Sparse FGLM algorithms

Given a zero-dimensional ideal I⊂K[x1,…,xn] of degree D, the transformation of the ordering of its Gröbner basis from DRL to LEX is a key step in polynomial system solving and turns out to be the bottleneck of the whole solving process. Thus it is of crucial importance to design efficient algorithms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of symbolic computation Jg. 80; H. 3; S. 538 - 569
Hauptverfasser: Faugère, Jean-Charles, Mou, Chenqi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.05.2017
Elsevier
Schlagworte:
ISSN:0747-7171, 1095-855X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Given a zero-dimensional ideal I⊂K[x1,…,xn] of degree D, the transformation of the ordering of its Gröbner basis from DRL to LEX is a key step in polynomial system solving and turns out to be the bottleneck of the whole solving process. Thus it is of crucial importance to design efficient algorithms to perform the change of ordering. The main contributions of this paper are several efficient methods for the change of ordering which take advantage of the sparsity of multiplication matrices in the classical FGLM algorithm. Combining all these methods, we propose a deterministic top-level algorithm that automatically detects which method to use depending on the input. As a by-product, we have a fast implementation that is able to handle ideals of degree over 60000. Such an implementation outperforms the Magma and Singular ones, as shown by our experiments. First for the shape position case, two methods are designed based on the Wiedemann algorithm: the first is probabilistic and its complexity to complete the change of ordering is O(D(N1+nlog⁡(D)2)), where N1 is the number of nonzero entries of a multiplication matrix; the other is deterministic and computes the LEX Gröbner basis of I via Chinese Remainder Theorem. Then for the general case, the designed method is characterized by the Berlekamp–Massey–Sakata algorithm from Coding Theory to handle the multi-dimensional linearly recurring relations. Complexity analyses of all proposed methods are also provided. Furthermore, for generic polynomial systems, we present an explicit formula for the estimation of the sparsity of one main multiplication matrix, and prove that its construction is free. With the asymptotic analysis of such sparsity, we are able to show that for generic systems the complexity above becomes O(6/nπD2+n−1n).
AbstractList Given a zero-dimensional ideal $I \subset \kx$ of degree $D$, the transformation of the ordering of its \grobner basis from DRL to LEX is a key step in polynomial system solving and turns out to be the bottleneck of the whole solving process. Thus it is of crucial importance to design efficient algorithms to perform the change of ordering. The main contributions of this paper are several efficient methods for the change of ordering which take advantage of the sparsity of multiplication matrices in the classical {\sf FGLM} algorithm. Combing all these methods, we propose a deterministic top-level algorithm that automatically detects which method to use depending on the input. As a by-product, we have a fast implementation that is able to handle ideals of degree over $40000$. Such an implementation outperforms the {\sf Magma} and {\sf Singular} ones, as shown by our experiments. First for the shape position case, two methods are designed based on the Wiedemann algorithm: the first is probabilistic and its complexity to complete the change of ordering is $O(D(N_1+n\log (D)))$, where $N_1$ is the number of nonzero entries of a multiplication matrix; the other is deterministic and computes the LEX \grobner basis of $\sqrt{I}$ via Chinese Remainder Theorem. Then for the general case, the designed method is characterized by the Berlekamp--Massey--Sakata algorithm from Coding Theory to handle the multi-dimensional linearly recurring relations. Complexity analyses of all proposed methods are also provided. Furthermore, for generic polynomial systems, we present an explicit formula for the estimation of the sparsity of one main multiplication matrix, and prove its construction is free. With the asymptotic analysis of such sparsity, we are able to show for generic systems the complexity above becomes $O(\sqrt{6/n \pi} D^{2+\frac{n-1}{n}})$.
Given a zero-dimensional ideal I⊂K[x1,…,xn] of degree D, the transformation of the ordering of its Gröbner basis from DRL to LEX is a key step in polynomial system solving and turns out to be the bottleneck of the whole solving process. Thus it is of crucial importance to design efficient algorithms to perform the change of ordering. The main contributions of this paper are several efficient methods for the change of ordering which take advantage of the sparsity of multiplication matrices in the classical FGLM algorithm. Combining all these methods, we propose a deterministic top-level algorithm that automatically detects which method to use depending on the input. As a by-product, we have a fast implementation that is able to handle ideals of degree over 60000. Such an implementation outperforms the Magma and Singular ones, as shown by our experiments. First for the shape position case, two methods are designed based on the Wiedemann algorithm: the first is probabilistic and its complexity to complete the change of ordering is O(D(N1+nlog⁡(D)2)), where N1 is the number of nonzero entries of a multiplication matrix; the other is deterministic and computes the LEX Gröbner basis of I via Chinese Remainder Theorem. Then for the general case, the designed method is characterized by the Berlekamp–Massey–Sakata algorithm from Coding Theory to handle the multi-dimensional linearly recurring relations. Complexity analyses of all proposed methods are also provided. Furthermore, for generic polynomial systems, we present an explicit formula for the estimation of the sparsity of one main multiplication matrix, and prove that its construction is free. With the asymptotic analysis of such sparsity, we are able to show that for generic systems the complexity above becomes O(6/nπD2+n−1n).
