 2021; 168
Peng, Alber, Tepole, Cannon, De, Dura-Bernal, Garikipati, Karniadakis, Lytton, Perdikaris (bib0203) 2021; 28
Thelen, Zhang, Fink, Lu, Ghosh, Youn, Todd, Mahadevan, Hu, Hu (bib0192) 2022; 65
Razak, Cornelio, Cho, Liu, Vaidya, Jafarpour (bib0075) 2021
S. Pepe, J. Liu, E. Quattrocchi, F. Ciucci, Neural ordinary differential equations and recurrent neural networks for predicting the state of health of batteries (2021).
Zhao, Zhang, Yu, Sun, Wang, Yan, Chen (bib0030) 2021; 70
Pawar, San, Aksoylu, Rasheed, Kvamsdal (bib0087) 2021; 33
Zheng, Li, Lin,
Fink (10.1016/j.apm.2023.07.011_bib0003) 2020; 92
Cofre-Martel (10.1016/j.apm.2023.07.011_bib0177) 2020
Li (10.1016/j.apm.2023.07.011_bib0132) 2021
Vesselinov (10.1016/j.apm.2023.07.011_bib0134) 2019
Freeman (10.1016/j.apm.2023.07.011_bib0146) 2022; 254
Zhou (10.1016/j.apm.2023.07.011_bib0171) 2023; 185
Zhang (10.1016/j.apm.2023.07.011_bib0191) 2021; 34
Shen (10.1016/j.apm.2023.07.011_bib0197) 2023
Sarih (10.1016/j.apm.2023.07.011_bib0194) 2019
10.1016/j.apm.2023.07.011_bib0184
Eshkevari (10.1016/j.apm.2023.07.011_bib0050) 2021; 229
Gong (10.1016/j.apm.2023.07.011_bib0033) 2021
Zhou (10.1016/j.apm.2023.07.011_bib0045) 2019; 9
Shukla (10.1016/j.apm.2023.07.011_bib0037) 2020; 39
Zhang (10.1016/j.apm.2023.07.011_bib0047) 2021; 428
Xu (10.1016/j.apm.2023.07.011_bib0112) 2021; 151
de Silva (10.1016/j.apm.2023.07.011_bib0128) 2020
Zheng (10.1016/j.apm.2023.07.011_bib0044) 2015; 1
Pakravan (10.1016/j.apm.2023.07.011_bib0098) 2021; 440
Reniers (10.1016/j.apm.2023.07.011_bib0017) 2019; 166
de Calle (10.1016/j.apm.2023.07.011_bib0014) 2019; 112
Lizama Molina (10.1016/j.apm.2023.07.011_bib0153) 2019
Matei (10.1016/j.apm.2023.07.011_bib0102) 2021; 101
Yucesan (10.1016/j.apm.2023.07.011_bib0018) 2021; 50
Jeong (10.1016/j.apm.2023.07.011_bib0209) 2020
Zhang (10.1016/j.apm.2023.07.011_bib0085) 2020; 215
Giorgiani Nascimento (10.1016/j.apm.2023.07.011_bib0158) 2019
Zhang (10.1016/j.apm.2023.07.011_bib0084) 2021; 20
Deng (10.1016/j.apm.2023.07.011_bib0181) 2022; volume 7
Peng (10.1016/j.apm.2023.07.011_bib0203) 2021; 28
Sepasdar (10.1016/j.apm.2023.07.011_bib0210) 2021
von Rueden (10.1016/j.apm.2023.07.011_bib0141) 2019
Behjat (10.1016/j.apm.2023.07.011_bib0100) 2020; 96
Nascimento (10.1016/j.apm.2023.07.011_bib0186) 2020; 58
Zhang (10.1016/j.apm.2023.07.011_bib0061) 2012
Yang (10.1016/j.apm.2023.07.011_bib0088) 2019; 26
10.1016/j.apm.2023.07.011_bib0180
Russell (10.1016/j.apm.2023.07.011_bib0131) 2022; 168
Yucesan (10.1016/j.apm.2023.07.011_bib0107) 2021; 154
Yu (10.1016/j.apm.2023.07.011_bib0068) 2018
Ioannidis (10.1016/j.apm.2023.07.011_bib0212) 2019
Chao (10.1016/j.apm.2023.07.011_bib0013) 2019
Zhao (10.1016/j.apm.2023.07.011_bib0213) 2017; 65
Sadoughi (10.1016/j.apm.2023.07.011_bib0063) 2019; 19
Nguyen (10.1016/j.apm.2023.07.011_bib0077) 2021; 112
Zhao (10.1016/j.apm.2023.07.011_bib0015) 2018; 5
Pagnier (10.1016/j.apm.2023.07.011_bib0020) 2021
Jan Hagendorfer (10.1016/j.apm.2023.07.011_bib0190) 2021
Cubillo (10.1016/j.apm.2023.07.011_bib0056) 2016; 8
Eker (10.1016/j.apm.2023.07.011_bib0182) 2019; 10
Weiderer (10.1016/j.apm.2023.07.011_bib0057) 2020; 54
Wang (10.1016/j.apm.2023.07.011_bib0214) 2023
Liao (10.1016/j.apm.2023.07.011_bib0166) 2020; 7
Firoozi (10.1016/j.apm.2023.07.011_bib0067) 2021
Star (10.1016/j.apm.2023.07.011_bib0178) 2021; 12
Zhang (10.1016/j.apm.2023.07.011_bib0080) 2022; 166
Goswami (10.1016/j.apm.2023.07.011_bib0129) 2022; 391
Chen (10.1016/j.apm.2023.07.011_bib0208) 2019; 146
Zhao (10.1016/j.apm.2023.07.011_bib0030) 2021; 70
Razak (10.1016/j.apm.2023.07.011_bib0075) 2021
Tartakovsky (10.1016/j.apm.2023.07.011_bib0152) 2019
Xia (10.1016/j.apm.2023.07.011_bib0170) 2021; 215
Hanachi (10.1016/j.apm.2023.07.011_bib0043) 2019; 101
Yang (10.1016/j.apm.2023.07.011_bib0111) 2018
Wang (10.1016/j.apm.2023.07.011_bib0082) 2021
Chen (10.1016/j.apm.2023.07.011_bib0035) 2016
Alizadeh (10.1016/j.apm.2023.07.011_bib0202) 2020; 31
Berri (10.1016/j.apm.2023.07.011_bib0016) 2021; 132
De Groote (10.1016/j.apm.2023.07.011_bib0161) 2022; 166
Finegan (10.1016/j.apm.2023.07.011_bib0071) 2020
Hlaing (10.1016/j.apm.2023.07.011_bib0187) 2022
Kim (10.1016/j.apm.2023.07.011_bib0001) 2017
Jia (10.1016/j.apm.2023.07.011_bib0083) 2019
Dourado (10.1016/j.apm.2023.07.011_bib0121) 2019; volume 11
Pawar (10.1016/j.apm.2023.07.011_bib0039) 2021
Yang (10.1016/j.apm.2023.07.011_bib0173) 2021; 181
Thelen (10.1016/j.apm.2023.07.011_bib0192) 2022; 65
10.1016/j.apm.2023.07.011_bib0089
Kharazmi (10.1016/j.apm.2023.07.011_bib0104) 2019
Guo (10.1016/j.apm.2023.07.011_bib0106) 2022; 62
Bills (10.1016/j.apm.2023.07.011_bib0217) 2020
Lai (10.1016/j.apm.2023.07.011_bib0156) 2021; 508
Rai (10.1016/j.apm.2023.07.011_bib0072) 2020; 8
Cross (10.1016/j.apm.2023.07.011_bib0135) 2022
Yucesan (10.1016/j.apm.2023.07.011_bib0116) 2020; 11
Marcus (10.1016/j.apm.2023.07.011_bib0144) 2021; 1338
Sun (10.1016/j.apm.2023.07.011_bib0130) 2021; 18
Chen (10.1016/j.apm.2023.07.011_bib0041) 2019
Gao (10.1016/j.apm.2023.07.011_bib0053) 2020
Chen (10.1016/j.apm.2023.07.011_bib0137) 2021; 16
Daw (10.1016/j.apm.2023.07.011_bib0086) 2020
Hu (10.1016/j.apm.2023.07.011_bib0175) 2020; 142
10.1016/j.apm.2023.07.011_bib0097
Akrim (10.1016/j.apm.2023.07.011_bib0219) 2022
Tetali (10.1016/j.apm.2023.07.011_bib0150) 2019
Odot (10.1016/j.apm.2023.07.011_bib0096) 2021
Singh (10.1016/j.apm.2023.07.011_bib0038) 2019
Chao (10.1016/j.apm.2023.07.011_bib0160) 2021; 454
Nouri (10.1016/j.apm.2023.07.011_bib0060) 2022; 15
Geng (10.1016/j.apm.2023.07.011_bib0074) 2020; 279
Zio (10.1016/j.apm.2023.07.011_bib0008) 2022; 218
Zhang (10.1016/j.apm.2023.07.011_bib0004) 2020; 8
Ewald (10.1016/j.apm.2023.07.011_bib0174) 2022; 165
Sun (10.1016/j.apm.2023.07.011_bib0081) 2021
Shen (10.1016/j.apm.2023.07.011_bib0143) 2021; 103
Swischuk (10.1016/j.apm.2023.07.011_bib0066) 2019; 179
Dourado (10.1016/j.apm.2023.07.011_bib0117) 2020
Chen (10.1016/j.apm.2023.07.011_bib0092) 2021; 168
El Mir (10.1016/j.apm.2023.07.011_bib0110) 2021
Neuer (10.1016/j.apm.2023.07.011_bib0145) 2020
Xu (10.1016/j.apm.2023.07.011_bib0199) 2020
Pan (10.1016/j.apm.2023.07.011_bib0062) 2022; 217
Gálvez (10.1016/j.apm.2023.07.011_bib0162) 2021; 4
Mohanty (10.1016/j.apm.2023.07.011_bib0027) 2021
Stiasny (10.1016/j.apm.2023.07.011_bib0140) 2021
Ness (10.1016/j.apm.2023.07.011_bib0059) 2022; 302
Liao (10.1016/j.apm.2023.07.011_bib0051) 2016; 44
Karandikar (10.1016/j.apm.2023.07.011_bib0076) 2021; 59
Pawar (10.1016/j.apm.2023.07.011_bib0087) 2021; 33
10.1016/j.apm.2023.07.011_bib0119
Sangid (10.1016/j.apm.2023.07.011_bib0046) 2020; 24
Jagtap (10.1016/j.apm.2023.07.011_bib0108) 2020; 404
Lyathakula (10.1016/j.apm.2023.07.011_bib0055) 2021
Zhang (10.1016/j.apm.2023.07.011_bib0218) 2020
Liu (10.1016/j.apm.2023.07.011_bib0204) 2018; 108
Siddiqui (10.1016/j.apm.2023.07.011_bib0052) 2017; 8
Ma (10.1016/j.apm.2023.07.011_bib0188) 2023; 229
Rezaeianjouybari (10.1016/j.apm.2023.07.011_bib0002) 2020; 163
Srikonda (10.1016/j.apm.2023.07.011_bib0058) 2020
Chen (10.1016/j.apm.2023.07.011_bib0211) 2019; 38
von Hahn (10.1016/j.apm.2023.07.011_bib0123) 2022
Chakraborty (10.1016/j.apm.2023.07.011_bib0136) 2020
Guo (10.1016/j.apm.2023.07.011_bib0079) 2020
Nabian (10.1016/j.apm.2023.07.011_bib0127) 2021
Goswami (10.1016/j.apm.2023.07.011_bib0147) 2020; 106
Yao (10.1016/j.apm.2023.07.011_bib0091) 2020; 363
Li (10.1016/j.apm.2023.07.011_bib0172) 2021; 52
Krishnapriyan (10.1016/j.apm.2023.07.011_bib0157) 2021
Xu (10.1016/j.apm.2023.07.011_bib0215) 2021; 20
Scapino (10.1016/j.apm.2023.07.011_bib0012) 2019; 253
Sherman (10.1016/j.apm.2023.07.011_bib0151) 2019
Jiao (10.1016/j.apm.2023.07.011_bib0207) 2020; 417
Willard (10.1016/j.apm.2023.07.011_bib0032) 2020; 1
Talukdar (10.1016/j.apm.2023.07.011_bib0105) 2020; 112
Zheng (10.1016/j.apm.2023.07.011_bib0163) 2021
Perez-Sanjines (10.1016/j.apm.2023.07.011_bib0200) 2023; 185
Chao (10.1016/j.apm.2023.07.011_bib0054) 2022; 217
Viana (10.1016/j.apm.2023.07.011_bib0125) 2021; 28
Guc (10.1016/j.apm.2023.07.011_bib0169) 2021; 54
Yucesan (10.1016/j.apm.2023.07.011_bib0148) 2019; volume 11
Arias Chao (10.1016/j.apm.2023.07.011_bib0010) 2021
Green (10.1016/j.apm.2023.07.011_bib0201) 2022
Diez-Olivan (10.1016/j.apm.2023.07.011_bib0040) 2019; 50
Li (10.1016/j.apm.2023.07.011_bib0065) 2018; 72
Lei (10.1016/j.apm.2023.07.011_bib0019) 2018; 104
Pfingstl (10.1016/j.apm.2023.07.011_bib0185) 2022; 171
Karniadakis (10.1016/j.apm.2023.07.011_bib0164) 2021; 3
10.1016/j.apm.2023.07.011_bib0023
10.1016/j.apm.2023.07.011_bib0022
Seo (10.1016/j.apm.2023.07.011_bib0099) 2019
Rasheed (10.1016/j.apm.2023.07.011_bib0011) 2019
10.1016/j.apm.2023.07.011_bib0025
10.1016/j.apm.2023.07.011_bib0024
Das (10.1016/j.apm.2023.07.011_bib0118) 2020; 6
Nascimento (10.1016/j.apm.2023.07.011_bib0120) 2020; 96
Chakraborty (10.1016/j.apm.2023.07.011_bib0159) 2021; 426
Kapteyn (10.1016/j.apm.2023.07.011_bib0195) 2020
Goswami (10.1016/j.apm.2023.07.011_bib0114) 2021
10.1016/j.apm.2023.07.011_bib0026
Borkowski (10.1016/j.apm.2023.07.011_bib0109) 2022; 258
10.1016/j.apm.2023.07.011_bib0028
Ritto (10.1016/j.apm.2023.07.011_bib0196) 2021; 155
Kim (10.1016/j.apm.2023.07.011_bib0189) 2021
Kim (10.1016/j.apm.2023.07.011_bib0167) 2022; 167
Kipchirchir (10.1016/j.apm.2023.07.011_bib0049) 2021
Xu (10.1016/j.apm.2023.07.011_bib0029) 2022
Li (10.1016/j.apm.2023.07.011_bib0034) 2022; 62
10.1016/j.apm.2023.07.011_bib0155
Pfaff (10.1016/j.apm.2023.07.011_bib0069) 2020
Blasch (10.1016/j.apm.2023.07.011_bib0101) 2020; volume 11423
Sadoughi (10.1016/j.apm.2023.07.011_bib0064) 2018
Chakravarty (10.1016/j.apm.2023.07.011_bib0142) 2021; 137
Chen (10.1016/j.apm.2023.07.011_bib0090) 2021; 445
Shin (10.1016/j.apm.2023.07.011_bib0103) 2020
