SpecTrHuMS: Spectral transformer for human mesh sequence learning

We present SpecTrHuMS, a Spectral Transformer for 3D triangular Human Mesh Sequence learning which combines known deep learning models with spectral mesh processing to capture characteristics of 3D shapes as well as temporal dependencies between the frames. Unlike previous works in this field, our a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & graphics Jg. 115; S. 191 - 203
Hauptverfasser: Lemeunier, Clément, Denis, Florence, Lavoué, Guillaume, Dupont, Florent
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.10.2023
Elsevier
Schlagworte:
ISSN:0097-8493
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We present SpecTrHuMS, a Spectral Transformer for 3D triangular Human Mesh Sequence learning which combines known deep learning models with spectral mesh processing to capture characteristics of 3D shapes as well as temporal dependencies between the frames. Unlike previous works in this field, our approach is able to work directly with a compressed representation of the geometry, the spectral coefficients, rather than relying solely on skeleton joints that does not contain surface information. The vertices of each mesh of a sequence are first projected on the eigenvectors of the Graph Laplacian computed from the common triangulation. A convolutional encoder then encodes each frame into lower dimensional latent variables that preserve as much as possible the spectral information. These latent variables are next passed through a transformer architecture so that the model understands the context of the sequence and learns temporal dependencies between the frames. Each frame of the transformer’s output is then decoded by a convolutional decoder which aims to reconstruct the input spectral coefficients. Finally, all frames are transformed back into the spatial domain, resulting in a general process able to treat 4D surfaces with a constant connectivity. Our method is evaluated on a prediction task on AMASS, a dataset of human surface sequences, showing the ability of our model to produce realistic movements while preserving the identity of a subject, and showing that this work is a significant step towards efficient and high-quality representation of triangular mesh sequences with constant connectivity. Additional experiments show that our model can be easily extended to other tasks such as long term prediction, completion and that it is generalizable to other datasets with constant connectivity. This work opens up new possibilities for applications in the fields of animation, virtual reality, and computer graphics. Pretrained models, the code to train them and the code to create datasets will be made publicly available. [Display omitted] •This work focuses on generating human triangular mesh sequences.•It consists in the association of a convolutional autoencoder and a transformer.•Spectral coefficients computed from the Graph Laplacian are given as input.•The context of the sequence is understood using a transformer.•The trained model is able to predict movements and preserve the identity of subjects.
AbstractList We present SpecTrHuMS, a Spectral Transformer for 3D triangular Human Mesh Sequence learning which combines known deep learning models with spectral mesh processing to capture characteristics of 3D shapes as well as temporal dependencies between the frames. Unlike previous works in this field, our approach is able to work directly with a compressed representation of the geometry, the spectral coefficients, rather than relying solely on skeleton joints that does not contain surface information. The vertices of each mesh of a sequence are first projected on the eigenvectors of the Graph Laplacian computed from the common triangulation. A convolutional encoder then encodes each frame into lower dimensional latent variables that preserve as much as possible the spectral information. These latent variables are next passed through a transformer architecture so that the model understands the context of the sequence and learns temporal dependencies between the frames. Each frame of the transformer’s output is then decoded by a convolutional decoder which aims to reconstruct the input spectral coefficients. Finally, all frames are transformed back into the spatial domain, resulting in a general process able to treat 4D surfaces with a constant connectivity. Our method is evaluated on a prediction task on AMASS, a dataset of human surface sequences, showing the ability of our model to produce realistic movements while preserving the identity of a subject, and showing that this work is a significant step towards efficient and high-quality representation of triangular mesh sequences with constant connectivity. Additional experiments show that our model can be easily extended to other tasks such as long term prediction, completion and that it is generalizable to other datasets with constant connectivity. This work opens up new possibilities for applications in the fields of animation, virtual reality, and computer graphics. Pretrained models, the code to train them and the code to create datasets will be made publicly available.
We present SpecTrHuMS, a Spectral Transformer for 3D triangular Human Mesh Sequence learning which combines known deep learning models with spectral mesh processing to capture characteristics of 3D shapes as well as temporal dependencies between the frames. Unlike previous works in this field, our approach is able to work directly with a compressed representation of the geometry, the spectral coefficients, rather than relying solely on skeleton joints that does not contain surface information. The vertices of each mesh of a sequence are first projected on the eigenvectors of the Graph Laplacian computed from the common triangulation. A convolutional encoder then encodes each frame into lower dimensional latent variables that preserve as much as possible the spectral information. These latent variables are next passed through a transformer architecture so that the model understands the context of the sequence and learns temporal dependencies between the frames. Each frame of the transformer’s output is then decoded by a convolutional decoder which aims to reconstruct the input spectral coefficients. Finally, all frames are transformed back into the spatial domain, resulting in a general process able to treat 4D surfaces with a constant connectivity. Our method is evaluated on a prediction task on AMASS, a dataset of human surface sequences, showing the ability of our model to produce realistic movements while preserving the identity of a subject, and showing that this work is a significant step towards efficient and high-quality representation of triangular mesh sequences with constant connectivity. Additional experiments show that our model can be easily extended to other tasks such as long term prediction, completion and that it is generalizable to other datasets with constant connectivity. This work opens up new possibilities for applications in the fields of animation, virtual reality, and computer graphics. Pretrained models, the code to train them and the code to create datasets will be made publicly available. [Display omitted] •This work focuses on generating human triangular mesh sequences.•It consists in the association of a convolutional autoencoder and a transformer.•Spectral coefficients computed from the Graph Laplacian are given as input.•The context of the sequence is understood using a transformer.•The trained model is able to predict movements and preserve the identity of subjects.
