Coalgebraic Behavioral Metrics

We study different behavioral metrics, such as those arising from both branching and linear-time semantics, in a coalgebraic setting. Given a coalgebra $\alpha\colon X \to HX$ for a functor $H \colon \mathrm{Set}\to \mathrm{Set}$, we define a framework for deriving pseudometrics on $X$ which measure...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Logical methods in computer science Ročník 14, Issue 3
Hlavní autori: Baldan, Paolo, Bonchi, Filippo, Kerstan, Henning, König, Barbara
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Logical Methods in Computer Science e.V 14.09.2018
Predmet:
ISSN:1860-5974, 1860-5974
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We study different behavioral metrics, such as those arising from both branching and linear-time semantics, in a coalgebraic setting. Given a coalgebra $\alpha\colon X \to HX$ for a functor $H \colon \mathrm{Set}\to \mathrm{Set}$, we define a framework for deriving pseudometrics on $X$ which measure the behavioral distance of states. A crucial step is the lifting of the functor $H$ on $\mathrm{Set}$ to a functor $\overline{H}$ on the category $\mathrm{PMet}$ of pseudometric spaces. We present two different approaches which can be viewed as generalizations of the Kantorovich and Wasserstein pseudometrics for probability measures. We show that the pseudometrics provided by the two approaches coincide on several natural examples, but in general they differ. If $H$ has a final coalgebra, every lifting $\overline{H}$ yields in a canonical way a behavioral distance which is usually branching-time, i.e., it generalizes bisimilarity. In order to model linear-time metrics (generalizing trace equivalences), we show sufficient conditions for lifting distributive laws and monads. These results enable us to employ the generalized powerset construction.
ISSN:1860-5974
1860-5974
DOI:10.23638/LMCS-14(3:20)2018