Karpatne (10.1016/j.apm.2023.07.011_bib0094) 2017
Zamzam (10.1016/j.apm.2023.07.011_bib0095) 2020; 35
Tidriri (10.1016/j.apm.2023.07.011_bib0216) 2016; 42
Wang (10.1016/j.apm.2023.07.011_bib0078) 2020; 57
Baseman (10.1016/j.apm.2023.07.011_bib0154) 2018
Wang (10.1016/j.apm.2023.07.011_bib0206) 2017; 139
Viana (10.1016/j.apm.2023.07.011_bib0115) 2021; 245
Khan (10.1016/j.apm.2023.07.011_bib0006) 2021; 9
Wang (10.1016/j.apm.2023.07.011_bib0036) 2020; 145
Liu (10.1016/j.apm.2023.07.011_bib0138) 2021
Giorgiani do Nascimento (10.1016/j.apm.2023.07.011_bib0179) 2021
Raissi (10.1016/j.apm.2023.07.011_bib0021) 2019; 378
Liu (10.1016/j.apm.2023.07.011_bib0048) 2018; volume 1949
10.1016/j.apm.2023.07.011_bib0122
Chen (10.1016/j.apm.2023.07.011_bib0124) 2022; 171
Tipireddy (10.1016/j.apm.2023.07.011_bib0149) 2018
Meng (10.1016/j.apm.2023.07.011_bib0042) 2020; 57
Li (10.1016/j.apm.2023.07.011_bib0183) 2020; 151
Bolandi (10.1016/j.apm.2023.07.011_bib0176) 2022
Leturiondo (10.1016/j.apm.2023.07.011_bib0198) 2015; 57
Atamuradov (10.1016/j.apm.2023.07.011_bib0031) 2017; 8
References_xml – volume: 454
  start-page: 324
  year: 2021
  end-page: 338
  ident: bib0160
  article-title: Implicit supervision for fault detection and segmentation of emerging fault types with deep variational autoencoders
  publication-title: Neurocomputing
– start-page: arXiv
  year: 2019
  end-page: 1901
  ident: bib0158
  article-title: Fleet prognosis with physics-informed recurrent neural networks
  publication-title: arXiv e-prints
– volume: 108
  start-page: 33
  year: 2018
  end-page: 47
  ident: bib0204
  article-title: Artificial intelligence for fault diagnosis of rotating machinery: a review
  publication-title: Mech. Syst. Signal Process.
– reference: ).
– volume: 179
  start-page: 704
  year: 2019
  end-page: 717
  ident: bib0066
  article-title: Projection-based model reduction: formulations for physics-based machine learning
  publication-title: Comput. Fluids
– year: 2021
  ident: bib0067
  article-title: Cylindrical battery fault detection under extreme fast charging: a physics-based learning approach
  publication-title: arXiv preprint arXiv:2105.02169
– volume: 96
  start-page: 106665
  year: 2020
  ident: bib0100
  article-title: A physics-aware learning architecture with input transfer networks for predictive modeling
  publication-title: Appl. Soft. Comput.
– volume: 165
  start-page: 108153
  year: 2022
  ident: bib0174
  article-title: Perception modelling by invariant representation of deep learning for automated structural diagnostic in aircraft maintenance: astudy case using deepshm
  publication-title: Mech. Syst. Signal Process.
– volume: 155
  start-page: 107614
  year: 2021
  ident: bib0196
  article-title: Digital twin, physics-based model, and machine learning applied to damage detection in structures
  publication-title: Mech. Syst. Signal Process.
– volume: 57
  start-page: 115
  year: 2020
  end-page: 129
  ident: bib0042
  article-title: A survey on machine learning for data fusion
  publication-title: Inf. Fusion
– volume: 166
  start-page: 108426
  year: 2022
  ident: bib0080
  article-title: Transfer-learning guided bayesian model updating for damage identification considering modeling uncertainty
  publication-title: Mech. Syst. Signal Process.
– volume: 54
  start-page: 53
  year: 2021
  end-page: 58
  ident: bib0169
  article-title: Fault cause assignment with physics informed transfer learning
  publication-title: IFAC-PapersOnLine
– volume: 1
  start-page: 16
  year: 2015
  end-page: 34
  ident: bib0044
  article-title: Methodologies for cross-domain data fusion: an overview
  publication-title: IEEE Trans. Big Data
– volume: 42
  start-page: 63
  year: 2016
  end-page: 81
  ident: bib0216
  article-title: Bridging data-driven and model-based approaches for process fault diagnosis and health monitoring: a review of researches and future challenges
  publication-title: Annu. Rev. Control
– year: 2022
  ident: bib0219
  article-title: A framework for generating large data sets for fatigue damage prognostic problems
  publication-title: Proc. of 2022 IEEE International Conference on Prognostics and Health Management (ICPHM)
– volume: 20
  start-page: 1675
  year: 2021
  end-page: 1688
  ident: bib0084
  article-title: Structural damage identification via physics-guided machine learning: a methodology integrating pattern recognition with finite element model updating
  publication-title: Struct. Health Monitor.
– volume: 3
  start-page: 422
  year: 2021
  end-page: 440
  ident: bib0164
  article-title: Physics-informed machine learning
  publication-title: Nature Rev. Phys.
– volume: 132
  start-page: 103523
  year: 2021
  ident: bib0016
  article-title: Computational framework for real-time diagnostics and prognostics of aircraft actuation systems
  publication-title: Comput. Ind.
– volume: 245
  start-page: 106458
  year: 2021
  ident: bib0115
  article-title: Estimating model inadequacy in ordinary differential equations with physics-informed neural networks
  publication-title: Comput. Struct.
– year: 2017
  ident: bib0139
  article-title: Physics informed deep learning (part i): data-driven solutions of nonlinear partial differential equations
  publication-title: arXiv preprint arXiv:1711.10561
– volume: 104
  start-page: 799
  year: 2018
  end-page: 834
  ident: bib0019
  article-title: Machinery health prognostics: a systematic review from data acquisition to rul prediction
  publication-title: Mech. Syst. Signal Process.
– volume: 8
  start-page: 71050
  year: 2020
  end-page: 71073
  ident: bib0072
  article-title: Driven by data or derived through physics? a review of hybrid physics guided machine learning techniques with cyber-physical system (cps) focus
  publication-title: IEEE Access
– year: 2020
  ident: bib0177
  article-title: Uncovering the underlying physics of degrading system behavior through a deep neural network framework: the case of remaining useful life prognosis
  publication-title: arXiv preprint arXiv:2006.09288
– volume: 19
  start-page: 4181
  year: 2019
  end-page: 4192
  ident: bib0063
  article-title: Physics-based convolutional neural network for fault diagnosis of rolling element bearings
  publication-title: IEEE Sens. J.
– reference: R.M. Michael Eidell, S. Choudhry, Pcoe datasets, (
– start-page: arXiv
  year: 2021
  end-page: 2107
  ident: bib0132
  article-title: Physics-informed graph learning for robust fault location in distribution systems
  publication-title: arXiv e-prints
– volume: 106
  start-page: 102447
  year: 2020
  ident: bib0147
  article-title: Transfer learning enhanced physics informed neural network for phase-field modeling of fracture
  publication-title: Theor. Appl. Fract. Mech.
– reference: S.K.A.A. Rohit Tripathy, Ilias Bilionis, Physics-informed learning for multiscale systems (pilgrims), (
– year: 2021
  ident: bib0163
  article-title: Physics-guided machine learning approach to characterizing small-scale fractures in geothermal fields
  publication-title: Proceedings, forty-sixth workshop on geothermal reservoir engineering, Stanford University
– volume: 163
  start-page: 107929
  year: 2020
  ident: bib0002
  article-title: Deep learning for prognostics and health management: state of the art, challenges, and opportunities
  publication-title: Measurement
– reference: R.M. Michael Eidell, S. Choudhry, Accelerating product development with physics-informed neural networks and nvidia modulus, (
– volume: 217
  start-page: 107961
  year: 2022
  ident: bib0054
  article-title: Fusing physics-based and deep learning models for prognostics
  publication-title: Reliab. Eng. Syst. Saf.
– start-page: 5919
  year: 2018
  end-page: 5923
  ident: bib0064
  article-title: A physics-based deep learning approach for fault diagnosis of rotating machinery
  publication-title: IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society
– volume: 426
  start-page: 109942
  year: 2021
  ident: bib0159
  article-title: Transfer learning based multi-fidelity physics informed deep neural network
  publication-title: J. Comput. Phys.
– year: 2021
  ident: bib0138
  article-title: Physics-augmented learning: a new paradigm beyond physics-informed learning
  publication-title: arXiv preprint arXiv:2109.13901
– volume: 166
  start-page: 108453
  year: 2022
  ident: bib0161
  article-title: Prediction of follower jumps in cam-follower mechanisms: the benefit of using physics-inspired features in recurrent neural networks
  publication-title: Mech. Syst. Signal Process.
– volume: volume 7
  start-page: 118
  year: 2022
  end-page: 125
  ident: bib0181
  article-title: Physics-informed lightweight temporal convolution networks for fault prognostics associated to bearing stiffness degradation
  publication-title: PHM Society European Conference
– volume: 92
  start-page: 103678
  year: 2020
  ident: bib0003
  article-title: Potential, challenges and future directions for deep learning in prognostics and health management applications
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 8157
  year: 2019
  end-page: 8161
  ident: bib0212
  article-title: A recurrent graph neural network for multi-relational data
  publication-title: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: volume 11
  year: 2019
  ident: bib0148
  article-title: Wind turbine main bearing fatigue life estimation with physicsinformed neural networks
  publication-title: Annual Conference of the PHM Society
– volume: 5
  start-page: 167
  year: 2018
  end-page: 178
  ident: bib0015
  article-title: Similarity criteria and coal-like material in coal and gas outburst physical simulation
  publication-title: Int. J. Coal Sci. Technol.