Author Denis, Florence
Dupont, Florent
Lavoué, Guillaume
Lemeunier, Clément
Author_xml – sequence: 1
  givenname: Clément
  orcidid: 0000-0002-2853-6267
  surname: Lemeunier
  fullname: Lemeunier, Clément
  email: clement.lemeunier@liris.cnrs.fr
  organization: Univ Lyon, CNRS, INSA Lyon, UCBL, LIRIS, UMR5205, F-69622 Villeurbanne, France
– sequence: 2
  givenname: Florence
  surname: Denis
  fullname: Denis, Florence
  email: florence.denis@liris.cnrs.fr
  organization: Univ Lyon, UCBL, CNRS, INSA Lyon, LIRIS, UMR5205, F-69622 Villeurbanne, France
– sequence: 3
  givenname: Guillaume
  surname: Lavoué
  fullname: Lavoué, Guillaume
  email: guillaume.lavoue@liris.cnrs.fr
  organization: Univ Lyon, Centrale Lyon, CNRS, INSA Lyon, UCBL, LIRIS, UMR5205, ENISE, F-42023 Saint-Étienne, France
– sequence: 4
  givenname: Florent
  surname: Dupont
  fullname: Dupont, Florent
  email: florent.dupont@liris.cnrs.fr
  organization: Univ Lyon, UCBL, CNRS, INSA Lyon, LIRIS, UMR5205, F-69622 Villeurbanne, France
BackLink https://hal.science/hal-04154623$$DView record in HAL
BookMark eNp9kD1PwzAQhj0UibbwA9iyMiScP_JRmKoKKFIRQ8tsOc6ldZU4xU4r8e9xVMTA0OXe0-mek-6ZkJHtLBJyRyGhQLOHfaLVNmHAeAJ5AkBHZAwwy-NCzPg1mXi_BwDGMjEm8_UB9cYtj-_rx2joe6eaKBTr68616KIQ0e7YKhu16HeRx68jWo1Rg8pZY7c35KpWjcfb35ySz5fnzWIZrz5e3xbzVax5Lvq41GVaKNRlXmBdqpRXUHGezWiRsqqCtEzrFGuNSlNai4KmRc5FSRVnilYgGJ-S-_PdnWrkwZlWuW_ZKSOX85UcZiBoKjLGTzTs0vOudp33Dus_gIIcHMm9DI7k4EhCLoOjwOT_GG161ZvOBhumuUg-nUkM758MOum1GRxVxgWhsurMBfoHHmiEzA
CitedBy_id crossref_primary_10_3390_electronics13040720
crossref_primary_10_1016_j_cag_2023_12_007
crossref_primary_10_1016_j_cag_2023_10_018
crossref_primary_10_3390_app14072821
Cites_doi 10.1109/ICCV.2019.00554
10.1080/00401706.1962.10490022
10.1111/cgf.14012
10.1109/CVPR.2018.00275
10.1109/TSP.2018.2879624
10.1007/s11263-021-01492-6
10.1109/MSP.2017.2693418
10.1109/CVPR.2019.01123
10.1007/978-3-030-01219-9_43
10.1109/TPAMI.2013.248
10.1007/978-3-030-11015-4_26
10.1111/cgf.14599
10.1109/TPAMI.2020.3005434
10.1145/2908736
10.1145/3306346.3322959
10.1007/s11263-021-01483-7
10.1145/2816795.2818013
10.1016/j.cag.2016.05.018
10.1016/j.cag.2022.07.011
10.1145/3507905
10.1145/2185520.2185526
10.24963/ijcai.2018/130
10.1007/978-3-031-20047-2_28
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.cag.2023.07.001
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EndPage 203
ExternalDocumentID oai:HAL:hal-04154623v1
10_1016_j_cag_2023_07_001
S0097849323001309
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABDPE
ABEFU
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AFFNX
AFJKZ
AFTJW
AGHFR
AGQPQ
AGSOS
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIIUN
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
K-O
KOM
LG9
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSW
SSZ
T5K
TN5
UHS
VH1
VOH
WH7
WUQ
XPP
ZMT
ZY4
~02
~G-
~HD
9DU
AAYXX
CITATION
1XC
VOOES
ID FETCH-LOGICAL-c374t-bcb58aecb78efba53d0d33691852dd05b5f5efceac11f48158734b1a32a1d0423
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001056807800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0097-8493
IngestDate Tue Oct 14 21:03:23 EDT 2025
Tue Nov 18 22:19:37 EST 2025
Sat Nov 29 07:24:38 EST 2025
Sat Oct 04 17:01:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Transformers
Geometric deep learning
Autoencoder
Human body triangular mesh sequences
Spectral analysis
Geometric Deep Learning
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c374t-bcb58aecb78efba53d0d33691852dd05b5f5efceac11f48158734b1a32a1d0423
ORCID 0000-0002-2853-6267
0000-0003-3988-6702
0000-0001-6611-4420
OpenAccessLink https://hal.science/hal-04154623
PageCount 13
ParticipantIDs hal_primary_oai_HAL_hal_04154623v1
crossref_primary_10_1016_j_cag_2023_07_001
crossref_citationtrail_10_1016_j_cag_2023_07_001
elsevier_sciencedirect_doi_10_1016_j_cag_2023_07_001
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Computers & graphics
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Sofianos, Sampieri, Franco, Galasso (b7) 2021
Levie, Monti, Bresson, Bronstein (b33) 2019; 67
Sharp, Attaiki, Crane, Ovsjanikov (b38) 2022; 41
Gao, Lai, Liang, Chen, Xia (b39) 2016; 35
Martinez, Black, Romero (b50) 2017
Mao, Liu, Salzmann, Li (b5) 2021; 129
Lebailly, Kiciroglu, Salzmann, Fua, Wang (b57) 2021
Lim, Dielen, Campen, Kobbelt (b23) 2019
Guo, Du, Shen, Lepetit, Alameda-Pineda, Moreno-Noguer (b6) 2023
Devlin, Chang, Lee, Toutanova (b15) 2018
Lehrmann, Gehler, Nowozin (b47) 2014
Fey, Lenssen, Weichert, Muller (b22) 2018
Mahmood N, Ghorbani N, Troje NF, Pons-Moll G, Black MJ. AMASS: Archive of Motion Capture as Surface Shapes. In: International conference on computer vision. 2019, p. 5442–51.
Guo, Wang, Hu, Liu, Liu, Bennamoun (b16) 2021; 43
Jain, Zamir, Savarese, Saxena (b49) 2016
Mao, Liu, Salzmann (b4) 2020
Eisenberger, Novotny, Kerchenbaum, Labatut, Neverova, Cremers (b43) 2021
Qi CR, Su H, Mo K, Guibas LJ. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. CVPR, 2017.