Author Mou, Chenqi
Faugère, Jean-Charles
Author_xml – sequence: 1
  givenname: Jean-Charles
  surname: Faugère
  fullname: Faugère, Jean-Charles
  email: Jean-Charles.Faugere@inria.fr
  organization: Sorbonne Universités, UPMC Univ Paris 06, CNRS, INRIA, Laboratoire d'Informatique de Paris 6 (LIP6), Équipe PolSys, 4 place Jussieu, 75005 Paris, France
– sequence: 2
  givenname: Chenqi
  surname: Mou
  fullname: Mou, Chenqi
  email: Chenqi.Mou@buaa.edu.cn
  organization: Sorbonne Universités, UPMC Univ Paris 06, CNRS, INRIA, Laboratoire d'Informatique de Paris 6 (LIP6), Équipe PolSys, 4 place Jussieu, 75005 Paris, France
BackLink https://inria.hal.science/hal-00807540$$DView record in HAL
BookMark eNp9kE1Lw0AQQBepYFu9Ct569ZA4k-xmEzyVYlsh4kEFb8t2srEb0qTshoL_3i3Vi4eeZhjmzcebsFHXd4axO4QYAbOHJm48xUlIY5AxJOKCjREKEeVCfI7YGCSXkUSJV2zifQMABU_FmN2-7bXzZrZclS8z3X71zg7bnb9ml7Vuvbn5jVP2sXx6X6yj8nX1vJiXEaWSDxEVVBiATG4yjqgJsqxKCi2kTNIUwzUmzYkQsdpkdU2S8kJCLiAjnqAhnk7Z_WnuVrdq7-xOu2_Va6vW81IdawA5SMHhgKFXnnrJ9d47Uyuygx5s3w1O21YhqKMK1aigQh1VKJAqqAgk_iP_Vp1jHk-MCe8frHHKkzUdmco6Q4OqenuG_gG6E3U_
CitedBy_id crossref_primary_10_1016_j_jco_2020_101502
crossref_primary_10_1016_j_jco_2020_101499
crossref_primary_10_1016_j_jsc_2016_12_006
crossref_primary_10_1016_j_jsc_2024_102367
crossref_primary_10_1145_3338637_3338641
crossref_primary_10_1016_j_jalgebra_2022_03_002
crossref_primary_10_1016_j_jsc_2022_08_014
crossref_primary_10_1016_j_jsc_2019_10_011
crossref_primary_10_1016_j_jsc_2021_11_001
crossref_primary_10_1016_j_jsc_2019_09_001
crossref_primary_10_1016_j_jsc_2021_07_002
crossref_primary_10_1109_TIT_2020_3027751
crossref_primary_10_1007_s10473_022_0617_7
crossref_primary_10_1016_j_jsc_2019_07_010
crossref_primary_10_1145_3614408_3614411
Cites_doi 10.1007/s002000050114
10.1016/S0022-4049(99)00005-5
10.1215/S0012-7094-87-05517-7
10.1109/18.476246
10.1006/jsco.1996.0145
10.1006/jsco.1993.1051
10.1016/S0747-7171(08)80086-7
10.1016/S0747-7171(88)80033-6
10.1016/0890-5401(90)90039-K
10.1016/j.tcs.2007.10.003
10.1007/s00200-006-0015-8
10.1007/s00145-013-9158-5
10.1016/j.jsc.2012.03.007
10.1109/TIT.1986.1057137
10.1007/s002000050084
10.1109/18.179340
10.1016/j.jsc.2014.09.025
10.1016/0196-6774(80)90013-9
10.1016/0024-3795(89)90032-3
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.jsc.2016.07.025
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1095-855X
EndPage 569
ExternalDocumentID oai:HAL:hal-00807540v1
10_1016_j_jsc_2016_07_025
S0747717116300700
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6OB
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M25
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSW
SSZ
T5K
TN5
UPT
WUQ
XPP
YQT
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
1XC
VOOES
ID FETCH-LOGICAL-c374t-c9c9e0067b6411ac066d29a5772331201e38cc111db6ffc7c89708506c421ec43
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000390832000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0747-7171
IngestDate Tue Oct 14 20:43:36 EDT 2025
Sat Nov 29 07:14:27 EST 2025
Tue Nov 18 22:22:40 EST 2025
Fri Feb 23 02:31:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Gröbner bases
Sparse matrix
Change of ordering
Zero-dimensional ideal
BMS algorithm
Wiedemann algorithm
Zero-dimensional ideals
Grobner bases
