Modular Termination for Second-Order Computation Rules and Application to Algebraic Effect Handlers

We present a new modular proof method of termination for second-order computation, and report its implementation SOL. The proof method is useful for proving termination of higher-order foundational calculi. To establish the method, we use a variation of semantic labelling translation and Blanqui...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Logical methods in computer science Ročník 18, Issue 2
Hlavný autor: Hamana, Makoto
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Logical Methods in Computer Science e.V 14.06.2022
Predmet:
ISSN:1860-5974, 1860-5974
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We present a new modular proof method of termination for second-order computation, and report its implementation SOL. The proof method is useful for proving termination of higher-order foundational calculi. To establish the method, we use a variation of semantic labelling translation and Blanqui's General Schema: a syntactic criterion of strong normalisation. As an application, we apply this method to show termination of a variant of call-by-push-value calculus with algebraic effects and effect handlers. We also show that our tool SOL is effective to solve higher-order termination problems.
ISSN:1860-5974
1860-5974
DOI:10.46298/lmcs-18(2:18)2022