Cai, Huang, Wang, Cham, Cai, Yuan (b62) 2020
Bouritsas, Bokhnyak, Ploumpis, Zafeiriou, Bronstein (b24) 2019
Mao, Liu, Salzmann, Li (b3) 2019
Lemeunier, Denis, Lavoué, Dupont (b14) 2022; 107
Masci, Boscaini, Bronstein, Vandergheynst (b20) 2015
Sun, Rooke, Charton, He, Lu, Baek (b34) 2020; 39
Defferrard, Bresson, Vandergheynst (b30) 2016
Kipf, Welling (b31) 2017
Butepage, Black, Kragic, Kjellstrom (b53) 2017
Hernandez, Gall, Moreno (b55) 2019
Verma N, Boyer E, Verbeek J. FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis. In: CVPR - IEEE conference on computer vision & pattern recognition. Salt Lake City, United States; 2018, URL.
Ranjan, Bolkart, Sanyal, Black (b32) 2018
Petrovich, Black, Varol (b64) 2022
Bronstein, Bruna, LeCun, Szlam, Vandergheynst (b1) 2017; 34
Ma, Nie, Long, Zhang, Li (b58) 2022
Welford (b71) 1962; 4
Bruna, Zaremba, Szlam, Lecun (b29) 2014
Gao, Lai, Yang, Zhang, Kobbelt, Xia (b41) 2017
Abrevaya, Manandhar, Hétroy-Wheeler, Wuhrer (b68) 2016; 58
Aksan, Kaufmann, Cao, Hilliges (b61) 2021
Pavlakos G, Choutas V, Ghorbani N, Bolkart T, Osman AAA, Tzionas D, et al. Expressive Body Capture: 3D Hands, Face, and Body from a Single Image. In: Proceedings IEEE conf. on computer vision and pattern recognition. CVPR, 2019, p. 10975–85.
Liu, Wu, Jin, Liu, Lu, Zimmermann (b52) 2019
Rakotosaona, Ovsjanikov (b12) 2020
Hanocka, Hertz, Fish, Giryes, Fleishman, Cohen-Or (b25) 2019; 38
Hartman, Pierson, Bauer, Charon, Daoudi (b44) 2022
Marsot, Wuhrer, Franco, Durocher (b9) 2021
Marin, Rampini, Castellani, Rodola, Ovsjanikov, Melzi (b35) 2020
Aumentado-Armstrong, Tsogkas, Jepson, Dickinson (b19) 2019
Cosmo, Norelli, Halimi, Kimmel, Rodolà (b11) 2020
Fragkiadaki, Levine, Felsen, Malik (b48) 2015
Yuan, Lai, Yang, Fu, Gao (b42) 2019
Tang, Ma, Liu, Zheng (b60) 2018
Ovsjanikov, Ben-Chen, Solomon, Butscher, Guibas (b73) 2012; 31
Ionescu, Papava, Olaru, Sminchisescu (b70) 2014; 36
Gong, Chen, Bronstein, Zafeiriou (b13) 2019
Tan, Gao, Lai, Xia (b40) 2017
Li, Zhang, Lee, Lee (b2) 2018
Duan, Shi, Zou, Lin, Qian, Zhang (b63) 2021
Loper, Mahmood, Romero, Pons-Moll, Black (b10) 2015; 34
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez (b59) 2017
Community (b72) 2018
Sohn, Lee, Yan (b66) 2015
Gui, Wang, Liang, Moura (b56) 2018
Tevet, Raab, Gordon, Shafir, Cohen-Or, Bermano (b65) 2022
Zuffi, Kanazawa, Jacobs, Black (b67) 2017
Marin, Rampini, Castellani, Rodolà, Ovsjanikov, Melzi (b36) 2021; 129
Taylor, Hinton, Roweis (b46) 2006
Butepage, Kjellstrom, Kragic (b54) 2018
Pegoraro, Melzi, Castellani, Marin, Rodolà (b37) 2022; 41
Chiu, Adeli, Wang, Huang, Niebles (b51) 2019
Zhong, Hu, Zhang, Ye, Xia (b8) 2022
Milano, Loquercio, Rosinol, Scaramuzza, Carlone (b28) 2020
Boscaini, Masci, Rodoià, Bronstein (b21) 2016
Qi, Yi, Su, Guibas (b18) 2017
Huang, Huang, Sun, Zhang, Jiang, Bajaj (b26) 2021
Wang, Hertzmann, Fleet (b45) 2005
Cosmo (10.1016/j.cag.2023.07.001_b11) 2020
Yuan (10.1016/j.cag.2023.07.001_b42) 2019
Liu (10.1016/j.cag.2023.07.001_b52) 2019
Martinez (10.1016/j.cag.2023.07.001_b50) 2017
Petrovich (10.1016/j.cag.2023.07.001_b64) 2022
Lim (10.1016/j.cag.2023.07.001_b23) 2019
Sharp (10.1016/j.cag.2023.07.001_b38) 2022; 41
Ionescu (10.1016/j.cag.2023.07.001_b70) 2014; 36
Duan (10.1016/j.cag.2023.07.001_b63) 2021
Milano (10.1016/j.cag.2023.07.001_b28) 2020
Devlin (10.1016/j.cag.2023.07.001_b15) 2018
Sun (10.1016/j.cag.2023.07.001_b34) 2020; 39
10.1016/j.cag.2023.07.001_b17
Butepage (10.1016/j.cag.2023.07.001_b53) 2017
Hernandez (10.1016/j.cag.2023.07.001_b55) 2019
Gui (10.1016/j.cag.2023.07.001_b56) 2018
Sofianos (10.1016/j.cag.2023.07.001_b7) 2021
Gao (10.1016/j.cag.2023.07.001_b39) 2016; 35
Zuffi (10.1016/j.cag.2023.07.001_b67) 2017
Aumentado-Armstrong (10.1016/j.cag.2023.07.001_b19) 2019
Ovsjanikov (10.1016/j.cag.2023.07.001_b73) 2012; 31
Mao (10.1016/j.cag.2023.07.001_b5) 2021; 129
Fragkiadaki (10.1016/j.cag.2023.07.001_b48) 2015
Guo (10.1016/j.cag.2023.07.001_b6) 2023
Chiu (10.1016/j.cag.2023.07.001_b51) 2019
Lehrmann (10.1016/j.cag.2023.07.001_b47) 2014
Fey (10.1016/j.cag.2023.07.001_b22) 2018
10.1016/j.cag.2023.07.001_b27
Taylor (10.1016/j.cag.2023.07.001_b46) 2006
Ranjan (10.1016/j.cag.2023.07.001_b32) 2018
Levie (10.1016/j.cag.2023.07.001_b33) 2019; 67
Tang (10.1016/j.cag.2023.07.001_b60) 2018
10.1016/j.cag.2023.07.001_b69
Marsot (10.1016/j.cag.2023.07.001_b9) 2021
Abrevaya (10.1016/j.cag.2023.07.001_b68) 2016; 58
Hartman (10.1016/j.cag.2023.07.001_b44) 2022
Community (10.1016/j.cag.2023.07.001_b72) 2018
Huang (10.1016/j.cag.2023.07.001_b26) 2021
Wang (10.1016/j.cag.2023.07.001_b45) 2005
Hanocka (10.1016/j.cag.2023.07.001_b25) 2019; 38
Welford (10.1016/j.cag.2023.07.001_b71) 1962; 4
Jain (10.1016/j.cag.2023.07.001_b49) 2016
Bruna (10.1016/j.cag.2023.07.001_b29) 2014
Mao (10.1016/j.cag.2023.07.001_b3) 2019
Rakotosaona (10.1016/j.cag.2023.07.001_b12) 2020
Li (10.1016/j.cag.2023.07.001_b2) 2018
Masci (10.1016/j.cag.2023.07.001_b20) 2015
Tan (10.1016/j.cag.2023.07.001_b40) 2017