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c374t-c9c9e0067b6411ac066d29a5772331201e38cc111db6ffc7c89708506c421ec43
OpenAccessLink https://inria.hal.science/hal-00807540
PageCount 32
ParticipantIDs hal_primary_oai_HAL_hal_00807540v1
crossref_citationtrail_10_1016_j_jsc_2016_07_025
crossref_primary_10_1016_j_jsc_2016_07_025
elsevier_sciencedirect_doi_10_1016_j_jsc_2016_07_025
PublicationCentury 2000
PublicationDate May-June 2017
2017-05-00
2017-05
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: May-June 2017
PublicationDecade 2010
PublicationTitle Journal of symbolic computation
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Feng, Rao (br0240) 1993; 39
Faugère, Gaudry, Huot, Renault (br0180) 2013; 27
Wang (br0430) 2001
Becker, Mora, Marinari, Traverso (br0050) 1994
Cox, Little, O'Shea (br0130) 1998
Von zur Gathen, Gerhard (br0420) 2003
Jonckheere, Ma (br0270) 1989; 125
Lazard (br0300) 1983
Buchmann, Pyshkin, Weinmann (br0110) 2006
Faugère, Safey El Din, Spaenlehauer (br0230) 2012
Basiri, Faugère (br0030) 2003
Faugère, Safey El Din, Spaenlehauer (br0220) 2010
Miller, Sturmfels (br0330) 2005; vol. 227
Berthomieu, Boyer, Faugère (br0070) 2015
Saints, Heegard (br0390) 2002; 41
Pascal, Schost (br0370) 2006
Bayer, Stillman (br0040) 1987; 55
Kaltofen, Pan (br0280) 1991
Buchberger (br0100) 1985
Galligo (br0250) 1974
Bardet (br0010) 2004
Lasserre, Laurent, Mourrain, Rostalski, Trébuchet (br0290) 2013; 51
Pardue (br0360) 1994
Wiedemann (br0440) 1986; 32
Becker, Weispfenning, Kredel (br0060) 1993
Bras-Amorós, O'Sullivan (br0080) 2006; 17
Lazard (br0310) 1992; 13
Faugère (br0170) 2002
Sakata (br0410) 1990; 84
Rouillier (br0380) 1999; 9
Faugère, Mou (br0210) 2011
Mou (br0350) 2012; 32
Morgan (br0340) 1987
Faugère, Gaudry, Huot, Renault (br0190) 2014
Bardet, Faugère, Salvy (br0020) 2015; 70
Høholdt, van Lint, Pellikaan (br0260) 1998
Loustaunau, York (br0320) 1997; 8
Brent, Gustavson, Yun (br0090) 1980; 1
Collart, Kalkbrener, Mall (br0120) 1997; 24
Sakata (br0400) 1988; 5
Eisenbud (br0150) 1995; vol. 150
Faugère (br0160) 1999; 139
Dahan, Jin, Moreno Maza, Schost (br0140) 2008; 392
Faugère, Gianni, Lazard, Mora (br0200) 1993; 16
Jonckheere (10.1016/j.jsc.2016.07.025_br0270) 1989; 125
Pardue (10.1016/j.jsc.2016.07.025_br0360) 1994
Lasserre (10.1016/j.jsc.2016.07.025_br0290) 2013; 51
Becker (10.1016/j.jsc.2016.07.025_br0050) 1994
Bras-Amorós (10.1016/j.jsc.2016.07.025_br0080) 2006; 17
Buchberger (10.1016/j.jsc.2016.07.025_br0100) 1985
Eisenbud (10.1016/j.jsc.2016.07.025_br0150) 1995; vol. 150
Sakata (10.1016/j.jsc.2016.07.025_br0410) 1990; 84
Kaltofen (10.1016/j.jsc.2016.07.025_br0280) 1991
Wiedemann (10.1016/j.jsc.2016.07.025_br0440) 1986; 32
Bardet (10.1016/j.jsc.2016.07.025_br0020) 2015; 70
Høholdt (10.1016/j.jsc.2016.07.025_br0260) 1998
Wang (10.1016/j.jsc.2016.07.025_br0430) 2001
Faugère (10.1016/j.jsc.2016.07.025_br0190) 2014
Pascal (10.1016/j.jsc.2016.07.025_br0370) 2006
Faugère (10.1016/j.jsc.2016.07.025_br0160) 1999; 139
Faugère (10.1016/j.jsc.2016.07.025_br0220) 2010
Faugère (10.1016/j.jsc.2016.07.025_br0230) 2012
Miller (10.1016/j.jsc.2016.07.025_br0330) 2005; vol. 227
Berthomieu (10.1016/j.jsc.2016.07.025_br0070) 2015
Lazard (10.1016/j.jsc.2016.07.025_br0300) 1983
Rouillier (10.1016/j.jsc.2016.07.025_br0380) 1999; 9