– year: 2021
  ident: bib0027
  article-title: Physics-Infused AI/ML Based Digital-Twin Framework for Flow-Induced-Vibration Damage Prediction in a Nuclear Reactor Heat Exchanger
  publication-title: Technical Report
– year: 2019
  ident: bib0151
  article-title: Subsurface monitoring via physics-informed deep neural network analysis of das
  publication-title: 53rd US Rock Mechanics/Geomechanics Symposium
– volume: 35
  start-page: 4347
  year: 2020
  end-page: 4356
  ident: bib0095
  article-title: Physics-aware neural networks for distribution system state estimation
  publication-title: IEEE Trans. Power Syst.
– year: 2021
  ident: bib0010
  publication-title: Combining Deep Learning and Physics-Based Performance Models for Diagnostics and Prognostics
– reference: ). Accessed Nov 14, 2019.
– reference: S. Pepe, J. Liu, E. Quattrocchi, F. Ciucci, Neural ordinary differential equations and recurrent neural networks for predicting the state of health of batteries (2021).
– volume: 145
  start-page: 642
  year: 2020
  end-page: 650
  ident: bib0036
  article-title: An integrated fault diagnosis and prognosis approach for predictive maintenance of wind turbine bearing with limited samples
  publication-title: Renew. Energy
– volume: 33
  start-page: 011701
  year: 2021
  ident: bib0087
  article-title: Physics guided machine learning using simplified theories
  publication-title: Phys. Fluids
– year: 2022
  ident: bib0201
  article-title: Physics-informed feature space evaluation for diagnostic power monitoring
  publication-title: IEEE Trans. Ind. Inf.
– start-page: 106352
  year: 2021
  ident: bib0055
  article-title: A probabilistic fatigue life prediction for adhesively bonded joints via anns-based hybrid model
  publication-title: Int. J. Fatigue
– volume: 8
  start-page: 29857
  year: 2020
  end-page: 29881
  ident: bib0004
  article-title: Deep learning algorithms for bearing fault diagnostics–a comprehensive review
  publication-title: IEEE Access
– start-page: 1
  year: 2021
  end-page: 6
  ident: bib0110
  article-title: Certification approach for physics informed machine learning and its application in landing gear life assessment
  publication-title: 2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC)
– start-page: 1
  year: 2019
  end-page: 5
  ident: bib0041
  article-title: A permutation entropy-based importance measure for condition monitoring data fusion in fault diagnosis
  publication-title: 2019 Prognostics and System Health Management Conference (PHM-Qingdao)
– volume: 103
  start-page: 104295
  year: 2021
  ident: bib0143
  article-title: A physics-informed deep learning approach for bearing fault detection
  publication-title: Eng. Appl. Artif. Intell.
– volume: 154
  start-page: 107552
  year: 2021
  ident: bib0107
  article-title: Adjusting a torsional vibration damper model with physics-informed neural networks
  publication-title: Mech. Syst. Signal Process.
– volume: 215
  start-page: 110704
  year: 2020
  ident: bib0085
  article-title: Physics-guided convolutional neural network (phycnn) for data-driven seismic response modeling
  publication-title: Eng. Struct.
– volume: 218
  start-page: 108119
  year: 2022
  ident: bib0008
  article-title: Prognostics and health management (phm): where are we and where do we (need to) go in theory and practice
  publication-title: Reliab. Eng. Syst. Saf.
– year: 2012
  ident: bib0061
  article-title: A knowledge-based reasoning model using causal table for identifying corrosion failure mechanisms in refining and petrochemical plants
  publication-title: Eng. Fail Anal.
– start-page: 347
  year: 2022
  end-page: 367
  ident: bib0135
  article-title: Physics-informed Machine Learning for Structural Health Monitoring
  publication-title: Structural Health Monitoring Based on Data Science Techniques
– year: 2020
  ident: bib0136
  article-title: Simulation free reliability analysis: aphysics-informed deep learning based approach
  publication-title: arXiv preprint arXiv:2005.01302
– reference: M. Sepe, A. Graziano, M. Badora, A. Di Stazio, L. Bellani, M. Compare, E. Zio, A physics-informed machine learning framework for predictive maintenance applied to turbomachinery assets (2021).
– volume: 101
  start-page: 2861
  year: 2019
  end-page: 2872
  ident: bib0043
  article-title: Hybrid data-driven physics-based model fusion framework for tool wear prediction
  publication-title: Int. J. Adv. Manuf. Technol.
– year: 2016
  ident: bib0035
  article-title: Citespace: A practical guide for mapping scientific literature
– start-page: 532
  year: 2020
  end-page: 540
  ident: bib0086
  article-title: Physics-guided architecture (pga) of neural networks for quantifying uncertainty in lake temperature modeling
  publication-title: Proceedings of the 2020 siam international conference on data mining
– volume: 4
  start-page: 230
  year: 2021
  end-page: 258
  ident: bib0162
  article-title: Development and synchronisation of a physics-based model for heating, ventilation and air conditioning system integrated into a hybrid model
  publication-title: Int. J. Hydromechatron.
– year: 2021
  ident: bib0127
  article-title: Efficient training of physics-informed neural networks via importance sampling
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
– volume: 50
  start-page: 92
  year: 2019
  end-page: 111
  ident: bib0040
  article-title: Data fusion and machine learning for industrial prognosis: trends and perspectives towards industry 4.0
  publication-title: Inf. Fusion
– volume: 7
  start-page: 241
  year: 2020
  end-page: 249
  ident: bib0166
  article-title: Fault diagnosis of power transformers using graph convolutional network
  publication-title: CSEE J. Power Energy Syst.
– year: 2017
  ident: bib0001
  article-title: Prognostics and health management of engineering systems
– volume: 9
  start-page: 2336
  year: 2021
  ident: bib0006
  article-title: Synthetic data augmentation and deep learning for the fault diagnosis of rotating machines
  publication-title: Mathematics
– volume: 16
  start-page: 065003
  year: 2021
  ident: bib0137
  article-title: Physics-informed generative neural network: an application to troposphere temperature prediction
  publication-title: Environ. Res. Lett.
– year: 2019
  ident: bib0153
  article-title: Acoustic emission analysis of fracture initiation and propagation using physics-informed machine learning methods
  publication-title: Technical Report
– volume: 391
  start-page: 114587
  year: 2022
  ident: bib0129
  article-title: A physics-informed variational deeponet for predicting crack path in quasi-brittle materials
  publication-title: Comput. Methods Appl. Mech. Eng.
– start-page: 230
  year: 2021
  end-page: 240
  ident: bib0190
  article-title: Knowledge incorporation for machine learning in condition monitoring: A survey
  publication-title: 2021 International Symposium on Electrical, Electronics and Information Engineering
– volume: 28
  start-page: 1017
  year: 2021
  end-page: 1037
  ident: bib0203
  article-title: Multiscale modeling meets machine learning: what can we learn?
  publication-title: Arch. Comput. Methods Eng.
– year: 2019
  ident: bib0134
  article-title: Unsupervised and Physics-Informed Machine Learning of Big and Noisy Data
  publication-title: Technical Report
– volume: 39
  start-page: 101876
  year: 2021
  ident: bib0093
  article-title: Fatigue property prediction of additively manufactured ti-6al-4v using probabilistic physics-guided learning
  publication-title: Addit. Manuf.
– year: 2018
  ident: bib0149
  article-title: Physics-informed machine learning method for forecasting and uncertainty quantification of partially observed and unobserved states in power grids
  publication-title: arXiv preprint arXiv:1806.10990
– year: 2021
  ident: bib0096
  article-title: Deepphysics: a physics aware deep learning framework for real-time simulation
  publication-title: arXiv preprint arXiv:2109.09491
– volume: 72
  start-page: 624
  year: 2018
  end-page: 635
  ident: bib0065
  article-title: Physics of failure-based reliability prediction of turbine blades using multi-source information fusion
  publication-title: Appl. Soft. Comput.
– year: 2020
  ident: bib0218
  article-title: Dynet: dynamic convolution for accelerating convolutional neural networks
  publication-title: arXiv preprint arXiv:2004.10694
– volume: 22
  start-page: 9494
  year: 2022
  ident: bib0165
  article-title: Comparative study between physics-informed cnn and pca in induction motor broken bars mcsa detection
  publication-title: Sensors
– start-page: 1
  year: 2018
  end-page: 6
  ident: bib0154
  article-title: Physics-informed machine learning for dram error modeling
  publication-title: 2018 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)
– volume: 62
  start-page: 145
  year: 2022
  end-page: 163
  ident: bib0106
  article-title: Machine learning for metal additive manufacturing: towards a physics-informed data-driven paradigm
  publication-title: J. Manuf. Syst.
– volume: 302
  start-page: 117472
  year: 2022
  ident: bib0059
  article-title: Towards a generic physics-based machine learning model for geometry invariant thermal history prediction in additive manufacturing
  publication-title: J. Mater. Process. Technol.
– volume: 171
  start-page: 108917
  year: 2022
  ident: bib0185
  article-title: On integrating prior knowledge into gaussian processes for prognostic health monitoring
  publication-title: Mech. Syst. Signal Process.
– volume: volume 1949
  start-page: 020023
  year: 2018
  ident: bib0048
  article-title: The role of data fusion in predictive maintenance using digital twin
  publication-title: AIP Conference Proceedings
– start-page: 1
  year: 2022
  end-page: 19
  ident: bib0187
  article-title: Inspection and maintenance planning for offshore wind structural components: integrating fatigue failure criteria with bayesian networks and markov decision processes
  publication-title: Struct. Infrastruct. Eng.
– volume: 171
  start-page: 108907
  year: 2022
  ident: bib0124
  article-title: Physics-informed lstm hyperparameters selection for gearbox fault detection
  publication-title: Mech. Syst. Signal Process.
– volume: 15
  start-page: 558
  year: 2022
  ident: bib0126
  article-title: Using transfer learning to build physics-informed machine learning models for improved wind farm monitoring
  publication-title: Energies
– volume: 279
  start-page: 105857
  year: 2020
  ident: bib0074
  article-title: Physics-guided deep learning for predicting geological drilling risk of wellbore instability using seismic attributes data
  publication-title: Eng. Geol.
– volume: 50
  start-page: 101404
  year: 2021
  ident: bib0018
  article-title: A survey of modeling for prognosis and health management of industrial equipment
  publication-title: Adv. Eng. Inf.
– volume: 168
  start-page: 108709
  year: 2022
  ident: bib0131
  article-title: Physics-informed deep learning for signal compression and reconstruction of big data in industrial condition monitoring
  publication-title: Mech. Syst. Signal Process.
– year: 2019
  ident: bib0141
  article-title: Informed machine learning–a taxonomy and survey of integrating knowledge into learning systems
  publication-title: arXiv preprint arXiv:1903.12394
– reference: S. Liu, B.B. Kappes, B. Amin-ahmadi, O. Benafan, X. Zhang, A.P. Stebner, Physics-informed machine learning for composition-process-property alloy design: shape memory alloy demonstration, arXiv preprint arXiv:2003.01878(2020).
– volume: 39
  start-page: 1
  year: 2020
  end-page: 20
  ident: bib0037
  article-title: Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks
  publication-title: J. Nondestr. Eval.
– start-page: 109067
  year: 2023
  ident: bib0214
  article-title: Sensor fault detection of vehicle suspension systems based on transmissibility operators and neyman–pearson test
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 112
  start-page: 103114
  year: 2019
  ident: bib0014
  article-title: Dynamic condition monitoring method based on dimensionality reduction techniques for data-limited industrial environments
  publication-title: Comput. Ind.
– year: 2021
  ident: bib0081
  article-title: Microcrack defect quantification using a focusing high-order sh guided wave emat: the physics-informed deep neural network guwnet
  publication-title: IEEE Trans. Ind. Inf.
– year: 2021
  ident: bib0210
  article-title: A data-driven approach to full-field damage and failure pattern prediction in microstructure-dependent composites using deep learning
  publication-title: arXiv preprint arXiv:2104.04485
– volume: 8
  start-page: 1
  year: 2017
  end-page: 31
  ident: bib0031
  article-title: Prognostics and health management for maintenance practitioners-review, implementation and tools evaluation
  publication-title: Int. J. Prognost. Health Manag.
– start-page: 558
  year: 2019
  end-page: 566
  ident: bib0083
  article-title: Physics guided rnns for modeling dynamical systems: A case study in simulating lake temperature profiles
  publication-title: Proceedings of the 2019 SIAM International Conference on Data Mining
– volume: 142
  year: 2020
  ident: bib0175
  article-title: Damage localization in pressure vessel by guided waves based on convolution neural network approach
  publication-title: J. Press. Vessel Technol.
– volume: 151
  start-page: 107106
  year: 2020
  ident: bib0183
  article-title: A novel scalable method for machine degradation assessment using deep convolutional neural network
  publication-title: Measurement
– volume: 20
  start-page: 1494
  year: 2021
  end-page: 1517
  ident: bib0215
  article-title: Attribute-based structural damage identification by few-shot meta learning with inter-class knowledge transfer
  publication-title: Struct. Health Monitor.
