Coalgebraic Behavioral Metrics

We study different behavioral metrics, such as those arising from both branching and linear-time semantics, in a coalgebraic setting. Given a coalgebra $\alpha\colon X \to HX$ for a functor $H \colon \mathrm{Set}\to \mathrm{Set}$, we define a framework for deriving pseudometrics on $X$ which measure...

Full description

Saved in:
Bibliographic Details
Published in:Logical methods in computer science Vol. 14, Issue 3
Main Authors: Baldan, Paolo, Bonchi, Filippo, Kerstan, Henning, König, Barbara
Format: Journal Article
Language:English
Published: Logical Methods in Computer Science e.V 14.09.2018
Subjects:
ISSN:1860-5974, 1860-5974
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We study different behavioral metrics, such as those arising from both branching and linear-time semantics, in a coalgebraic setting. Given a coalgebra $\alpha\colon X \to HX$ for a functor $H \colon \mathrm{Set}\to \mathrm{Set}$, we define a framework for deriving pseudometrics on $X$ which measure the behavioral distance of states. A crucial step is the lifting of the functor $H$ on $\mathrm{Set}$ to a functor $\overline{H}$ on the category $\mathrm{PMet}$ of pseudometric spaces. We present two different approaches which can be viewed as generalizations of the Kantorovich and Wasserstein pseudometrics for probability measures. We show that the pseudometrics provided by the two approaches coincide on several natural examples, but in general they differ. If $H$ has a final coalgebra, every lifting $\overline{H}$ yields in a canonical way a behavioral distance which is usually branching-time, i.e., it generalizes bisimilarity. In order to model linear-time metrics (generalizing trace equivalences), we show sufficient conditions for lifting distributive laws and monads. These results enable us to employ the generalized powerset construction.
AbstractList We study different behavioral metrics, such as those arising from both branching and linear-time semantics, in a coalgebraic setting. Given a coalgebra $\alpha\colon X \to HX$ for a functor $H \colon \mathrm{Set}\to \mathrm{Set}$, we define a framework for deriving pseudometrics on $X$ which measure the behavioral distance of states. A crucial step is the lifting of the functor $H$ on $\mathrm{Set}$ to a functor $\overline{H}$ on the category $\mathrm{PMet}$ of pseudometric spaces. We present two different approaches which can be viewed as generalizations of the Kantorovich and Wasserstein pseudometrics for probability measures. We show that the pseudometrics provided by the two approaches coincide on several natural examples, but in general they differ. If $H$ has a final coalgebra, every lifting $\overline{H}$ yields in a canonical way a behavioral distance which is usually branching-time, i.e., it generalizes bisimilarity. In order to model linear-time metrics (generalizing trace equivalences), we show sufficient conditions for lifting distributive laws and monads. These results enable us to employ the generalized powerset construction.
Author Bonchi, Filippo
König, Barbara
Baldan, Paolo
Kerstan, Henning
Author_xml – sequence: 1
  givenname: Paolo
  surname: Baldan
  fullname: Baldan, Paolo
– sequence: 2
  givenname: Filippo
  orcidid: 0000-0002-3433-723X
  surname: Bonchi
  fullname: Bonchi, Filippo
– sequence: 3
  givenname: Henning
  surname: Kerstan
  fullname: Kerstan, Henning
– sequence: 4
  givenname: Barbara
  surname: König
  fullname: König, Barbara