Buchmann (10.1016/j.jsc.2016.07.025_br0110) 2006
Bardet (10.1016/j.jsc.2016.07.025_br0010) 2004
Sakata (10.1016/j.jsc.2016.07.025_br0400) 1988; 5
Lazard (10.1016/j.jsc.2016.07.025_br0310) 1992; 13
Von zur Gathen (10.1016/j.jsc.2016.07.025_br0420) 2003
Galligo (10.1016/j.jsc.2016.07.025_br0250) 1974
Collart (10.1016/j.jsc.2016.07.025_br0120) 1997; 24
Faugère (10.1016/j.jsc.2016.07.025_br0180) 2013; 27
Brent (10.1016/j.jsc.2016.07.025_br0090) 1980; 1
Cox (10.1016/j.jsc.2016.07.025_br0130) 1998
Faugère (10.1016/j.jsc.2016.07.025_br0210) 2011
Morgan (10.1016/j.jsc.2016.07.025_br0340) 1987
Dahan (10.1016/j.jsc.2016.07.025_br0140) 2008; 392
Faugère (10.1016/j.jsc.2016.07.025_br0200) 1993; 16
Saints (10.1016/j.jsc.2016.07.025_br0390) 2002; 41
Bayer (10.1016/j.jsc.2016.07.025_br0040) 1987; 55
Mou (10.1016/j.jsc.2016.07.025_br0350) 2012; 32
Feng (10.1016/j.jsc.2016.07.025_br0240) 1993; 39
Faugère (10.1016/j.jsc.2016.07.025_br0170) 2002
Becker (10.1016/j.jsc.2016.07.025_br0060) 1993
Loustaunau (10.1016/j.jsc.2016.07.025_br0320) 1997; 8
Basiri (10.1016/j.jsc.2016.07.025_br0030) 2003
References_xml – volume: 9
  start-page: 433
  year: 1999
  end-page: 461
  ident: br0380
  article-title: Solving zero-dimensional systems through the rational univariate representation
  publication-title: Appl. Algebra Eng. Commun. Comput.
– year: 1994
  ident: br0360
  article-title: Nonstandard Borel-fixed ideals
– start-page: 23
  year: 2003
  end-page: 29
  ident: br0030
  article-title: Changing the ordering of Gröbner bases with LLL: case of two variables
  publication-title: Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation
– volume: 39
  start-page: 37
  year: 1993
  end-page: 45
  ident: br0240
  article-title: Decoding algebraic-geometric codes up to the designed minimum distance
  publication-title: IEEE Trans. Inf. Theory
– year: 1987
  ident: br0340
  article-title: Solving Polynominal Systems Using Continuation for Engineering and Scientific Problems
– volume: 13
  start-page: 117
  year: 1992
  end-page: 131
  ident: br0310
  article-title: Solving zero-dimensional algebraic systems
  publication-title: J. Symb. Comput.
– volume: 84
  start-page: 207
  year: 1990
  end-page: 239
  ident: br0410
  article-title: Extension of the Berlekamp–Massey algorithm to
  publication-title: Inf. Comput.
– volume: 139
  start-page: 61
  year: 1999
  end-page: 88
  ident: br0160
  article-title: A new efficient algorithm for computing Gröbner bases (
  publication-title: J. Pure Appl. Algebra
– year: 1974
  ident: br0250
  article-title: A propos du théoreme de préparation de Weierstrass
– volume: 17
  start-page: 315
  year: 2006
  end-page: 335
  ident: br0080
  article-title: The correction capability of the Berlekamp–Massey–Sakata algorithm with majority voting
  publication-title: Appl. Algebra Eng. Commun. Comput.
– start-page: 162
  year: 2012
  end-page: 169
  ident: br0230
  article-title: Critical points and Gröbner bases: the unmixed case
  publication-title: Proceedings of the 2012 International Symposium on Symbolic and Algebraic Computation
– volume: 70
  start-page: 49
  year: 2015
  end-page: 70
  ident: br0020
  article-title: On the complexity of the F5 Gröbner basis algorithm
  publication-title: J. Symb. Comput.