– volume: 57
  start-page: 298
  year: 2020
  end-page: 310
  ident: bib0078
  article-title: Physics guided neural network for machining tool wear prediction
  publication-title: J. Manuf. Syst.
– volume: 9
  start-page: 3473
  year: 2019
  ident: bib0045
  article-title: Information fusion for multi-source material data: progress and challenges
  publication-title: Appl. Sci.
– start-page: 1
  year: 2021
  end-page: 6
  ident: bib0140
  article-title: Physics-informed neural networks for non-linear system identification for power system dynamics
  publication-title: 2021 IEEE Madrid PowerTech
– volume: 54
  start-page: 62
  year: 2020
  end-page: 73
  ident: bib0057
  article-title: A nmf-based extraction of physically meaningful components from sensory data of metal casting processes
  publication-title: J. Manuf. Syst.
– year: 2021
  ident: bib0133
  article-title: Parameter identification for a damage model using a physics informed neural network
  publication-title: arXiv preprint arXiv:2107.08781
– year: 2020
  ident: bib0079
  article-title: Cyber-attack detection for electric vehicles using physics-guided machine learning
  publication-title: IEEE Trans. Transp. Electrif.
– volume: 10
  year: 2019
  ident: bib0182
  article-title: A new hybrid prognostic methodology
  publication-title: Int. J. Prognost. Health Manag.
– volume: 62
  start-page: 17
  year: 2022
  end-page: 27
  ident: bib0034
  article-title: Physics-informed meta learning for machining tool wear prediction
  publication-title: J. Manuf. Syst.
– year: 2020
  ident: bib0128
  article-title: Physics-informed machine learning for sensor fault detection with flight test data
  publication-title: arXiv preprint arXiv:2006.13380
– volume: 96
  start-page: 103996
  year: 2020
  ident: bib0120
  article-title: A tutorial on solving ordinary differential equations using python and hybrid physics-informed neural network
  publication-title: Eng. Appl. Artif. Intell.
– reference: R. Giorgiani do Nascimento, Hybrid physics-informed neural networks for dynamical systems (2020).
– volume: 167
  start-page: 108575
  year: 2022
  ident: bib0167
  article-title: A health-adaptive time-scale representation (htsr) embedded convolutional neural network for gearbox fault diagnostics
  publication-title: Mech. Syst. Signal. Process.
– year: 2019
  ident: bib0011
  article-title: Digital twin: values, challenges and enablers
  publication-title: arXiv preprint arXiv:1910.01719
– reference: A.I. Ozdagli, X. Koutsoukos, Model-based damage detection through physics-guided learning for dynamic systems.
– volume: 101
  start-page: 1
  year: 2021
  end-page: 21
  ident: bib0102
  article-title: Controlling draft interactions between quadcopter unmanned aerial vehicles with physics-aware modeling
  publication-title: J. Intell. Robot. Syst.
– year: 2020
  ident: bib0217
  article-title: Universal battery performance and degradation model for electric aircraft
  publication-title: arXiv preprint arXiv:2008.01527
– year: 2020
  ident: bib0071
  article-title: The application of data-driven methods and physics-based learning for improving battery safety
  publication-title: Joule
– volume: 112
  start-page: 108705
  year: 2020
  ident: bib0105
  article-title: Physics informed topology learning in networks of linear dynamical systems
  publication-title: Automatica
– reference: P. P.Bonissone, Prognostics & health management at ge, (
– volume: 59
  start-page: 522
  year: 2021
  end-page: 534
  ident: bib0076
  article-title: Physics-guided logistic classification for tool life modeling and process parameter optimization in machining
  publication-title: J. Manuf. Syst.
– volume: 445
  start-page: 110624
  year: 2021
  ident: bib0090
  article-title: Theory-guided hard constraint projection (hcp): aknowledge-based data-driven scientific machine learning method
  publication-title: J. Comput. Phys.
– volume: 166
  start-page: A3189
  year: 2019
  ident: bib0017
  article-title: Review and performance comparison of mechanical-chemical degradation models for lithium-ion batteries
  publication-title: J. Electrochem. Soc.
– year: 2020
  ident: bib0069
  article-title: Learning mesh-based simulation with graph networks
  publication-title: arXiv preprint arXiv:2010.03409
– volume: 404
  start-page: 109136
  year: 2020
  ident: bib0108
  article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
  publication-title: J. Comput. Phys.
– year: 2021
  ident: bib0082
  article-title: Physics-guided deep learning for dynamical systems: asurvey
  publication-title: arXiv preprint arXiv:2107.01272
– volume: 185
  start-page: 109772
  year: 2023
  ident: bib0171
  article-title: Deep convolutional generative adversarial network with semi-supervised learning enabled physics elucidation for extended gear fault diagnosis under data limitations
  publication-title: Mech. Syst. Signal. Process.
– volume: 217
  start-page: 108114
  year: 2022
  ident: bib0062
  article-title: Knowledge-based data augmentation of small samples for oil condition prediction
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 229
  start-page: 108898
  year: 2023
  ident: bib0188
  article-title: Physics-informed machine learning for degradation modeling of an electro-hydrostatic actuator system
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 137
  start-page: 104568
  year: 2021
  ident: bib0142
  article-title: Visualization of hydraulic fracture using physics-informed clustering to process ultrasonic shear waves
  publication-title: Int. J. Rock Mech. Min. Sci.
– year: 2019
  ident: bib0152
  article-title: Physics-informed machine learning method for forecasting and uncertainty quantification of partially observed and unobserved states in power grids
  publication-title: Proceedings of the 52nd Hawaii International Conference on System Sciences
– volume: 232
  start-page: 111882
  year: 2021
  ident: bib0005
  article-title: An improved time-varying empirical mode decomposition for structural condition assessment using limited sensors
  publication-title: Eng. Struct.
– year: 2018
  ident: bib0111
  article-title: Physics-informed kriging: a physics-informed gaussian process regression method for data-model convergence
  publication-title: arXiv preprint arXiv:1809.03461
– year: 2017
  ident: bib0094
  article-title: Physics-guided neural networks (pgnn): an application in lake temperature modeling
  publication-title: arXiv preprint arXiv:1710.11431
– start-page: arXiv
  year: 2020
  end-page: 2004
  ident: bib0103
  article-title: On the convergence and generalization of physics informed neural networks
  publication-title: arXiv e-prints
– volume: 34
  start-page: 1
  year: 2021
  end-page: 21
  ident: bib0191
  article-title: Deep learning-driven data curation and model interpretation for smart manufacturing
  publication-title: Chinese J. Mech. Eng.
– volume: 65
  start-page: 354
  year: 2022
  ident: bib0192
  article-title: A comprehensive review of digital twin–part 1: modeling and twinning enabling technologies
  publication-title: Struct. Multidiscip. Optim.
– volume: 204
  start-page: 107194
  year: 2020
  ident: bib0205
  article-title: Modernizing risk assessment: a systematic integration of pra and phm techniques
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 258
  start-page: 106678
  year: 2022
  ident: bib0109
  article-title: Recurrent neural network-based multiaxial plasticity model with regularization for physics-informed constraints
  publication-title: Comput. Struct.
– volume: 253
  start-page: 113525
  year: 2019
  ident: bib0012
  article-title: Modeling the performance of a sorption thermal energy storage reactor using artificial neural networks
  publication-title: Appl. Energy
– start-page: 34
  year: 2019
  end-page: 41
  ident: bib0038
  article-title: Pi-lstm: Physics-infused long short-term memory network
  publication-title: 2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA)
– volume: 6
  start-page: 04020013
  year: 2020
  ident: bib0118
  article-title: A data-driven physics-informed method for prognosis of infrastructure systems: theory and application to crack prediction
  publication-title: ASCE-ASME J. Risk Uncertain. Eng. Syst., Part A: Civil Eng.
– volume: 254
  start-page: 111299
  year: 2022
  ident: bib0146
  article-title: Physics-informed turbulence intensity infusion: a new hybrid approach for marine current turbine rotor blade fault detection
  publication-title: Ocean Eng.
– volume: 18
  start-page: 1629
  year: 2021
  end-page: 1640
  ident: bib0130
  article-title: Development of a physics-informed doubly fed cross-residual deep neural network for high-precision magnetic flux leakage defect size estimation
  publication-title: IEEE Trans. Ind. Inf.
– volume: 428
  start-page: 116
  year: 2021
  end-page: 129
  ident: bib0047
  article-title: Midphynet: memorized infusion of decomposed physics in neural networks to model dynamic systems
  publication-title: Neurocomputing
– volume: 12
  year: 2021
  ident: bib0178
  article-title: Remaining useful life estimation using neural ordinary differential equations
  publication-title: Int. J. Prognost. Health Manag.
– start-page: 1444
  year: 2019
  end-page: 1449
  ident: bib0194
  article-title: Data preparation and preprocessing for broadcast systems monitoring in phm framework
  publication-title: 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT)
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: bib0021
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 52
  start-page: 2302
  year: 2021
  end-page: 2312
  ident: bib0172
  article-title: Waveletkernelnet: an interpretable deep neural network for industrial intelligent diagnosis
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
– volume: 169
  start-page: 108779
  year: 2022
  ident: bib0168
  article-title: Interpretable online updated weights: optimized square envelope spectrum for machine condition monitoring and fault diagnosis
  publication-title: Mech. Syst. Signal Process.
– volume: 28
  start-page: 3801
  year: 2021
  end-page: 3830
  ident: bib0125
  article-title: A survey of bayesian calibration and physics-informed neural networks in scientific modeling
  publication-title: Arch. Comput. Methods Eng.
– volume: 508
  start-page: 116196
  year: 2021
  ident: bib0156
  article-title: Structural identification with physics-informed neural ordinary differential equations
  publication-title: J. Sound Vib.
– volume: 57
  start-page: 395
  year: 2015
  end-page: 400
  ident: bib0198
  article-title: Synthetic data generation in hybrid modelling of rolling element bearings
  publication-title: Insight-Non-Destruct. Test. Condit. Monitor.
– start-page: 1
  year: 2021
  end-page: 16
  ident: bib0049
  article-title: Prognostics-based adaptive control strategy for lifetime control of wind turbines
  publication-title: Wind Energy Sci. Discuss.
– volume: 8
  year: 2016
  ident: bib0056
  article-title: A review of physics-based models in prognostics: application to gears and bearings of rotating machinery
  publication-title: Adv. Mech. Eng.
– year: 2018
  ident: bib0068
  article-title: Physics-based learning for aircraft dynamics simulation
  publication-title: 10th Annual Conference of the Prognostics and Health Management Society, PHM 2018
– volume: 65
  start-page: 4290
  year: 2017
  end-page: 4300
  ident: bib0213
  article-title: Deep residual networks with dynamically weighted wavelet coefficients for fault diagnosis of planetary gearboxes
  publication-title: IEEE Trans. Ind. Electron.
– volume: 31
  start-page: 275
  year: 2020
  end-page: 298
  ident: bib0202
  article-title: Managing computational complexity using surrogate models: a critical review
  publication-title: Res. Eng. Des.
– start-page: 1
  year: 2021
  end-page: 12
  ident: bib0189
  article-title: Knowledge integration into deep learning in dynamical systems: an overview and taxonomy
  publication-title: J. Mech. Sci. Technol.
– year: 2021
  ident: bib0039
  article-title: Multi-fidelity information fusion with concatenated neural networks
  publication-title: arXiv preprint arXiv:2110.04170
– year: 2020
  ident: bib0058
  article-title: Increasing facility uptime using machine learning and physics-based hybrid analytics in a dynamic digital twin
  publication-title: Offshore Technology Conference
– volume: 513
  start-page: 230526
  year: 2021
  ident: bib0113
  article-title: Hybrid physics-informed neural networks for lithium-ion battery modeling and prognosis
  publication-title: J. Power Sources
– volume: 26
  start-page: e2358
  year: 2019
  ident: bib0088
  article-title: Estimation of full-field, full-order experimental modal model of cable vibration from digital video measurements with physics-guided unsupervised machine learning and computer vision
  publication-title: Struct. Control Health Monitor.
– start-page: 1149
  year: 2020
  ident: bib0117
  article-title: Physics-informed neural networks for bias compensation in corrosion-fatigue
  publication-title: AIAA Scitech 2020 Forum
– volume: 185
  start-page: 109760
  year: 2023
  ident: bib0200
  article-title: Fleet-based early fault detection of wind turbine gearboxes using physics-informed deep learning based on cyclic spectral coherence
  publication-title: Mech. Syst. Signal Process.