Qi (10.1016/j.cag.2023.07.001_b18) 2017
Cai (10.1016/j.cag.2023.07.001_b62) 2020
Mao (10.1016/j.cag.2023.07.001_b4) 2020
Tevet (10.1016/j.cag.2023.07.001_b65) 2022
Loper (10.1016/j.cag.2023.07.001_b10) 2015; 34
Marin (10.1016/j.cag.2023.07.001_b36) 2021; 129
10.1016/j.cag.2023.07.001_b74
Guo (10.1016/j.cag.2023.07.001_b16) 2021; 43
Gong (10.1016/j.cag.2023.07.001_b13) 2019
Eisenberger (10.1016/j.cag.2023.07.001_b43) 2021
Aksan (10.1016/j.cag.2023.07.001_b61) 2021
Defferrard (10.1016/j.cag.2023.07.001_b30) 2016
Pegoraro (10.1016/j.cag.2023.07.001_b37) 2022; 41
Sohn (10.1016/j.cag.2023.07.001_b66) 2015
Lebailly (10.1016/j.cag.2023.07.001_b57) 2021
Gao (10.1016/j.cag.2023.07.001_b41) 2017
Marin (10.1016/j.cag.2023.07.001_b35) 2020
Ma (10.1016/j.cag.2023.07.001_b58) 2022
Lemeunier (10.1016/j.cag.2023.07.001_b14) 2022; 107
Boscaini (10.1016/j.cag.2023.07.001_b21) 2016
Vaswani (10.1016/j.cag.2023.07.001_b59) 2017
Bouritsas (10.1016/j.cag.2023.07.001_b24) 2019
Zhong (10.1016/j.cag.2023.07.001_b8) 2022
Kipf (10.1016/j.cag.2023.07.001_b31) 2017
Butepage (10.1016/j.cag.2023.07.001_b54) 2018
Bronstein (10.1016/j.cag.2023.07.001_b1) 2017; 34
References_xml – year: 2021
  ident: b26
  article-title: ARAPReg: An as-rigid-as possible regularization loss for learning deformable shape generators
– year: 2021
  ident: b61
  article-title: A spatio-temporal transformer for 3D human motion prediction
  publication-title: 2021 International conference on 3D vision
– start-page: 725
  year: 2018
  end-page: 741
  ident: b32
  article-title: Generating 3D faces using convolutional mesh autoencoders
  publication-title: Computer vision – ECCV 2018
– volume: 38
  start-page: 1
  year: 2019
  end-page: 12
  ident: b25
  article-title: MeshCNN
  publication-title: ACM Trans Graph
– year: 2017
  ident: b31
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: International conference on learning representations
– volume: 41
  start-page: 1
  year: 2022
  end-page: 16
  ident: b38
  article-title: DiffusionNet: Discretization agnostic learning on surfaces
  publication-title: ACM Trans Graph
– year: 2015
  ident: b48
  article-title: Recurrent network models for human dynamics
  publication-title: 2015 IEEE international conference on computer vision
– year: 2021
  ident: b7
  article-title: Space-time-separable graph convolutional network for pose forecasting
  publication-title: 2021 IEEE/CVF international conference on computer vision
– year: 2023
  ident: b6
  article-title: Back to MLP: A simple baseline for human motion prediction
  publication-title: 2023 IEEE/CVF winter conference on applications of computer vision
– year: 2022
  ident: b58
  article-title: Progressively generating better initial guesses towards next stages for high-quality human motion prediction
  publication-title: 2022 IEEE/CVF conference on computer vision and pattern recognition
– year: 2021
  ident: b63
  article-title: Single-shot motion completion with transformer
– year: 2020
  ident: b35
  article-title: Instant recovery of shape from spectrum via latent space connections
  publication-title: 2020 International conference on 3D vision
– volume: 4
  start-page: 419
  year: 1962
  end-page: 420
  ident: b71
  article-title: Note on a method for calculating corrected sums of squares and products
  publication-title: Technometrics
– volume: 41
  start-page: 13
  year: 2022
  end-page: 24
  ident: b37
  article-title: Localized shape modelling with global coherence: An inverse spectral approach
  publication-title: Comput Graph Forum
– volume: 36
  start-page: 1325
  year: 2014
  end-page: 1339
  ident: b70
  article-title: Human3.6M: Large scale datasets and predictive methods for 3D human sensing in natural environments
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 2019
  ident: b55
  article-title: Human motion prediction via spatio-temporal inpainting
  publication-title: 2019 IEEE/CVF international conference on computer vision
– start-page: 5998
  year: 2017
  end-page: 6008
  ident: b59
  article-title: Attention is all you need
  publication-title: Advances in neural information processing systems
– year: 2019
  ident: b51
  article-title: Action-agnostic human pose forecasting
  publication-title: 2019 IEEE winter conference on applications of computer vision
– year: 2018
  ident: b72
  article-title: Blender - A 3D Modelling and Rendering Package
– year: 2017
  ident: b50
  article-title: On human motion prediction using recurrent neural networks
  publication-title: 2017 IEEE conference on computer vision and pattern recognition
– volume: 58
  start-page: 12
  year: 2016
  end-page: 22
  ident: b68
  article-title: A 3D+t Laplace operator for temporal mesh sequences
  publication-title: Comput Graph
– reference: Mahmood N, Ghorbani N, Troje NF, Pons-Moll G, Black MJ. AMASS: Archive of Motion Capture as Surface Shapes. In: International conference on computer vision. 2019, p. 5442–51.