– volume: 392
  start-page: 37
  year: 2008
  end-page: 65
  ident: br0140
  article-title: Change of order for regular chains in positive dimension
  publication-title: Theor. Comput. Sci.
– volume: 5
  start-page: 321
  year: 1988
  end-page: 337
  ident: br0400
  article-title: Finding a minimal set of linear recurring relations capable of generating a given finite two-dimensional array
  publication-title: J. Symb. Comput.
– volume: 125
  start-page: 65
  year: 1989
  end-page: 76
  ident: br0270
  article-title: A simple Hankel interpretation of the Berlekamp–Massey algorithm
  publication-title: Linear Algebra Appl.
– start-page: 78
  year: 2006
  end-page: 88
  ident: br0110
  article-title: A zero-dimensional Gröbner basis for AES-128
  publication-title: Fast Software Encryption
– volume: 51
  start-page: 63
  year: 2013
  end-page: 85
  ident: br0290
  article-title: Moment matrices, border bases and real radical computation
  publication-title: J. Symb. Comput.
– year: 2001
  ident: br0430
  article-title: Elimination Methods
– volume: 1
  start-page: 259
  year: 1980
  end-page: 295
  ident: br0090
  article-title: Fast solution of Toeplitz systems of equations and computation of Padé approximants
  publication-title: J. Algorithms
– year: 1998
  ident: br0260
  article-title: Algebraic Geometry Codes. Handbook of Coding Theory
– volume: 41
  start-page: 1733
  year: 2002
  end-page: 1751
  ident: br0390
  article-title: Algebraic-geometric codes and multidimensional cyclic codes: a unified theory and algorithms for decoding using Gröbner bases
  publication-title: IEEE Trans. Inf. Theory
– start-page: 184
  year: 1985
  end-page: 232
  ident: br0100
  article-title: Gröbner bases: an algorithmic method in polynomial ideal theory
  publication-title: Multidimensional Systems Theory
– start-page: 61
  year: 2015
  end-page: 68
  ident: br0070
  article-title: Linear algebra for computing Gröbner bases of linear recursive multidimensional sequences
  publication-title: Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation
– start-page: 170
  year: 2014
  end-page: 177
  ident: br0190
  article-title: Sub-cubic change of ordering for Gröbner basis: a probabilistic approach
  publication-title: Proceedings of the 2014 International Symposium on Symbolic and Algebraic Computation
– volume: 24
  start-page: 465
  year: 1997
  end-page: 469
  ident: br0120
  article-title: Converting bases with the Gröbner walk
  publication-title: J. Symb. Comput.
– start-page: 257
  year: 2010
  end-page: 264
  ident: br0220
  article-title: Computing loci of rank defects of linear matrices using Gröbner bases and applications to cryptology
  publication-title: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation
– volume: vol. 150
  year: 1995
  ident: br0150
  article-title: Commutative Algebra: with a View Toward Algebraic Geometry
  publication-title: Graduate Texts in Mathematics
– start-page: 180
  year: 1991
  end-page: 191
  ident: br0280
  article-title: Processor efficient parallel solution of linear systems over an abstract field
  publication-title: Proceedings of the Third Annual ACM Symposium on Parallel Algorithms and Architectures
– year: 2003
  ident: br0420
  article-title: Modern Computer Algebra
– volume: vol. 227
  year: 2005
  ident: br0330
  article-title: Combinatorial Commutative Algebra
  publication-title: Graduate Texts in Mathematics
– volume: 32
  start-page: 2977
  year: 2012
  end-page: 2980
  ident: br0350
  article-title: Design of termination criterion of BMS algorithm for lexicographical ordering
  publication-title: J. Comput. Appl.
– start-page: 129
  year: 1994
  end-page: 133
  ident: br0050
  article-title: The shape of the shape lemma
  publication-title: Proceedings of the 1994 International Symposium on Symbolic and Algebraic Computation
– volume: 16
  start-page: 329
  year: 1993
  end-page: 344
  ident: br0200
  article-title: Efficient computation of zero-dimensional Gröbner bases by change of ordering
  publication-title: J. Symb. Comput.
– volume: 27
  start-page: 595
  year: 2013
  end-page: 635
  ident: br0180
  article-title: Using symmetries in the index calculus for elliptic curves discrete logarithm
  publication-title: J. Cryptol.
– volume: 55
  start-page: 321
  year: 1987
  end-page: 328
  ident: br0040
  article-title: A theorem on refining division orders by the reverse lexicographic order
  publication-title: Duke Math. J.