– volume: 107
  start-page: 241
  year: 2018
  end-page: 265
  ident: bib0007
  article-title: A review on the application of deep learning in system health management
  publication-title: Mech. Syst. Signal Process.
– volume: 168
  start-page: 114316
  year: 2021
  ident: bib0092
  article-title: Probabilistic physics-guided machine learning for fatigue data analysis
  publication-title: Expert Syst. Appl.
– volume: volume 11
  year: 2019
  ident: bib0121
  article-title: Physics-informed neural networks for corrosion-fatigue prognosis
  publication-title: Proceedings of the Annual Conference of the PHM Society
– start-page: 0418
  year: 2020
  ident: bib0195
  article-title: Toward predictive digital twins via component-based reduced-order models and interpretable machine learning
  publication-title: AIAA Scitech 2020 Forum
– volume: 215
  start-page: 107938
  year: 2021
  ident: bib0170
  article-title: Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 146
  start-page: 268
  year: 2019
  end-page: 278
  ident: bib0208
  article-title: A deep convolutional neural network based fusion method of two-direction vibration signal data for health state identification of planetary gearboxes
  publication-title: Measurement
– volume: 383
  start-page: 113885
  year: 2021
  ident: bib0070
  article-title: A phase field and deep-learning based approach for accurate prediction of structural residual useful life
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 181
  start-page: 109631
  year: 2021
  ident: bib0173
  article-title: Gas path fault diagnosis for gas turbine group based on deep transfer learning
  publication-title: Measurement
– year: 2019
  ident: bib0013
  article-title: Hybrid deep fault detection and isolation: combining deep neural networks and system performance models
  publication-title: arXiv preprint arXiv:1908.01529
– volume: 44
  start-page: 191
  year: 2016
  end-page: 199
  ident: bib0051
  article-title: A hybrid framework combining data-driven and model-based methods for system remaining useful life prediction
  publication-title: Appl. Soft. Comput.
– volume: volume 11423
  start-page: 114230K
  year: 2020
  ident: bib0101
  article-title: Data fusion methods for materials awareness
  publication-title: Signal Processing, Sensor/Information Fusion, and Target Recognition XXIX
– volume: 1338
  start-page: 28
  year: 2021
  ident: bib0144
  article-title: Quantifying uncertainty in physics-informed variational autoencoders for anomaly detection
  publication-title: Impact and Opportunities of Artificial Intelligence Techniques in the Steel Industry: Ongoing Applications, Perspectives and Future Trends
– volume: 11
  year: 2020
  ident: bib0116
  article-title: A physics-informed neural network for wind turbine main bearing fatigue
  publication-title: Int. J. Prognostic. Health Manag.
– reference: With physics-informed ai, machine operators can trust and verify, (
– start-page: 3046
  year: 2021
  ident: bib0179
  article-title: Usage-based lifing of lithium-ion battery with hybrid physics-informed neural networks
  publication-title: AIAA AVIATION 2021 FORUM
– volume: 112
  start-page: 102872
  year: 2021
  ident: bib0077
  article-title: A physics-guided machine learning model for two-dimensional structures based on ordinary state-based peridynamics
  publication-title: Theor. Appl. Fract. Mech.
– year: 2020
  ident: bib0209
  article-title: A physics model embedded hybrid deep neural network for drillstring washout detection
  publication-title: IADC/SPE International Drilling Conference and Exhibition
– volume: 66
  start-page: 1
  year: 2023
  ident: bib0193
  article-title: A comprehensive review of digital twin–part 2: roles of uncertainty quantification and optimization, a battery digital twin, and perspectives
  publication-title: Struct. Multidiscip. Optim.
– year: 2021
  ident: bib0157
  article-title: Characterizing possible failure modes in physics-informed neural networks
  publication-title: arXiv preprint arXiv:2109.01050
– volume: 363
  start-page: 112892
  year: 2020
  ident: bib0091
  article-title: Fea-net: a physics-guided data-driven model for efficient mechanical response prediction
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 2019
  ident: bib0099
  article-title: Physics-aware difference graph networks for sparsely-observed dynamics
  publication-title: International Conference on Learning Representations
– reference: W.Z. Levente Klein, Peeking into ai’s ‘black box’ brain – with physics, (
– start-page: 28
  year: 2020
  end-page: 38
  ident: bib0145
  article-title: Quantifying uncertainty in physics-informed variational autoencoders for anomaly detection
  publication-title: Cybersecurity workshop by European Steel Technology Platform
– year: 2021
  ident: bib0075
  article-title: A physics-guided deep learning predictive model for robust production forecasting and diagnostics in unconventional wells
  publication-title: SPE/AAPG/SEG Unconventional Resources Technology Conference
– year: 2023
  ident: bib0197
  article-title: Machine fault classification using hamiltonian neural networks
  publication-title: arXiv preprint arXiv:2301.02243
– volume: 24
  start-page: 100797
  year: 2020
  ident: bib0046
  article-title: Coupling in situ experiments and modeling–opportunities for data fusion, machine learning, and discovery of emergent behavior
  publication-title: Curr. Opin. Solid State Mater. Sci.
– volume: 229
  start-page: 111582
  year: 2021
  ident: bib0050
  article-title: Dynnet: physics-based neural architecture design for nonlinear structural response modeling and prediction
  publication-title: Eng. Struct.
– volume: 151
  start-page: 107374
  year: 2021
  ident: bib0112
  article-title: Phymdan: physics-informed knowledge transfer between buildings for seismic damage diagnosis through adversarial learning
  publication-title: Mech. Syst. Signal Process.
– start-page: 1
  year: 2021
  end-page: 5
  ident: bib0033
  article-title: A physics-informed transfer learning approach for anomaly detection of aerospace cmg with limited telemetry data
  publication-title: 2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing)
– reference: H.E. Sánchez Sardi, Prognostics and health aware model predictive control of wind turbines (2017).
– volume: 8
  year: 2017
  ident: bib0052
  article-title: Multi-physics based simulations of an oleo-pneumatic shock absorber system for phm
  publication-title: Int. J. Prognost. Health Manag.
– volume: 70
  start-page: 1
  year: 2021
  end-page: 28
  ident: bib0030
  article-title: Applications of unsupervised deep transfer learning to intelligent fault diagnosis: a survey and comparative study
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 417
  start-page: 36
  year: 2020
  end-page: 63
  ident: bib0207
  article-title: A comprehensive review on convolutional neural network in machine fault diagnosis
  publication-title: Neurocomputing
– volume: 38
  start-page: 119
  year: 2019
  end-page: 131
  ident: bib0211
  article-title: Fault location in power distribution systems via deep graph convolutional networks
  publication-title: IEEE J. Sel. Areas Commun.
– year: 2022
  ident: bib0123
  article-title: Knowledge informed machine learning using a weibull-based loss function
  publication-title: arXiv preprint arXiv:2201.01769
– volume: 1
  start-page: 1
  year: 2020
  end-page: 34
  ident: bib0032
  article-title: Integrating physics-based modeling with machine learning: a survey
  publication-title: arXiv preprint arXiv:2003.04919
– year: 2022
  ident: bib0176
  article-title: Physics informed neural network for dynamic stress prediction
  publication-title: arXiv preprint arXiv:2211.16190
– volume: 139
  year: 2017
  ident: bib0206
  article-title: Orthogonal analysis of multisensor data fusion for improved quality control
  publication-title: J. Manuf. Sci. Eng.
– year: 2021
  ident: bib0009
  article-title: Explainable ai (xai) for phm of industrial asset: astate-of-the-art, prisma-compliant systematic review
  publication-title: arXiv preprint arXiv:2107.03869
– year: 2019
  ident: bib0104
  article-title: Variational physics-informed neural networks for solving partial differential equations
  publication-title: arXiv preprint arXiv:1912.00873
– volume: 8
  start-page: 431
  year: 2020
  end-page: 449
  ident: bib0073
  article-title: Physics-guided deep learning for drag force prediction in dense fluid-particulate systems
  publication-title: Big Data
– start-page: 108900
  year: 2022
  ident: bib0029
  article-title: Physics-informed machine learning for reliability and systems safety applications: state of the art and challenges
  publication-title: Reliab. Eng. Syst. Saf.
– start-page: 1860
  year: 2020
  ident: bib0053
  article-title: Physics-based deep learning for probabilistic fracture analysis of composite materials
  publication-title: AIAA Scitech 2020 Forum
– year: 2020
  ident: bib0199
  article-title: Knowledge transfer between buildings for seismic damage diagnosis through adversarial learning
  publication-title: arXiv preprint arXiv:2002.09513
– volume: 58
  start-page: 5459
  year: 2020
  end-page: 5471
  ident: bib0186
  article-title: Cumulative damage modeling with recurrent neural networks
  publication-title: AIAA J.
– year: 2021
  ident: bib0020
  article-title: Physics-informed graphical neural network for parameter & state estimations in power systems
  publication-title: arXiv preprint arXiv:2102.06349
– year: 2021
  ident: bib0114
  article-title: A physics-informed variational deeponet for predicting the crack path in brittle materials
  publication-title: arXiv preprint arXiv:2108.06905
– start-page: 1
  year: 2019
  end-page: 6
  ident: bib0150
  article-title: Wave physics informed dictionary learning in one dimension
  publication-title: 2019 IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP)
– reference: A.D.P. Dourado, F. Viana, Ensemble of hybrid neural networks to compensate for epistemic uncertainties: A case study in system prognosis (2021).
– volume: 15
  start-page: 1
  year: 2022
  end-page: 16
  ident: bib0060
  article-title: Shrinkage porosity prediction empowered by physics-based and data-driven hybrid models
  publication-title: Int. J. Mater. Form.
– volume: 440
  start-page: 110414
  year: 2021
  ident: bib0098
  article-title: Solving inverse-pde problems with physics-aware neural networks
  publication-title: J. Comput. Phys.
– volume: 167
  start-page: 108575
  year: 2022
  ident: 10.1016/j.apm.2023.07.011_bib0167
  article-title: A health-adaptive time-scale representation (htsr) embedded convolutional neural network for gearbox fault diagnostics
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2021.108575
– volume: 168
  start-page: 114316
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0092
  article-title: Probabilistic physics-guided machine learning for fatigue data analysis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114316
– volume: 108
  start-page: 33
  year: 2018
  ident: 10.1016/j.apm.2023.07.011_bib0204
  article-title: Artificial intelligence for fault diagnosis of rotating machinery: a review
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.02.016
– volume: 215
  start-page: 107938
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0170
  article-title: Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.107938
– start-page: 5919
  year: 2018
  ident: 10.1016/j.apm.2023.07.011_bib0064
  article-title: A physics-based deep learning approach for fault diagnosis of rotating machinery
– start-page: arXiv
  year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0158
  article-title: Fleet prognosis with physics-informed recurrent neural networks
  publication-title: arXiv e-prints
– year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0079
  article-title: Cyber-attack detection for electric vehicles using physics-guided machine learning
  publication-title: IEEE Trans. Transp. Electrif.