– volume: 67
  start-page: 97
  year: 2019
  end-page: 109
  ident: b33
  article-title: CayleyNets: Graph convolutional neural networks with complex rational spectral filters
  publication-title: IEEE Trans Signal Process
– year: 2014
  ident: b47
  article-title: Efficient nonlinear Markov models for human motion
  publication-title: 2014 IEEE conference on computer vision and pattern recognition
– year: 2019
  ident: b42
  article-title: Mesh variational autoencoders with edge contraction pooling
– year: 2020
  ident: b28
  article-title: Primal-dual mesh convolutional neural networks
  publication-title: Proceedings of the 34th international conference on neural information processing systems
– year: 2021
  ident: b43
  article-title: NeuroMorph: Unsupervised shape interpolation and correspondence in one go
  publication-title: 2021 IEEE/CVF conference on computer vision and pattern recognition
– start-page: 823
  year: 2018
  end-page: 842
  ident: b56
  article-title: Adversarial geometry-aware human motion prediction
  publication-title: Computer vision – ECCV 2018
– year: 2019
  ident: b3
  article-title: Learning trajectory dependencies for human motion prediction
  publication-title: 2019 IEEE/CVF international conference on computer vision
– year: 2018
  ident: b15
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
– year: 2022
  ident: b65
  article-title: Human motion diffusion model
– start-page: 474
  year: 2020
  end-page: 489
  ident: b4
  article-title: History repeats itself: Human motion prediction via motion attention
  publication-title: Computer vision – ECCV 2020
– year: 2016
  ident: b49
  article-title: Structural-RNN: Deep learning on spatio-temporal graphs
  publication-title: 2016 IEEE conference on computer vision and pattern recognition
– year: 2018
  ident: b2
  article-title: Convolutional sequence to sequence model for human dynamics
  publication-title: 2018 IEEE/CVF conference on computer vision and pattern recognition
– volume: 129
  start-page: 2513
  year: 2021
  end-page: 2535
  ident: b5
  article-title: Multi-level motion attention for human motion prediction
  publication-title: Int J Comput Vis
– start-page: 651
  year: 2021
  end-page: 665
  ident: b57
  article-title: Motion prediction using temporal inception module
  publication-title: Computer vision – ACCV 2020
– year: 2017
  ident: b53
  article-title: Deep representation learning for human motion prediction and classification
  publication-title: 2017 IEEE conference on computer vision and pattern recognition
– year: 2021
  ident: b9
  article-title: A structured latent space for human body motion generation
– year: 2018
  ident: b22
  article-title: SplineCNN: Fast geometric deep learning with continuous B-spline kernels
  publication-title: 2018 IEEE/CVF conference on computer vision and pattern recognition
– start-page: 226
  year: 2020
  end-page: 242
  ident: b62
  article-title: Learning progressive joint propagation for human motion prediction
  publication-title: Computer vision – ECCV 2020
– year: 2017
  ident: b67
  article-title: 3D menagerie: Modeling the 3D shape and pose of animals
  publication-title: IEEE conf. on computer vision and pattern recognition
– volume: 31
  start-page: 1
  year: 2012
  end-page: 11
  ident: b73
  article-title: Functional maps
  publication-title: ACM Trans Graph
– year: 2022
  ident: b8
  article-title: Spatio-temporal gating-adjacency GCN for human motion prediction
  publication-title: 2022 IEEE/CVF conference on computer vision and pattern recognition
– year: 2006
  ident: b46
  article-title: Modeling human motion using binary latent variables
  publication-title: NIPS
– volume: 43
  start-page: 4338
  year: 2021
  end-page: 4364
  ident: b16
  article-title: Deep learning for 3D point clouds: A survey
  publication-title: IEEE Trans Pattern Anal Mach Intell
– reference: Qi CR, Su H, Mo K, Guibas LJ. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. CVPR, 2017.