– year: 1993
  ident: br0060
  article-title: Gröbner Bases: a Computational Approach to Commutative Algebra
  publication-title: Graduate Texts in Mathematics
– start-page: 75
  year: 2002
  end-page: 83
  ident: br0170
  article-title: A new efficient algorithm for computing Gröbner bases without reduction to zero (
  publication-title: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation
– volume: 8
  start-page: 469
  year: 1997
  end-page: 483
  ident: br0320
  article-title: On the decoding of cyclic codes using Gröbner bases
  publication-title: Appl. Algebra Eng. Commun. Comput.
– year: 2004
  ident: br0010
  article-title: Étude des systèmes algébriques surdéterminés. Applications aux codes correcteurs et à la cryptographie
– year: 1998
  ident: br0130
  article-title: Using Algebraic Geometry
– start-page: 146
  year: 1983
  end-page: 156
  ident: br0300
  article-title: Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations
  publication-title: Computer Algebra
– start-page: 277
  year: 2006
  end-page: 284
  ident: br0370
  article-title: Change of order for bivariate triangular sets
  publication-title: Proceedings of the 2006 International Symposium on Symbolic and Algebraic Computation
– start-page: 115
  year: 2011
  end-page: 122
  ident: br0210
  article-title: Fast algorithm for change of ordering of zero-dimensional Gröbner bases with sparse multiplication matrices
  publication-title: Proceedings of the 2011 International Symposium on Symbolic and Algebraic Computation
– volume: 32
  start-page: 54
  year: 1986
  end-page: 62
  ident: br0440
  article-title: Solving sparse linear equations over finite fields
  publication-title: IEEE Trans. Inf. Theory
– start-page: 184
  year: 1985
  ident: 10.1016/j.jsc.2016.07.025_br0100
  article-title: Gröbner bases: an algorithmic method in polynomial ideal theory
– volume: 9
  start-page: 433
  issue: 5
  year: 1999
  ident: 10.1016/j.jsc.2016.07.025_br0380
  article-title: Solving zero-dimensional systems through the rational univariate representation
  publication-title: Appl. Algebra Eng. Commun. Comput.
  doi: 10.1007/s002000050114
– start-page: 61
  year: 2015
  ident: 10.1016/j.jsc.2016.07.025_br0070
  article-title: Linear algebra for computing Gröbner bases of linear recursive multidimensional sequences
– volume: 139
  start-page: 61
  issue: 1–3
  year: 1999
  ident: 10.1016/j.jsc.2016.07.025_br0160
  article-title: A new efficient algorithm for computing Gröbner bases (F4)
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/S0022-4049(99)00005-5
– year: 1998
  ident: 10.1016/j.jsc.2016.07.025_br0260
– year: 1993
  ident: 10.1016/j.jsc.2016.07.025_br0060
  article-title: Gröbner Bases: a Computational Approach to Commutative Algebra
– volume: 55
  start-page: 321
  issue: 2
  year: 1987
  ident: 10.1016/j.jsc.2016.07.025_br0040
  article-title: A theorem on refining division orders by the reverse lexicographic order
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-87-05517-7
– volume: 41
  start-page: 1733
  issue: 6
  year: 2002
  ident: 10.1016/j.jsc.2016.07.025_br0390
  article-title: Algebraic-geometric codes and multidimensional cyclic codes: a unified theory and algorithms for decoding using Gröbner bases
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.476246
– year: 2004
  ident: 10.1016/j.jsc.2016.07.025_br0010
– volume: 24
  start-page: 465
  issue: 3–4
  year: 1997
  ident: 10.1016/j.jsc.2016.07.025_br0120
  article-title: Converting bases with the Gröbner walk
  publication-title: J. Symb. Comput.
  doi: 10.1006/jsco.1996.0145
– start-page: 180
  year: 1991
  ident: 10.1016/j.jsc.2016.07.025_br0280
  article-title: Processor efficient parallel solution of linear systems over an abstract field
– start-page: 75
  year: 2002
  ident: 10.1016/j.jsc.2016.07.025_br0170
  article-title: A new efficient algorithm for computing Gröbner bases without reduction to zero (F5)
– volume: 16
  start-page: 329
  issue: 4
  year: 1993
  ident: 10.1016/j.jsc.2016.07.025_br0200
  article-title: Efficient computation of zero-dimensional Gröbner bases by change of ordering
  publication-title: J. Symb. Comput.
  doi: 10.1006/jsco.1993.1051
– year: 1998
  ident: 10.1016/j.jsc.2016.07.025_br0130
– start-page: 170
  year: 2014
  ident: 10.1016/j.jsc.2016.07.025_br0190
  article-title: Sub-cubic change of ordering for Gröbner basis: a probabilistic approach
– start-page: 78
  year: 2006
  ident: 10.1016/j.jsc.2016.07.025_br0110
  article-title: A zero-dimensional Gröbner basis for AES-128
– volume: 32
  start-page: 2977
  issue: 11
  year: 2012
  ident: 10.1016/j.jsc.2016.07.025_br0350
  article-title: Design of termination criterion of BMS algorithm for lexicographical ordering
  publication-title: J. Comput. Appl.