– volume: 101
  start-page: 2861
  issue: 9
  year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0043
  article-title: Hybrid data-driven physics-based model fusion framework for tool wear prediction
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-018-3157-5
– volume: 31
  start-page: 275
  issue: 3
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0202
  article-title: Managing computational complexity using surrogate models: a critical review
  publication-title: Res. Eng. Des.
  doi: 10.1007/s00163-020-00336-7
– volume: 38
  start-page: 119
  issue: 1
  year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0211
  article-title: Fault location in power distribution systems via deep graph convolutional networks
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2019.2951964
– volume: 72
  start-page: 624
  year: 2018
  ident: 10.1016/j.apm.2023.07.011_bib0065
  article-title: Physics of failure-based reliability prediction of turbine blades using multi-source information fusion
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2018.05.015
– year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0067
  article-title: Cylindrical battery fault detection under extreme fast charging: a physics-based learning approach
  publication-title: arXiv preprint arXiv:2105.02169
– year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0151
  article-title: Subsurface monitoring via physics-informed deep neural network analysis of das
– volume: 513
  start-page: 230526
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0113
  article-title: Hybrid physics-informed neural networks for lithium-ion battery modeling and prognosis
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.230526
– volume: 11
  issue: 1
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0116
  article-title: A physics-informed neural network for wind turbine main bearing fatigue
  publication-title: Int. J. Prognostic. Health Manag.
  doi: 10.36001/ijphm.2020.v11i1.2594
– volume: 57
  start-page: 115
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0042
  article-title: A survey on machine learning for data fusion
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.12.001
– ident: 10.1016/j.apm.2023.07.011_bib0024
– year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0218
  article-title: Dynet: dynamic convolution for accelerating convolutional neural networks
  publication-title: arXiv preprint arXiv:2004.10694
– volume: 132
  start-page: 103523
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0016
  article-title: Computational framework for real-time diagnostics and prognostics of aircraft actuation systems
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2021.103523
– volume: 65
  start-page: 4290
  issue: 5
  year: 2017
  ident: 10.1016/j.apm.2023.07.011_bib0213
  article-title: Deep residual networks with dynamically weighted wavelet coefficients for fault diagnosis of planetary gearboxes
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2762639
– volume: 302
  start-page: 117472
  year: 2022
  ident: 10.1016/j.apm.2023.07.011_bib0059
  article-title: Towards a generic physics-based machine learning model for geometry invariant thermal history prediction in additive manufacturing
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2021.117472
– start-page: 3046
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0179
  article-title: Usage-based lifing of lithium-ion battery with hybrid physics-informed neural networks
– volume: 254
  start-page: 111299
  year: 2022
  ident: 10.1016/j.apm.2023.07.011_bib0146
  article-title: Physics-informed turbulence intensity infusion: a new hybrid approach for marine current turbine rotor blade fault detection
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.111299
– volume: 18
  start-page: 1629
  issue: 3
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0130
  article-title: Development of a physics-informed doubly fed cross-residual deep neural network for high-precision magnetic flux leakage defect size estimation
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2021.3089333
– volume: 145
  start-page: 642
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0036
  article-title: An integrated fault diagnosis and prognosis approach for predictive maintenance of wind turbine bearing with limited samples
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.06.103
– year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0104
  article-title: Variational physics-informed neural networks for solving partial differential equations
  publication-title: arXiv preprint arXiv:1912.00873
– volume: 426
  start-page: 109942
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0159
  article-title: Transfer learning based multi-fidelity physics informed deep neural network
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109942
– year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0011
  article-title: Digital twin: values, challenges and enablers
  publication-title: arXiv preprint arXiv:1910.01719
– volume: 59
  start-page: 522
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0076
  article-title: Physics-guided logistic classification for tool life modeling and process parameter optimization in machining
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2021.03.025
– year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0013
  article-title: Hybrid deep fault detection and isolation: combining deep neural networks and system performance models
  publication-title: arXiv preprint arXiv:1908.01529
– volume: 96
  start-page: 103996
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0120
  article-title: A tutorial on solving ordinary differential equations using python and hybrid physics-informed neural network
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103996
– volume: 204
  start-page: 107194
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0205
  article-title: Modernizing risk assessment: a systematic integration of pra and phm techniques
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2020.107194
– volume: 185
  start-page: 109760
  year: 2023
  ident: 10.1016/j.apm.2023.07.011_bib0200
  article-title: Fleet-based early fault detection of wind turbine gearboxes using physics-informed deep learning based on cyclic spectral coherence
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109760
– volume: volume 1949
  start-page: 020023
  year: 2018
  ident: 10.1016/j.apm.2023.07.011_bib0048
  article-title: The role of data fusion in predictive maintenance using digital twin
  doi: 10.1063/1.5031520
– year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0163
  article-title: Physics-guided machine learning approach to characterizing small-scale fractures in geothermal fields
– volume: 508
  start-page: 116196
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0156
  article-title: Structural identification with physics-informed neural ordinary differential equations
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2021.116196
– year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0128
  article-title: Physics-informed machine learning for sensor fault detection with flight test data
  publication-title: arXiv preprint arXiv:2006.13380
– ident: 10.1016/j.apm.2023.07.011_bib0023
– volume: 106
  start-page: 102447
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0147
  article-title: Transfer learning enhanced physics informed neural network for phase-field modeling of fracture
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2019.102447
– volume: 232
  start-page: 111882
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0005
  article-title: An improved time-varying empirical mode decomposition for structural condition assessment using limited sensors
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2021.111882
– start-page: 347
  year: 2022
  ident: 10.1016/j.apm.2023.07.011_bib0135
  article-title: Physics-informed Machine Learning for Structural Health Monitoring
– volume: 112
  start-page: 102872
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0077
  article-title: A physics-guided machine learning model for two-dimensional structures based on ordinary state-based peridynamics
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2020.102872
– volume: volume 11
  year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0148
  article-title: Wind turbine main bearing fatigue life estimation with physicsinformed neural networks
– volume: 52
  start-page: 2302
  issue: 4
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0172
  article-title: Waveletkernelnet: an interpretable deep neural network for industrial intelligent diagnosis
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
  doi: 10.1109/TSMC.2020.3048950
– volume: 16
  start-page: 065003
  issue: 6
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0137
  article-title: Physics-informed generative neural network: an application to troposphere temperature prediction
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/abfde9
– volume: 185
  start-page: 109772
  year: 2023
  ident: 10.1016/j.apm.2023.07.011_bib0171
  article-title: Deep convolutional generative adversarial network with semi-supervised learning enabled physics elucidation for extended gear fault diagnosis under data limitations
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2022.109772
– year: 2017
  ident: 10.1016/j.apm.2023.07.011_bib0001
– volume: 15
  start-page: 1
  issue: 3
  year: 2022
  ident: 10.1016/j.apm.2023.07.011_bib0060
  article-title: Shrinkage porosity prediction empowered by physics-based and data-driven hybrid models
  publication-title: Int. J. Mater. Form.
  doi: 10.1007/s12289-022-01677-5
– start-page: 106352
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0055
  article-title: A probabilistic fatigue life prediction for adhesively bonded joints via anns-based hybrid model
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2021.106352
– year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0114
  article-title: A physics-informed variational deeponet for predicting the crack path in brittle materials
  publication-title: arXiv preprint arXiv:2108.06905
– year: 2023
  ident: 10.1016/j.apm.2023.07.011_bib0197
  article-title: Machine fault classification using hamiltonian neural networks
  publication-title: arXiv preprint arXiv:2301.02243
– year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0010
– volume: 166
  start-page: A3189
  issue: 14
  year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0017
  article-title: Review and performance comparison of mechanical-chemical degradation models for lithium-ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0281914jes
– volume: 112
  start-page: 103114
  year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0014
  article-title: Dynamic condition monitoring method based on dimensionality reduction techniques for data-limited industrial environments
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.07.004
– volume: 57
  start-page: 298
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0078
  article-title: Physics guided neural network for machining tool wear prediction
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2020.09.005
– volume: 39
  start-page: 1
  issue: 3
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0037
  article-title: Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks
  publication-title: J. Nondestr. Eval.
  doi: 10.1007/s10921-020-00705-1
– year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0075
  article-title: A physics-guided deep learning predictive model for robust production forecasting and diagnostics in unconventional wells
– volume: 253
  start-page: 113525
  year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0012
  article-title: Modeling the performance of a sorption thermal energy storage reactor using artificial neural networks
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113525
– start-page: 1
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0049
  article-title: Prognostics-based adaptive control strategy for lifetime control of wind turbines
  publication-title: Wind Energy Sci. Discuss.
– year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0096
  article-title: Deepphysics: a physics aware deep learning framework for real-time simulation
  publication-title: arXiv preprint arXiv:2109.09491
– start-page: 8157
  year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0212
  article-title: A recurrent graph neural network for multi-relational data
– year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0071
  article-title: The application of data-driven methods and physics-based learning for improving battery safety
  publication-title: Joule
– ident: 10.1016/j.apm.2023.07.011_bib0155
  doi: 10.33737/jgpps/134845
– volume: 101
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0102
  article-title: Controlling draft interactions between quadcopter unmanned aerial vehicles with physics-aware modeling
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-020-01295-w
– year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0082
  article-title: Physics-guided deep learning for dynamical systems: asurvey
  publication-title: arXiv preprint arXiv:2107.01272
– ident: 10.1016/j.apm.2023.07.011_bib0097
  doi: 10.1002/acs.2784
– volume: 179
  start-page: 704
  year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0066
  article-title: Projection-based model reduction: formulations for physics-based machine learning
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2018.07.021
– volume: 50
  start-page: 101404
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0018
  article-title: A survey of modeling for prognosis and health management of industrial equipment
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2021.101404
– volume: 8
  start-page: 29857
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0004
  article-title: Deep learning algorithms for bearing fault diagnostics–a comprehensive review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2972859
– ident: 10.1016/j.apm.2023.07.011_bib0028
– start-page: 109067
  year: 2023
  ident: 10.1016/j.apm.2023.07.011_bib0214
  article-title: Sensor fault detection of vehicle suspension systems based on transmissibility operators and neyman–pearson test
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2022.109067
– start-page: arXiv
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0103
  article-title: On the convergence and generalization of physics informed neural networks
  publication-title: arXiv e-prints
– volume: 168
  start-page: 108709
  year: 2022
  ident: 10.1016/j.apm.2023.07.011_bib0131
  article-title: Physics-informed deep learning for signal compression and reconstruction of big data in industrial condition monitoring
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108709
– volume: 142
  issue: 6
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0175
  article-title: Damage localization in pressure vessel by guided waves based on convolution neural network approach
  publication-title: J. Press. Vessel Technol.
  doi: 10.1115/1.4047213
– start-page: 1
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0033
  article-title: A physics-informed transfer learning approach for anomaly detection of aerospace cmg with limited telemetry data
– volume: 20
  start-page: 1494
  issue: 4
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0215
  article-title: Attribute-based structural damage identification by few-shot meta learning with inter-class knowledge transfer
  publication-title: Struct. Health Monitor.
  doi: 10.1177/1475921720921135
– year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0133
  article-title: Parameter identification for a damage model using a physics informed neural network
  publication-title: arXiv preprint arXiv:2107.08781
– year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0141
  article-title: Informed machine learning–a taxonomy and survey of integrating knowledge into learning systems
  publication-title: arXiv preprint arXiv:1903.12394
– volume: 112
  start-page: 108705
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0105
  article-title: Physics informed topology learning in networks of linear dynamical systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2019.108705
– ident: 10.1016/j.apm.2023.07.011_bib0122
  doi: 10.1016/j.apmt.2020.100898
– year: 2012
  ident: 10.1016/j.apm.2023.07.011_bib0061
  article-title: A knowledge-based reasoning model using causal table for identifying corrosion failure mechanisms in refining and petrochemical plants
  publication-title: Eng. Fail Anal.
– start-page: 1
  year: 2022
  ident: 10.1016/j.apm.2023.07.011_bib0187
  article-title: Inspection and maintenance planning for offshore wind structural components: integrating fatigue failure criteria with bayesian networks and markov decision processes
  publication-title: Struct. Infrastruct. Eng.
– start-page: 108900
  year: 2022
  ident: 10.1016/j.apm.2023.07.011_bib0029
  article-title: Physics-informed machine learning for reliability and systems safety applications: state of the art and challenges
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0030
  article-title: Applications of unsupervised deep transfer learning to intelligent fault diagnosis: a survey and comparative study
  publication-title: IEEE Trans. Instrum. Meas.
– year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0138
  article-title: Physics-augmented learning: a new paradigm beyond physics-informed learning
  publication-title: arXiv preprint arXiv:2109.13901
– volume: 417
  start-page: 36
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0207
  article-title: A comprehensive review on convolutional neural network in machine fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.088
– volume: 1
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0032
  article-title: Integrating physics-based modeling with machine learning: a survey
  publication-title: arXiv preprint arXiv:2003.04919
– start-page: 34
  year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0038
  article-title: Pi-lstm: Physics-infused long short-term memory network
– ident: 10.1016/j.apm.2023.07.011_bib0089
– year: 2022
  ident: 10.1016/j.apm.2023.07.011_bib0201
  article-title: Physics-informed feature space evaluation for diagnostic power monitoring
  publication-title: IEEE Trans. Ind. Inf.
– volume: 19
  start-page: 4181
  issue: 11
  year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0063
  article-title: Physics-based convolutional neural network for fault diagnosis of rolling element bearings
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2898634
– volume: 7
  start-page: 241
  issue: 2
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0166
  article-title: Fault diagnosis of power transformers using graph convolutional network
  publication-title: CSEE J. Power Energy Syst.