– start-page: 19
  year: 2020
  end-page: 35
  ident: b11
  article-title: LIMP: Learning latent shape representations with metric preservation priors
  publication-title: Computer vision – ECCV 2020
– year: 2017
  ident: b41
  article-title: Sparse data driven mesh deformation
– year: 2014
  ident: b29
  article-title: Spectral networks and locally connected networks on graphs
  publication-title: International conference on learning representations (ICLR2014), CBLS, April 2014
– volume: 129
  start-page: 2745
  year: 2021
  end-page: 2760
  ident: b36
  article-title: Spectral shape recovery and analysis via data-driven connections
  publication-title: Int J Comput Vis
– start-page: 655
  year: 2020
  end-page: 672
  ident: b12
  article-title: Intrinsic point cloud interpolation via dual latent space navigation
  publication-title: Computer vision – ECCV 2020
– start-page: 3197
  year: 2016
  end-page: 3205
  ident: b21
  article-title: Learning shape correspondence with anisotropic convolutional neural networks
  publication-title: Proceedings of the 30th international conference on neural information processing systems
– volume: 39
  start-page: 204
  year: 2020
  end-page: 216
  ident: b34
  article-title: ZerNet: Convolutional neural networks on arbitrary surfaces via zernike local tangent space estimation
  publication-title: Comput Graph Forum
– year: 2022
  ident: b44
  article-title: Bare-ESA: A Riemannian framework for unregistered human body shapes
– volume: 34
  start-page: 1
  year: 2015
  end-page: 16
  ident: b10
  article-title: SMPL
  publication-title: ACM Trans Graph
– year: 2019
  ident: b13
  article-title: SpiralNet++: A fast and highly efficient mesh convolution operator
  publication-title: 2019 IEEE/CVF international conference on computer vision workshop
– year: 2019
  ident: b52
  article-title: Towards natural and accurate future motion prediction of humans and animals
  publication-title: 2019 IEEE/CVF conference on computer vision and pattern recognition
– year: 2015
  ident: b20
  article-title: Geodesic convolutional neural networks on Riemannian manifolds
  publication-title: 2015 IEEE international conference on computer vision workshop
– year: 2005
  ident: b45
  article-title: Gaussian process dynamical models
  publication-title: Advances in neural information processing systems, Vol. 18
– start-page: 935
  year: 2018
  end-page: 941
  ident: b60
  article-title: Long-term human motion prediction by modeling motion context and enhancing motion dynamic
  publication-title: Proceedings of the 27th international joint conference on artificial intelligence
– volume: 35
  start-page: 1
  year: 2016
  end-page: 17
  ident: b39
  article-title: Efficient and flexible deformation representation for data-driven surface modeling
  publication-title: ACM Trans Graph
– start-page: 480
  year: 2022
  end-page: 497
  ident: b64
  article-title: TEMOS: Generating diverse human motions from textual descriptions
  publication-title: Lecture notes in computer science
– volume: 34
  start-page: 18
  year: 2017
  end-page: 42
  ident: b1
  article-title: Geometric deep learning: Going beyond euclidean data
  publication-title: IEEE Signal Process Mag
– year: 2019
  ident: b24
  article-title: Neural 3D morphable models: Spiral convolutional networks for 3D shape representation learning and generation
  publication-title: 2019 IEEE/CVF international conference on computer vision
– start-page: 3844
  year: 2016
  end-page: 3852
  ident: b30
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Proceedings of the 30th international conference on neural information processing systems
– year: 2017
  ident: b40
  article-title: Variational autoencoders for deforming 3D mesh models
– start-page: 5105
  year: 2017
  end-page: 5114
  ident: b18
  article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space
  publication-title: Proceedings of the 31st international conference on neural information processing systems
– year: 2018
  ident: b54
  article-title: Anticipating many futures: Online human motion prediction and generation for human-robot interaction
  publication-title: 2018 IEEE international conference on robotics and automation
– start-page: 3483
  year: 2015
  end-page: 3491
  ident: b66
  article-title: Learning structured output representation using deep conditional generative models
  publication-title: Advances in neural information processing systems
– reference: Verma N, Boyer E, Verbeek J. FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis. In: CVPR - IEEE conference on computer vision & pattern recognition. Salt Lake City, United States; 2018, URL.
– reference: Pavlakos G, Choutas V, Ghorbani N, Bolkart T, Osman AAA, Tzionas D, et al. Expressive Body Capture: 3D Hands, Face, and Body from a Single Image. In: Proceedings IEEE conf. on computer vision and pattern recognition. CVPR, 2019, p. 10975–85.
– year: 2019
  ident: b19
  article-title: Geometric disentanglement for generative latent shape models
  publication-title: 2019 IEEE/CVF international conference on computer vision
– start-page: 349
  year: 2019
  end-page: 362
  ident: b23
  article-title: A simple approach to intrinsic correspondence learning on unstructured 3D meshes
  publication-title: Lecture notes in computer science
– volume: 107
  start-page: 131
  year: 2022
  end-page: 143
  ident: b14
  article-title: Representation learning of 3D meshes using an autoencoder in the spectral domain
  publication-title: Comput Graph
– year: 2018
  ident: 10.1016/j.cag.2023.07.001_b22
  article-title: SplineCNN: Fast geometric deep learning with continuous B-spline kernels
– start-page: 3844
  year: 2016
  ident: 10.1016/j.cag.2023.07.001_b30
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
– year: 2005
  ident: 10.1016/j.cag.2023.07.001_b45
  article-title: Gaussian process dynamical models
– year: 2022
  ident: 10.1016/j.cag.2023.07.001_b44
– year: 2017
  ident: 10.1016/j.cag.2023.07.001_b41
– year: 2017
  ident: 10.1016/j.cag.2023.07.001_b53
  article-title: Deep representation learning for human motion prediction and classification
– year: 2019
  ident: 10.1016/j.cag.2023.07.001_b3