– volume: 13
  start-page: 117
  issue: 2
  year: 1992
  ident: 10.1016/j.jsc.2016.07.025_br0310
  article-title: Solving zero-dimensional algebraic systems
  publication-title: J. Symb. Comput.
  doi: 10.1016/S0747-7171(08)80086-7
– start-page: 115
  year: 2011
  ident: 10.1016/j.jsc.2016.07.025_br0210
  article-title: Fast algorithm for change of ordering of zero-dimensional Gröbner bases with sparse multiplication matrices
– year: 1974
  ident: 10.1016/j.jsc.2016.07.025_br0250
– year: 1987
  ident: 10.1016/j.jsc.2016.07.025_br0340
– start-page: 257
  year: 2010
  ident: 10.1016/j.jsc.2016.07.025_br0220
  article-title: Computing loci of rank defects of linear matrices using Gröbner bases and applications to cryptology
– volume: 5
  start-page: 321
  issue: 3
  year: 1988
  ident: 10.1016/j.jsc.2016.07.025_br0400
  article-title: Finding a minimal set of linear recurring relations capable of generating a given finite two-dimensional array
  publication-title: J. Symb. Comput.
  doi: 10.1016/S0747-7171(88)80033-6
– volume: 84
  start-page: 207
  issue: 2
  year: 1990
  ident: 10.1016/j.jsc.2016.07.025_br0410
  article-title: Extension of the Berlekamp–Massey algorithm to N dimensions
  publication-title: Inf. Comput.
  doi: 10.1016/0890-5401(90)90039-K
– year: 2001
  ident: 10.1016/j.jsc.2016.07.025_br0430
– volume: 392
  start-page: 37
  year: 2008
  ident: 10.1016/j.jsc.2016.07.025_br0140
  article-title: Change of order for regular chains in positive dimension
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2007.10.003
– year: 1994
  ident: 10.1016/j.jsc.2016.07.025_br0360
– volume: 17
  start-page: 315
  issue: 5
  year: 2006
  ident: 10.1016/j.jsc.2016.07.025_br0080
  article-title: The correction capability of the Berlekamp–Massey–Sakata algorithm with majority voting
  publication-title: Appl. Algebra Eng. Commun. Comput.
  doi: 10.1007/s00200-006-0015-8
– volume: 27
  start-page: 595
  issue: 4
  year: 2013
  ident: 10.1016/j.jsc.2016.07.025_br0180
  article-title: Using symmetries in the index calculus for elliptic curves discrete logarithm
  publication-title: J. Cryptol.
  doi: 10.1007/s00145-013-9158-5
– volume: vol. 150
  year: 1995
  ident: 10.1016/j.jsc.2016.07.025_br0150
  article-title: Commutative Algebra: with a View Toward Algebraic Geometry
– start-page: 23
  year: 2003
  ident: 10.1016/j.jsc.2016.07.025_br0030
  article-title: Changing the ordering of Gröbner bases with LLL: case of two variables
– volume: 51
  start-page: 63
  year: 2013
  ident: 10.1016/j.jsc.2016.07.025_br0290
  article-title: Moment matrices, border bases and real radical computation
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2012.03.007
– year: 2003
  ident: 10.1016/j.jsc.2016.07.025_br0420
– volume: 32
  start-page: 54
  issue: 1
  year: 1986
  ident: 10.1016/j.jsc.2016.07.025_br0440
  article-title: Solving sparse linear equations over finite fields
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1986.1057137
– volume: 8
  start-page: 469
  issue: 6
  year: 1997
  ident: 10.1016/j.jsc.2016.07.025_br0320
  article-title: On the decoding of cyclic codes using Gröbner bases
  publication-title: Appl. Algebra Eng. Commun. Comput.