BookMark eNpNkEtLAzEUhYNUsNb-ARfSpS5Gb5I7ScadDj4KLS7UdcjjTp0yNpIpgv_esRXxbs7lHPgW3zEbbdKGGDvlcCmkkuZqsayfC47n8lrAhQBuDtiYGwVFWWkc_fuP2LTv1zCclNwINWZndXLdinx2bZjd0pv7bFN23WxJ29yG_oQdNq7rafqbE_Z6f_dSPxaLp4d5fbMogtS4LTw1pTKAJSFxosiVRl9GVblKGm9iNBg0aOdRVTEI0nHYAwSuRBlUWckJm--5Mbm1_cjtu8tfNrnW7oqUV9blbRs6suQBsMFGqQEHEL1Ah4a4j5K0UHFgiT0r5NT3mZo_Hge7E2Z_hFmOVloxVIMw-Q3hnV64
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.23638/LMCS-14(3:20)2018
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1860-5974
ExternalDocumentID oai_doaj_org_article_eb004f4f66ab400db24a48e1bd3e726d
10_23638_LMCS_14_3_20_2018
GroupedDBID .4S
.DC
29L
2WC
5GY
5VS
AAFWJ
AAYXX
ADBBV
ADMLS
ADQAK
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
CITATION
EBS
EJD
FRP
GROUPED_DOAJ
J9A
KQ8
MK~
ML~
M~E
OK1
OVT
P2P
TR2
TUS
XSB
ID FETCH-LOGICAL-c374t-bef568045e4e1eed1674b5d69a938b8dd84c707ab469dc2e7d74bc0c1625c6593
IEDL.DBID DOA
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000450660200015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1860-5974
IngestDate Fri Oct 03 12:52:53 EDT 2025
Sat Nov 29 08:05:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c374t-bef568045e4e1eed1674b5d69a938b8dd84c707ab469dc2e7d74bc0c1625c6593
ORCID 0000-0002-3433-723X
OpenAccessLink https://doaj.org/article/eb004f4f66ab400db24a48e1bd3e726d
ParticipantIDs doaj_primary_oai_doaj_org_article_eb004f4f66ab400db24a48e1bd3e726d
crossref_primary_10_23638_LMCS_14_3_20_2018
PublicationCentury 2000
PublicationDate 2018-09-14
PublicationDateYYYYMMDD 2018-09-14
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-14
  day: 14
PublicationDecade 2010
PublicationTitle Logical methods in computer science
PublicationYear 2018
Publisher Logical Methods in Computer Science e.V
Publisher_xml – name: Logical Methods in Computer Science e.V
SSID ssj0000331826
Score 2.4090466
Snippet We study different behavioral metrics, such as those arising from both branching and linear-time semantics, in a coalgebraic setting. Given a coalgebra...
SourceID doaj
crossref
SourceType Open Website
Index Database
SubjectTerms computer science - logic in computer science
Title Coalgebraic Behavioral Metrics
URI https://doaj.org/article/eb004f4f66ab400db24a48e1bd3e726d
Volume 14, Issue 3
WOSCitedRecordID wos000450660200015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: M~E
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcDCG1EeVQYGELLa2I5js9GqFUNbIfFQNyv22VKXFrWFkd_OOUmrMrGweLCtyL67-L6T7u4j5AbQDoRllgblNRXAUmoRFdOMg4egBMgyGfN9mI_HajLRz1tUXzEnrGoPXAmuHbltRBBBysKivYFlohDKpxa4z5mE-Poi6tkKpso3mPMInKsqGcbRyNrDUe-FpuKWP7DOHbo99csTbTXsLz3L4JDs15AweayOckR2_OyYHKzpFpL67zshrd48knJgeDt1SXdTXp-MIimWW56St0H_tfdEa3oD6nguVtT6kEmFkMoLn6KrivUANgOpC82VVQBKuLyT47WlBsd8DrjuOi7FkMXJTPMz0pjNZ_6cJJLpQkCAsh6Sa241emGnLRTeBZ_JJrlfX9V8VF0sDKL_UjAmCgYjAMMNwykUTJN0ozQ2O2MH6nIC9WJqvZi_9HLxHx-5JHvxQDE_IxVXpLFafPprsuu-VtPlolWqHMfRd_8HL8SweQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coalgebraic+Behavioral+Metrics&rft.jtitle=Logical+methods+in+computer+science&rft.au=Baldan%2C+Paolo&rft.au=Bonchi%2C+Filippo&rft.au=Kerstan%2C+Henning&rft.au=K%C3%B6nig%2C+Barbara&rft.date=2018-09-14&rft.issn=1860-5974&rft.eissn=1860-5974&rft.volume=14%2C+Issue+3&rft_id=info:doi/10.23638%2FLMCS-14%283%3A20%292018&rft.externalDBID=n%2Fa&rft.externalDocID=10_23638_LMCS_14_3_20_2018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-5974&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-5974&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-5974&client=summon