  article-title: Learning trajectory dependencies for human motion prediction
– ident: 10.1016/j.cag.2023.07.001_b69
  doi: 10.1109/ICCV.2019.00554
– volume: 4
  start-page: 419
  issue: 3
  year: 1962
  ident: 10.1016/j.cag.2023.07.001_b71
  article-title: Note on a method for calculating corrected sums of squares and products
  publication-title: Technometrics
  doi: 10.1080/00401706.1962.10490022
– volume: 39
  start-page: 204
  issue: 6
  year: 2020
  ident: 10.1016/j.cag.2023.07.001_b34
  article-title: ZerNet: Convolutional neural networks on arbitrary surfaces via zernike local tangent space estimation
  publication-title: Comput Graph Forum
  doi: 10.1111/cgf.14012
– year: 2014
  ident: 10.1016/j.cag.2023.07.001_b29
  article-title: Spectral networks and locally connected networks on graphs
– year: 2019
  ident: 10.1016/j.cag.2023.07.001_b24
  article-title: Neural 3D morphable models: Spiral convolutional networks for 3D shape representation learning and generation
– year: 2021
  ident: 10.1016/j.cag.2023.07.001_b9
– year: 2019
  ident: 10.1016/j.cag.2023.07.001_b42
– ident: 10.1016/j.cag.2023.07.001_b27
  doi: 10.1109/CVPR.2018.00275
– volume: 67
  start-page: 97
  issue: 1
  year: 2019
  ident: 10.1016/j.cag.2023.07.001_b33
  article-title: CayleyNets: Graph convolutional neural networks with complex rational spectral filters
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2018.2879624
– start-page: 5105
  year: 2017
  ident: 10.1016/j.cag.2023.07.001_b18
  article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space
– volume: 129
  start-page: 2745
  issue: 10
  year: 2021
  ident: 10.1016/j.cag.2023.07.001_b36
  article-title: Spectral shape recovery and analysis via data-driven connections
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-021-01492-6
– start-page: 3197
  year: 2016
  ident: 10.1016/j.cag.2023.07.001_b21
  article-title: Learning shape correspondence with anisotropic convolutional neural networks
– year: 2021
  ident: 10.1016/j.cag.2023.07.001_b26
– year: 2015
  ident: 10.1016/j.cag.2023.07.001_b48
  article-title: Recurrent network models for human dynamics
– year: 2021
  ident: 10.1016/j.cag.2023.07.001_b63
– year: 2022
  ident: 10.1016/j.cag.2023.07.001_b65
– start-page: 5998
  year: 2017
  ident: 10.1016/j.cag.2023.07.001_b59
  article-title: Attention is all you need
– volume: 34
  start-page: 18
  issue: 4
  year: 2017
  ident: 10.1016/j.cag.2023.07.001_b1
  article-title: Geometric deep learning: Going beyond euclidean data
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2017.2693418
– ident: 10.1016/j.cag.2023.07.001_b74
  doi: 10.1109/CVPR.2019.01123
– year: 2019
  ident: 10.1016/j.cag.2023.07.001_b19
  article-title: Geometric disentanglement for generative latent shape models
– year: 2017
  ident: 10.1016/j.cag.2023.07.001_b50
  article-title: On human motion prediction using recurrent neural networks
– year: 2018
  ident: 10.1016/j.cag.2023.07.001_b15
– year: 2006
  ident: 10.1016/j.cag.2023.07.001_b46
  article-title: Modeling human motion using binary latent variables
– start-page: 725
  year: 2018
  ident: 10.1016/j.cag.2023.07.001_b32
  article-title: Generating 3D faces using convolutional mesh autoencoders
  doi: 10.1007/978-3-030-01219-9_43
– year: 2019
  ident: 10.1016/j.cag.2023.07.001_b55
  article-title: Human motion prediction via spatio-temporal inpainting
– volume: 36
  start-page: 1325
  issue: 7
  year: 2014
  ident: 10.1016/j.cag.2023.07.001_b70
  article-title: Human3.6M: Large scale datasets and predictive methods for 3D human sensing in natural environments
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.248
– start-page: 349
  year: 2019
  ident: 10.1016/j.cag.2023.07.001_b23
  article-title: A simple approach to intrinsic correspondence learning on unstructured 3D meshes
  doi: 10.1007/978-3-030-11015-4_26
– year: 2017
  ident: 10.1016/j.cag.2023.07.001_b40
– volume: 41
  start-page: 13
  issue: 5
  year: 2022
  ident: 10.1016/j.cag.2023.07.001_b37
  article-title: Localized shape modelling with global coherence: An inverse spectral approach
  publication-title: Comput Graph Forum
  doi: 10.1111/cgf.14599
– volume: 43
  start-page: 4338
  issue: 12
  year: 2021
  ident: 10.1016/j.cag.2023.07.001_b16
  article-title: Deep learning for 3D point clouds: A survey
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2020.3005434
– year: 2021
  ident: 10.1016/j.cag.2023.07.001_b61
  article-title: A spatio-temporal transformer for 3D human motion prediction
– year: 2015
  ident: 10.1016/j.cag.2023.07.001_b20
  article-title: Geodesic convolutional neural networks on Riemannian manifolds
– volume: 35
  start-page: 1
  issue: 5
  year: 2016
  ident: 10.1016/j.cag.2023.07.001_b39
  article-title: Efficient and flexible deformation representation for data-driven surface modeling
  publication-title: ACM Trans Graph
  doi: 10.1145/2908736
– year: 2017
  ident: 10.1016/j.cag.2023.07.001_b67
  article-title: 3D menagerie: Modeling the 3D shape and pose of animals
– year: 2021
  ident: 10.1016/j.cag.2023.07.001_b43
  article-title: NeuroMorph: Unsupervised shape interpolation and correspondence in one go
– start-page: 655
  year: 2020
  ident: 10.1016/j.cag.2023.07.001_b12
  article-title: Intrinsic point cloud interpolation via dual latent space navigation
– volume: 38
  start-page: 1
  issue: 4
  year: 2019
  ident: 10.1016/j.cag.2023.07.001_b25
  article-title: MeshCNN
  publication-title: ACM Trans Graph
  doi: 10.1145/3306346.3322959
– start-page: 226
  year: 2020
  ident: 10.1016/j.cag.2023.07.001_b62
  article-title: Learning progressive joint propagation for human motion prediction
– year: 2014
  ident: 10.1016/j.cag.2023.07.001_b47
  article-title: Efficient nonlinear Markov models for human motion
– year: 2018
  ident: 10.1016/j.cag.2023.07.001_b2
  article-title: Convolutional sequence to sequence model for human dynamics
– year: 2023
  ident: 10.1016/j.cag.2023.07.001_b6
  article-title: Back to MLP: A simple baseline for human motion prediction
– volume: 129
  start-page: 2513
  issue: 9
  year: 2021
  ident: 10.1016/j.cag.2023.07.001_b5
  article-title: Multi-level motion attention for human motion prediction