– year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0209
  article-title: A physics model embedded hybrid deep neural network for drillstring washout detection
– volume: 151
  start-page: 107106
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0183
  article-title: A novel scalable method for machine degradation assessment using deep convolutional neural network
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107106
– year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0009
  article-title: Explainable ai (xai) for phm of industrial asset: astate-of-the-art, prisma-compliant systematic review
  publication-title: arXiv preprint arXiv:2107.03869
– year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0199
  article-title: Knowledge transfer between buildings for seismic damage diagnosis through adversarial learning
  publication-title: arXiv preprint arXiv:2002.09513
– volume: 229
  start-page: 108898
  year: 2023
  ident: 10.1016/j.apm.2023.07.011_bib0188
  article-title: Physics-informed machine learning for degradation modeling of an electro-hydrostatic actuator system
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2022.108898
– year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0134
  article-title: Unsupervised and Physics-Informed Machine Learning of Big and Noisy Data
– volume: 8
  issue: 8
  year: 2016
  ident: 10.1016/j.apm.2023.07.011_bib0056
  article-title: A review of physics-based models in prognostics: application to gears and bearings of rotating machinery
  publication-title: Adv. Mech. Eng.
  doi: 10.1177/1687814016664660
– volume: 50
  start-page: 92
  year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0040
  article-title: Data fusion and machine learning for industrial prognosis: trends and perspectives towards industry 4.0
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.10.005
– volume: 1338
  start-page: 28
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0144
  article-title: Quantifying uncertainty in physics-informed variational autoencoders for anomaly detection
  publication-title: Impact and Opportunities of Artificial Intelligence Techniques in the Steel Industry: Ongoing Applications, Perspectives and Future Trends
– year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0127
  article-title: Efficient training of physics-informed neural networks via importance sampling
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12685
– start-page: 1
  year: 2018
  ident: 10.1016/j.apm.2023.07.011_bib0154
  article-title: Physics-informed machine learning for dram error modeling
– volume: volume 11
  year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0121
  article-title: Physics-informed neural networks for corrosion-fatigue prognosis
– year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0217
  article-title: Universal battery performance and degradation model for electric aircraft
  publication-title: arXiv preprint arXiv:2008.01527
– volume: 165
  start-page: 108153
  year: 2022
  ident: 10.1016/j.apm.2023.07.011_bib0174
  article-title: Perception modelling by invariant representation of deep learning for automated structural diagnostic in aircraft maintenance: astudy case using deepshm
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108153
– year: 2018
  ident: 10.1016/j.apm.2023.07.011_bib0068
  article-title: Physics-based learning for aircraft dynamics simulation
– volume: 454
  start-page: 324
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0160
  article-title: Implicit supervision for fault detection and segmentation of emerging fault types with deep variational autoencoders
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.04.122
– volume: 92
  start-page: 103678
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0003
  article-title: Potential, challenges and future directions for deep learning in prognostics and health management applications
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103678
– year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0177
  article-title: Uncovering the underlying physics of degrading system behavior through a deep neural network framework: the case of remaining useful life prognosis
  publication-title: arXiv preprint arXiv:2006.09288
– start-page: 1444
  year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0194
  article-title: Data preparation and preprocessing for broadcast systems monitoring in phm framework
– ident: 10.1016/j.apm.2023.07.011_bib0022
– year: 2022
  ident: 10.1016/j.apm.2023.07.011_bib0176
  article-title: Physics informed neural network for dynamic stress prediction
  publication-title: arXiv preprint arXiv:2211.16190
– volume: 8
  start-page: 1
  issue: 060
  year: 2017
  ident: 10.1016/j.apm.2023.07.011_bib0031
  article-title: Prognostics and health management for maintenance practitioners-review, implementation and tools evaluation
  publication-title: Int. J. Prognost. Health Manag.
– volume: 8
  start-page: 431
  issue: 5
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0073
  article-title: Physics-guided deep learning for drag force prediction in dense fluid-particulate systems
  publication-title: Big Data
  doi: 10.1089/big.2020.0071
– volume: 217
  start-page: 107961
  year: 2022
  ident: 10.1016/j.apm.2023.07.011_bib0054
  article-title: Fusing physics-based and deep learning models for prognostics
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.107961
– year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0039
  article-title: Multi-fidelity information fusion with concatenated neural networks
  publication-title: arXiv preprint arXiv:2110.04170
– ident: 10.1016/j.apm.2023.07.011_bib0180
  doi: 10.26434/chemrxiv.14661180.v1
– volume: 169
  start-page: 108779
  year: 2022
  ident: 10.1016/j.apm.2023.07.011_bib0168
  article-title: Interpretable online updated weights: optimized square envelope spectrum for machine condition monitoring and fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108779
– year: 2017
  ident: 10.1016/j.apm.2023.07.011_bib0139
  article-title: Physics informed deep learning (part i): data-driven solutions of nonlinear partial differential equations
  publication-title: arXiv preprint arXiv:1711.10561
– year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0027
  article-title: Physics-Infused AI/ML Based Digital-Twin Framework for Flow-Induced-Vibration Damage Prediction in a Nuclear Reactor Heat Exchanger
– year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0081
  article-title: Microcrack defect quantification using a focusing high-order sh guided wave emat: the physics-informed deep neural network guwnet
  publication-title: IEEE Trans. Ind. Inf.
– volume: 20
  start-page: 1675
  issue: 4
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0084
  article-title: Structural damage identification via physics-guided machine learning: a methodology integrating pattern recognition with finite element model updating
  publication-title: Struct. Health Monitor.
  doi: 10.1177/1475921720927488
– volume: 245
  start-page: 106458
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0115
  article-title: Estimating model inadequacy in ordinary differential equations with physics-informed neural networks
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2020.106458
– start-page: 0418
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0195
  article-title: Toward predictive digital twins via component-based reduced-order models and interpretable machine learning
– volume: 215
  start-page: 110704
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0085
  article-title: Physics-guided convolutional neural network (phycnn) for data-driven seismic response modeling
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.110704
– volume: 34
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0191
  article-title: Deep learning-driven data curation and model interpretation for smart manufacturing
  publication-title: Chinese J. Mech. Eng.
  doi: 10.1186/s10033-021-00587-y
– volume: 24
  start-page: 100797
  issue: 1
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0046
  article-title: Coupling in situ experiments and modeling–opportunities for data fusion, machine learning, and discovery of emergent behavior
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/j.cossms.2019.100797
– volume: 104
  start-page: 799
  year: 2018
  ident: 10.1016/j.apm.2023.07.011_bib0019
  article-title: Machinery health prognostics: a systematic review from data acquisition to rul prediction
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.11.016
– volume: 12
  issue: 2
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0178
  article-title: Remaining useful life estimation using neural ordinary differential equations
  publication-title: Int. J. Prognost. Health Manag.
  doi: 10.36001/ijphm.2021.v12i2.2938
– volume: 103
  start-page: 104295
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0143
  article-title: A physics-informed deep learning approach for bearing fault detection
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104295
– volume: 383
  start-page: 113885
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0070
  article-title: A phase field and deep-learning based approach for accurate prediction of structural residual useful life
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.113885
– volume: 10
  issue: 2
  year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0182
  article-title: A new hybrid prognostic methodology
  publication-title: Int. J. Prognost. Health Manag.
  doi: 10.36001/ijphm.2019.v10i2.2727
– year: 2022
  ident: 10.1016/j.apm.2023.07.011_bib0219
  article-title: A framework for generating large data sets for fatigue damage prognostic problems
  publication-title: Proc. of 2022 IEEE International Conference on Prognostics and Health Management (ICPHM)
  doi: 10.1109/ICPHM53196.2022.9815692
– start-page: 1
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0140
  article-title: Physics-informed neural networks for non-linear system identification for power system dynamics
– year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0020
  article-title: Physics-informed graphical neural network for parameter & state estimations in power systems
  publication-title: arXiv preprint arXiv:2102.06349
– volume: 229
  start-page: 111582
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0050
  article-title: Dynnet: physics-based neural architecture design for nonlinear structural response modeling and prediction
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.111582
– volume: 139
  issue: 10
  year: 2017
  ident: 10.1016/j.apm.2023.07.011_bib0206
  article-title: Orthogonal analysis of multisensor data fusion for improved quality control
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4036907
– volume: 62
  start-page: 17
  year: 2022
  ident: 10.1016/j.apm.2023.07.011_bib0034
  article-title: Physics-informed meta learning for machining tool wear prediction
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2021.10.013
– volume: 440
  start-page: 110414
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0098
  article-title: Solving inverse-pde problems with physics-aware neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110414
– volume: 166
  start-page: 108426
  year: 2022
  ident: 10.1016/j.apm.2023.07.011_bib0080
  article-title: Transfer-learning guided bayesian model updating for damage identification considering modeling uncertainty
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108426
– volume: 9
  start-page: 3473
  issue: 17
  year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0045
  article-title: Information fusion for multi-source material data: progress and challenges
  publication-title: Appl. Sci.
  doi: 10.3390/app9173473
– volume: 391
  start-page: 114587
  year: 2022
  ident: 10.1016/j.apm.2023.07.011_bib0129
  article-title: A physics-informed variational deeponet for predicting crack path in quasi-brittle materials
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2022.114587
– volume: 62
  start-page: 145
  year: 2022
  ident: 10.1016/j.apm.2023.07.011_bib0106
  article-title: Machine learning for metal additive manufacturing: towards a physics-informed data-driven paradigm
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2021.11.003
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0021
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– start-page: 532
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0086
  article-title: Physics-guided architecture (pga) of neural networks for quantifying uncertainty in lake temperature modeling
– volume: 166
  start-page: 108453
  year: 2022
  ident: 10.1016/j.apm.2023.07.011_bib0161
  article-title: Prediction of follower jumps in cam-follower mechanisms: the benefit of using physics-inspired features in recurrent neural networks
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108453
– volume: 5
  start-page: 167
  issue: 2
  year: 2018
  ident: 10.1016/j.apm.2023.07.011_bib0015
  article-title: Similarity criteria and coal-like material in coal and gas outburst physical simulation
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-018-0203-8
– volume: 54
  start-page: 53
  issue: 20
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0169
  article-title: Fault cause assignment with physics informed transfer learning
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2021.11.152
– start-page: 230
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0190
  article-title: Knowledge incorporation for machine learning in condition monitoring: A survey
– year: 2017
  ident: 10.1016/j.apm.2023.07.011_bib0094
  article-title: Physics-guided neural networks (pgnn): an application in lake temperature modeling
  publication-title: arXiv preprint arXiv:1710.11431
– ident: 10.1016/j.apm.2023.07.011_bib0026
– volume: 171
  start-page: 108907
  year: 2022
  ident: 10.1016/j.apm.2023.07.011_bib0124
  article-title: Physics-informed lstm hyperparameters selection for gearbox fault detection
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.108907
– volume: 96
  start-page: 106665
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0100
  article-title: A physics-aware learning architecture with input transfer networks for predictive modeling
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2020.106665
– volume: 54
  start-page: 62
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0057
  article-title: A nmf-based extraction of physically meaningful components from sensory data of metal casting processes
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2019.09.013
– volume: 363
  start-page: 112892
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0091
  article-title: Fea-net: a physics-guided data-driven model for efficient mechanical response prediction
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.112892
– volume: 57
  start-page: 395
  issue: 7
  year: 2015
  ident: 10.1016/j.apm.2023.07.011_bib0198
  article-title: Synthetic data generation in hybrid modelling of rolling element bearings
  publication-title: Insight-Non-Destruct. Test. Condit. Monitor.
  doi: 10.1784/insi.2015.57.7.395
– volume: 217
  start-page: 108114
  year: 2022
  ident: 10.1016/j.apm.2023.07.011_bib0062
  article-title: Knowledge-based data augmentation of small samples for oil condition prediction
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.108114
– start-page: 1
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0189
  article-title: Knowledge integration into deep learning in dynamical systems: an overview and taxonomy
  publication-title: J. Mech. Sci. Technol.
– start-page: 1
  year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0150
  article-title: Wave physics informed dictionary learning in one dimension
– volume: 66
  start-page: 1
  issue: 1
  year: 2023
  ident: 10.1016/j.apm.2023.07.011_bib0193
  article-title: A comprehensive review of digital twin–part 2: roles of uncertainty quantification and optimization, a battery digital twin, and perspectives
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-022-03410-x
– volume: 445
  start-page: 110624
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0090
  article-title: Theory-guided hard constraint projection (hcp): aknowledge-based data-driven scientific machine learning method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110624
– ident: 10.1016/j.apm.2023.07.011_bib0025
– year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0152
  article-title: Physics-informed machine learning method for forecasting and uncertainty quantification of partially observed and unobserved states in power grids
  doi: 10.24251/HICSS.2019.416
– start-page: 28
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0145
  article-title: Quantifying uncertainty in physics-informed variational autoencoders for anomaly detection
– start-page: 1860
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0053
  article-title: Physics-based deep learning for probabilistic fracture analysis of composite materials
– volume: 28
  start-page: 3801
  issue: 5
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0125
  article-title: A survey of bayesian calibration and physics-informed neural networks in scientific modeling
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-021-09539-0
– volume: volume 7
  start-page: 118
  year: 2022
  ident: 10.1016/j.apm.2023.07.011_bib0181
  article-title: Physics-informed lightweight temporal convolution networks for fault prognostics associated to bearing stiffness degradation
– volume: 155
  start-page: 107614
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0196
  article-title: Digital twin, physics-based model, and machine learning applied to damage detection in structures
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.107614
– year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0058
  article-title: Increasing facility uptime using machine learning and physics-based hybrid analytics in a dynamic digital twin
– volume: 33
  start-page: 011701
  issue: 1
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0087
  article-title: Physics guided machine learning using simplified theories
  publication-title: Phys. Fluids
  doi: 10.1063/5.0038929
– volume: 154
  start-page: 107552
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0107
  article-title: Adjusting a torsional vibration damper model with physics-informed neural networks
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.107552
– start-page: 1
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0110
  article-title: Certification approach for physics informed machine learning and its application in landing gear life assessment
– ident: 10.1016/j.apm.2023.07.011_bib0119
– volume: 22
  start-page: 9494
  issue: 23
  year: 2022
  ident: 10.1016/j.apm.2023.07.011_bib0165
  article-title: Comparative study between physics-informed cnn and pca in induction motor broken bars mcsa detection
  publication-title: Sensors
  doi: 10.3390/s22239494
– volume: 8
  issue: 2
  year: 2017
  ident: 10.1016/j.apm.2023.07.011_bib0052
  article-title: Multi-physics based simulations of an oleo-pneumatic shock absorber system for phm
  publication-title: Int. J. Prognost. Health Manag.