  doi: 10.1007/s002000050084
– start-page: 146
  year: 1983
  ident: 10.1016/j.jsc.2016.07.025_br0300
  article-title: Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations
– volume: 39
  start-page: 37
  issue: 1
  year: 1993
  ident: 10.1016/j.jsc.2016.07.025_br0240
  article-title: Decoding algebraic-geometric codes up to the designed minimum distance
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.179340
– volume: 70
  start-page: 49
  year: 2015
  ident: 10.1016/j.jsc.2016.07.025_br0020
  article-title: On the complexity of the F5 Gröbner basis algorithm
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2014.09.025
– volume: 1
  start-page: 259
  issue: 3
  year: 1980
  ident: 10.1016/j.jsc.2016.07.025_br0090
  article-title: Fast solution of Toeplitz systems of equations and computation of Padé approximants
  publication-title: J. Algorithms
  doi: 10.1016/0196-6774(80)90013-9
– volume: 125
  start-page: 65
  year: 1989
  ident: 10.1016/j.jsc.2016.07.025_br0270
  article-title: A simple Hankel interpretation of the Berlekamp–Massey algorithm
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(89)90032-3
– start-page: 129
  year: 1994
  ident: 10.1016/j.jsc.2016.07.025_br0050
  article-title: The shape of the shape lemma
– start-page: 277
  year: 2006
  ident: 10.1016/j.jsc.2016.07.025_br0370
  article-title: Change of order for bivariate triangular sets
– volume: vol. 227
  year: 2005
  ident: 10.1016/j.jsc.2016.07.025_br0330
  article-title: Combinatorial Commutative Algebra
– start-page: 162
  year: 2012
  ident: 10.1016/j.jsc.2016.07.025_br0230
  article-title: Critical points and Gröbner bases: the unmixed case
SSID ssj0009435
Score 2.3809428
Snippet Given a zero-dimensional ideal I⊂K[x1,…,xn] of degree D, the transformation of the ordering of its Gröbner basis from DRL to LEX is a key step in polynomial...
Given a zero-dimensional ideal $I \subset \kx$ of degree $D$, the transformation of the ordering of its \grobner basis from DRL to LEX is a key step in...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 538
SubjectTerms BMS algorithm
Change of ordering
Computational Complexity
Computer Science
Data Structures and Algorithms
Gröbner bases
Sparse matrix
Symbolic Computation
Wiedemann algorithm
Zero-dimensional ideal
Title Sparse FGLM algorithms
URI https://dx.doi.org/10.1016/j.jsc.2016.07.025
https://inria.hal.science/hal-00807540
Volume 80
WOSCitedRecordID wos000390832000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-855X
  dateEnd: 20180228
  omitProxy: false
  ssIdentifier: ssj0009435
  issn: 0747-7171
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeg44EXvifGlyLEE5NRk9i1_VjBSjdKNWkD9c1y3Mu6qqRlbafx33OOnTRlYhoPvFiR41iJf5fz3dn-HSHvZJ5AbhJObRYzyqSyVHHoUNmRbQWQtE0Zuvg-EMOhHI3UcaAnWJbpBERRyKsrtfivUGMdgu2Ozv4D3HWnWIHXCDqWCDuWtwL-ZIG-Kuz3Pg--7pvZ2Ry9_0mgJL9uhC5__cgcM3C5tXy9vSzfM-uzch1d-jj1EZiChuX5Gqf52i_aQ_HzvBlBwFmp3q_nw1phDm5oHvQxKPp5vg14zYi2GJWcj5qq0ydhCiKSNvQg95QtYUrlPhvLNW3tAwfTD9OlI5OMPY2qPwe9zYzd757o4089PTgcftm-29hO2O8OsJyYGXVmsEBT9BLd4p1EcCVbZKd7eDA62vAxM597tfrSasG73Pr3x_v8zWS5O6mC76UxcvqIPAgARl2P_mNyB4on5GGVoSMKCvsp2fXCEDlhiDbC8Ix86x2cfuzTkAmD2lSwFbXKKnCGRdZhcWws2onjRBmOrlGaxviqkEprcdpyhypzK6xUouQitCyJwbJ0l7SKeQHPSZSjxo55NpY5B2ZVkkkQwqTjsRWAPSd7pF19rLaBJt5lK5npaj_gVOP4aDc-ui00js8eeV8_svAcKTc1ZtUI6mDkeeNNo1Tc9NhbHO26e0eKjnhrV7dB-8VtGr0k9zc_wSvSWl2s4TW5Zy9X58uLN0FOfgOI83UM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+FGLM+algorithms&rft.jtitle=Journal+of+symbolic+computation&rft.au=Faug%C3%A8re%2C+Jean-Charles&rft.au=Mou%2C+Chenqi&rft.date=2017-05-01&rft.pub=Elsevier&rft.issn=0747-7171&rft.eissn=1095-855X&rft.volume=80&rft.issue=3&rft.spage=538&rft.epage=569&rft_id=info:doi/10.1016%2Fj.jsc.2016.07.025&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-00807540v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-7171&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-7171&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-7171&client=summon