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-021-01483-7
– volume: 34
  start-page: 1
  issue: 6
  year: 2015
  ident: 10.1016/j.cag.2023.07.001_b10
  article-title: SMPL
  publication-title: ACM Trans Graph
  doi: 10.1145/2816795.2818013
– start-page: 823
  year: 2018
  ident: 10.1016/j.cag.2023.07.001_b56
  article-title: Adversarial geometry-aware human motion prediction
– volume: 58
  start-page: 12
  year: 2016
  ident: 10.1016/j.cag.2023.07.001_b68
  article-title: A 3D+t Laplace operator for temporal mesh sequences
  publication-title: Comput Graph
  doi: 10.1016/j.cag.2016.05.018
– year: 2020
  ident: 10.1016/j.cag.2023.07.001_b28
  article-title: Primal-dual mesh convolutional neural networks
– start-page: 19
  year: 2020
  ident: 10.1016/j.cag.2023.07.001_b11
  article-title: LIMP: Learning latent shape representations with metric preservation priors
– volume: 107
  start-page: 131
  year: 2022
  ident: 10.1016/j.cag.2023.07.001_b14
  article-title: Representation learning of 3D meshes using an autoencoder in the spectral domain
  publication-title: Comput Graph
  doi: 10.1016/j.cag.2022.07.011
– volume: 41
  start-page: 1
  issue: 3
  year: 2022
  ident: 10.1016/j.cag.2023.07.001_b38
  article-title: DiffusionNet: Discretization agnostic learning on surfaces
  publication-title: ACM Trans Graph
  doi: 10.1145/3507905
– year: 2019
  ident: 10.1016/j.cag.2023.07.001_b51
  article-title: Action-agnostic human pose forecasting
– start-page: 474
  year: 2020
  ident: 10.1016/j.cag.2023.07.001_b4
  article-title: History repeats itself: Human motion prediction via motion attention
– start-page: 3483
  year: 2015
  ident: 10.1016/j.cag.2023.07.001_b66
  article-title: Learning structured output representation using deep conditional generative models
– start-page: 651
  year: 2021
  ident: 10.1016/j.cag.2023.07.001_b57
  article-title: Motion prediction using temporal inception module
– year: 2021
  ident: 10.1016/j.cag.2023.07.001_b7
  article-title: Space-time-separable graph convolutional network for pose forecasting
– ident: 10.1016/j.cag.2023.07.001_b17
– year: 2016
  ident: 10.1016/j.cag.2023.07.001_b49
  article-title: Structural-RNN: Deep learning on spatio-temporal graphs
– year: 2017
  ident: 10.1016/j.cag.2023.07.001_b31
  article-title: Semi-supervised classification with graph convolutional networks
– year: 2019
  ident: 10.1016/j.cag.2023.07.001_b52
  article-title: Towards natural and accurate future motion prediction of humans and animals
– year: 2022
  ident: 10.1016/j.cag.2023.07.001_b58
  article-title: Progressively generating better initial guesses towards next stages for high-quality human motion prediction
– volume: 31
  start-page: 1
  issue: 4
  year: 2012
  ident: 10.1016/j.cag.2023.07.001_b73
  article-title: Functional maps
  publication-title: ACM Trans Graph
  doi: 10.1145/2185520.2185526
– year: 2020
  ident: 10.1016/j.cag.2023.07.001_b35
  article-title: Instant recovery of shape from spectrum via latent space connections
– start-page: 935
  year: 2018
  ident: 10.1016/j.cag.2023.07.001_b60
  article-title: Long-term human motion prediction by modeling motion context and enhancing motion dynamic
  doi: 10.24963/ijcai.2018/130
– start-page: 480
  year: 2022
  ident: 10.1016/j.cag.2023.07.001_b64
  article-title: TEMOS: Generating diverse human motions from textual descriptions
  doi: 10.1007/978-3-031-20047-2_28
– year: 2022
  ident: 10.1016/j.cag.2023.07.001_b8
  article-title: Spatio-temporal gating-adjacency GCN for human motion prediction
– year: 2019
  ident: 10.1016/j.cag.2023.07.001_b13
  article-title: SpiralNet++: A fast and highly efficient mesh convolution operator
– year: 2018
  ident: 10.1016/j.cag.2023.07.001_b72
– year: 2018
  ident: 10.1016/j.cag.2023.07.001_b54
  article-title: Anticipating many futures: Online human motion prediction and generation for human-robot interaction
SSID ssj0002264
Score 2.393756
Snippet We present SpecTrHuMS, a Spectral Transformer for 3D triangular Human Mesh Sequence learning which combines known deep learning models with spectral mesh...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 191
SubjectTerms Autoencoder
Computer Science
Computer Vision and Pattern Recognition
Geometric deep learning
Human body triangular mesh sequences
Machine Learning
Spectral analysis
Transformers
Title SpecTrHuMS: Spectral transformer for human mesh sequence learning
URI https://dx.doi.org/10.1016/j.cag.2023.07.001
https://hal.science/hal-04154623
Volume 115
WOSCitedRecordID wos001056807800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0097-8493
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002264
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKxwM8THxqY4AixBMoKG7i2OGtYpsKKhMSBfUtshNnH2rTqm2qvfC_c2fHXhjaxB54SRs3dtLcT747--53hLzlCStoVJYhk0kaJrRMQwlWCBhymUT-KCVMEM3PMT85EdNp9q3X--VyYbYzXtfi8jJb_ldRQxsIG1Nn7yBuPyg0wHcQOhxB7HD8J8FjRfnJatR8_Y7ePp7hYgbWgrAWql6Z0EJbnG-u12fvXTi1KyFx2rVYXdmHtQGJ4bfuBMiP9Vw39XmbTTiz2-7dYJpDXVsWg-PZwiQW-p5yu2js9WZtvsHyR83c_37YLBeWE8H23HTXJwZXkW5-zs1ADya2DqKfcynrzJrUFuxqFfDAkB78PbfbZYYL8NtPP-CNDOlqe6c_eLSv6TcfdegC2i5yGCLHIfIId9_Bed4ZcJaJPtkZfj6afvGqHLOMLY2p_QtuW9wECF57jpsMm3tnbonemCyTR2S39TWCocXIY9LT9RPysMNA-RS0qkfLx8BhJehgJYCPwGAlQKwEDiuBw8oz8uP4aPJpFLZVNcIi5skmVIViQupCcaErJVlcRmUcpxlm0ZdlxBSrmK4KUMiUVkjlI3icKCrjgaQlRlE9J_16Ues9EihNJU0zEXHNkrQSWYHlgySveAmGrxL7JHKvJC9aynmsfDLLbxTFPnnnuywt38ptFyfuPeetwWgNwRwwc1u3NyATPzwSrI-G4xzbkLAiAY9gS1_c5UEOyIMr6L8k_c2q0a_I_WK7OV-vXreo-g1Ol5OD
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SpecTrHuMS%3A+Spectral+transformer+for+human+mesh+sequence+learning&rft.jtitle=Computers+%26+graphics&rft.au=Lemeunier%2C+Cl%C3%A9ment&rft.au=Denis%2C+Florence&rft.au=Lavou%C3%A9%2C+Guillaume&rft.au=Dupont%2C+Florent&rft.date=2023-10-01&rft.issn=0097-8493&rft.volume=115&rft.spage=191&rft.epage=203&rft_id=info:doi/10.1016%2Fj.cag.2023.07.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cag_2023_07_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0097-8493&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0097-8493&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0097-8493&client=summon