– start-page: 558
  year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0083
  article-title: Physics guided rnns for modeling dynamical systems: A case study in simulating lake temperature profiles
– volume: 28
  start-page: 1017
  issue: 3
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0203
  article-title: Multiscale modeling meets machine learning: what can we learn?
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-020-09405-5
– volume: 42
  start-page: 63
  year: 2016
  ident: 10.1016/j.apm.2023.07.011_bib0216
  article-title: Bridging data-driven and model-based approaches for process fault diagnosis and health monitoring: a review of researches and future challenges
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2016.09.008
– volume: 218
  start-page: 108119
  year: 2022
  ident: 10.1016/j.apm.2023.07.011_bib0008
  article-title: Prognostics and health management (phm): where are we and where do we (need to) go in theory and practice
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.108119
– volume: 146
  start-page: 268
  year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0208
  article-title: A deep convolutional neural network based fusion method of two-direction vibration signal data for health state identification of planetary gearboxes
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.04.093
– start-page: arXiv
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0132
  article-title: Physics-informed graph learning for robust fault location in distribution systems
  publication-title: arXiv e-prints
– volume: 35
  start-page: 4347
  issue: 6
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0095
  article-title: Physics-aware neural networks for distribution system state estimation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2020.2988352
– volume: 4
  start-page: 230
  issue: 3
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0162
  article-title: Development and synchronisation of a physics-based model for heating, ventilation and air conditioning system integrated into a hybrid model
  publication-title: Int. J. Hydromechatron.
  doi: 10.1504/IJHM.2021.118005
– volume: 15
  start-page: 558
  issue: 2
  year: 2022
  ident: 10.1016/j.apm.2023.07.011_bib0126
  article-title: Using transfer learning to build physics-informed machine learning models for improved wind farm monitoring
  publication-title: Energies
  doi: 10.3390/en15020558
– volume: 404
  start-page: 109136
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0108
  article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.109136
– start-page: 1149
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0117
  article-title: Physics-informed neural networks for bias compensation in corrosion-fatigue
– volume: 279
  start-page: 105857
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0074
  article-title: Physics-guided deep learning for predicting geological drilling risk of wellbore instability using seismic attributes data
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2020.105857
– volume: 137
  start-page: 104568
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0142
  article-title: Visualization of hydraulic fracture using physics-informed clustering to process ultrasonic shear waves
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2020.104568
– ident: 10.1016/j.apm.2023.07.011_bib0184
  doi: 10.21203/rs.3.rs-863306/v1
– volume: 151
  start-page: 107374
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0112
  article-title: Phymdan: physics-informed knowledge transfer between buildings for seismic damage diagnosis through adversarial learning
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.107374
– volume: 58
  start-page: 5459
  issue: 12
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0186
  article-title: Cumulative damage modeling with recurrent neural networks
  publication-title: AIAA J.
  doi: 10.2514/1.J059250
– volume: 8
  start-page: 71050
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0072
  article-title: Driven by data or derived through physics? a review of hybrid physics guided machine learning techniques with cyber-physical system (cps) focus
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2987324
– volume: 107
  start-page: 241
  year: 2018
  ident: 10.1016/j.apm.2023.07.011_bib0007
  article-title: A review on the application of deep learning in system health management
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.11.024
– start-page: 1
  year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0041
  article-title: A permutation entropy-based importance measure for condition monitoring data fusion in fault diagnosis
– volume: 258
  start-page: 106678
  year: 2022
  ident: 10.1016/j.apm.2023.07.011_bib0109
  article-title: Recurrent neural network-based multiaxial plasticity model with regularization for physics-informed constraints
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2021.106678
– volume: volume 11423
  start-page: 114230K
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0101
  article-title: Data fusion methods for materials awareness
– year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0210
  article-title: A data-driven approach to full-field damage and failure pattern prediction in microstructure-dependent composites using deep learning
  publication-title: arXiv preprint arXiv:2104.04485
– volume: 39
  start-page: 101876
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0093
  article-title: Fatigue property prediction of additively manufactured ti-6al-4v using probabilistic physics-guided learning
  publication-title: Addit. Manuf.
– volume: 171
  start-page: 108917
  year: 2022
  ident: 10.1016/j.apm.2023.07.011_bib0185
  article-title: On integrating prior knowledge into gaussian processes for prognostic health monitoring
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.108917
– volume: 44
  start-page: 191
  year: 2016
  ident: 10.1016/j.apm.2023.07.011_bib0051
  article-title: A hybrid framework combining data-driven and model-based methods for system remaining useful life prediction
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2016.03.013
– year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0153
  article-title: Acoustic emission analysis of fracture initiation and propagation using physics-informed machine learning methods
– year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0069
  article-title: Learning mesh-based simulation with graph networks
  publication-title: arXiv preprint arXiv:2010.03409
– year: 2022
  ident: 10.1016/j.apm.2023.07.011_bib0123
  article-title: Knowledge informed machine learning using a weibull-based loss function
  publication-title: arXiv preprint arXiv:2201.01769
– year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0136
  article-title: Simulation free reliability analysis: aphysics-informed deep learning based approach
  publication-title: arXiv preprint arXiv:2005.01302
– volume: 1
  start-page: 16
  issue: 1
  year: 2015
  ident: 10.1016/j.apm.2023.07.011_bib0044
  article-title: Methodologies for cross-domain data fusion: an overview
  publication-title: IEEE Trans. Big Data
  doi: 10.1109/TBDATA.2015.2465959
– volume: 428
  start-page: 116
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0047
  article-title: Midphynet: memorized infusion of decomposed physics in neural networks to model dynamic systems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.11.042
– volume: 26
  start-page: e2358
  issue: 6
  year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0088
  article-title: Estimation of full-field, full-order experimental modal model of cable vibration from digital video measurements with physics-guided unsupervised machine learning and computer vision
  publication-title: Struct. Control Health Monitor.
  doi: 10.1002/stc.2358
– volume: 65
  start-page: 354
  issue: 12
  year: 2022
  ident: 10.1016/j.apm.2023.07.011_bib0192
  article-title: A comprehensive review of digital twin–part 1: modeling and twinning enabling technologies
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-022-03425-4
– volume: 9
  start-page: 2336
  issue: 18
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0006
  article-title: Synthetic data augmentation and deep learning for the fault diagnosis of rotating machines
  publication-title: Mathematics
  doi: 10.3390/math9182336
– volume: 3
  start-page: 422
  issue: 6
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0164
  article-title: Physics-informed machine learning
  publication-title: Nature Rev. Phys.
  doi: 10.1038/s42254-021-00314-5
– year: 2018
  ident: 10.1016/j.apm.2023.07.011_bib0111
  article-title: Physics-informed kriging: a physics-informed gaussian process regression method for data-model convergence
  publication-title: arXiv preprint arXiv:1809.03461
– volume: 6
  start-page: 04020013
  issue: 2
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0118
  article-title: A data-driven physics-informed method for prognosis of infrastructure systems: theory and application to crack prediction
  publication-title: ASCE-ASME J. Risk Uncertain. Eng. Syst., Part A: Civil Eng.
  doi: 10.1061/AJRUA6.0001053
– volume: 181
  start-page: 109631
  year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0173
  article-title: Gas path fault diagnosis for gas turbine group based on deep transfer learning
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109631
– volume: 163
  start-page: 107929
  year: 2020
  ident: 10.1016/j.apm.2023.07.011_bib0002
  article-title: Deep learning for prognostics and health management: state of the art, challenges, and opportunities
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107929
– year: 2018
  ident: 10.1016/j.apm.2023.07.011_bib0149
  article-title: Physics-informed machine learning method for forecasting and uncertainty quantification of partially observed and unobserved states in power grids
  publication-title: arXiv preprint arXiv:1806.10990
– year: 2021
  ident: 10.1016/j.apm.2023.07.011_bib0157
  article-title: Characterizing possible failure modes in physics-informed neural networks
  publication-title: arXiv preprint arXiv:2109.01050
– year: 2016
  ident: 10.1016/j.apm.2023.07.011_bib0035
– year: 2019
  ident: 10.1016/j.apm.2023.07.011_bib0099
  article-title: Physics-aware difference graph networks for sparsely-observed dynamics
SSID ssj0005904
ssib019627096
Score 2.6176386
Snippet •Systematic bibliometric analysis of PIML in PHM.•Novel perspectives for PIML from the “Informed knowledge forms” and “Informed methods”.•Taxonomy of PIML...
Prognostics and health management (PHM) plays a constructive role in the equipment’s entire life health service. It has long benefited from intensive research...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 325
SubjectTerms Engineering Sciences
Knowledge
Materials
Physics-constraint learning
Physics-embedded algorithm structure
Physics-informed input space
Physics-informed machine learning
Prognostics and health management
Title Physics-informed machine learning in prognostics and health management: State of the art and challenges
URI https://dx.doi.org/10.1016/j.apm.2023.07.011
https://hal.science/hal-04290849
Volume 124
WOSCitedRecordID wos001061367700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005904
  issn: 0307-904X
  databaseCode: AIEXJ
  dateStart: 20211207
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgc4IJ5ieclCnECpUjuOHW4V7NJll6oSRfRmOYnTB21abR9afiL_inEcJ9kiVsuBi1W5TtJ6vo7H7jffIPSGZYwoQX0v6MDeJGAi9uKYUi8UsNgSFWqdpEWxCd7vi9EoGrRav1wuzG7O81xcXkar_2pq6ANjm9TZfzB3dVPogNdgdGjB7NDeyPAFpzNZe1YSFeLJRcGX1K5ARJHCYmhZ-bLWaLbpkCWX1R0YFoGoIxHAk2wOnKu-sm7GtS6YXVQqsCYrxVTZmbu10UTL2nqW73r6Y1uhsj_e_rTO72yi8sm7YXvQrnCg05lytdnVQlV8kE_L8bYWR3AYL48vCN2jgri8mobbM7KVkW95m21t3bLg4LcDW_Op8tskaHheavOny0WcWlncP9YHe1Qxa6uVUSEgtBBuLb39FS3uXverHHw8keen_bOr7zYIjL3uObQw7Z5Z1n0RRDvYiB8SziJwsIfd0-PRZ-fcOqbKkW-0DR3_KPIDp9Jpvq77y70gH-59vr8FTbcm7vi_CIeG99G9ch-DuxZ_D1BL5w_R3S-V-deP0HgfibhEInZIxNMcN5CIAV_YIhHXSHyPCxziZYbh5hhwWIyrcfgYfTs5Hn7oeWVdDy-hPNh4CcQHLOUxyRSnGva7NOQp4wp2KjqhhGpT5ExlKVNZoFgcCZEoETKehdDBMkqfoIN8meunCHeUSFUYZyRJVaA7WsXc6CJEIiWCZIweId9NnExK0XtTe2UuHbtxJmGupZlr6XMJc32E3laXrKziy3WDA2cNWYasNhSVgLjrLnsNk1Td3ki8A5ak6auR9Owmg56jO_Wv6gU62Fxs9Ut0O9ltpuuLVyUGfwMhUcD3
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics-informed+machine+learning+in+prognostics+and+health+management%3A+State+of+the+art+and+challenges&rft.jtitle=Applied+mathematical+modelling&rft.au=Deng%2C+Weikun&rft.au=Nguyen%2C+Khanh+T.P.&rft.au=Medjaher%2C+Kamal&rft.au=Gogu%2C+Christian&rft.date=2023-12-01&rft.pub=Elsevier&rft.issn=0307-904X&rft.eissn=1872-8480&rft.volume=124&rft.spage=325&rft.epage=352&rft_id=info:doi/10.1016%2Fj.apm.2023.07.011&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04290849v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon