Fast convex optimization via inertial dynamics with Hessian driven damping

We first study the fast minimization properties of the trajectories of the second-order evolution equationx¨(t)+αtx˙(t)+β∇2Φ(x(t))x˙(t)+∇Φ(x(t))=0, where Φ:H→R is a smooth convex function acting on a real Hilbert space H, and α, β are positive parameters. This inertial system combines an isotropic v...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Differential Equations Vol. 261; no. 10; pp. 5734 - 5783
Main Authors: Attouch, Hedy, Peypouquet, Juan, Redont, Patrick
Format: Journal Article
Language:English
Published: Elsevier Inc 15.11.2016
Elsevier
Subjects:
ISSN:0022-0396, 1090-2732
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We first study the fast minimization properties of the trajectories of the second-order evolution equationx¨(t)+αtx˙(t)+β∇2Φ(x(t))x˙(t)+∇Φ(x(t))=0, where Φ:H→R is a smooth convex function acting on a real Hilbert space H, and α, β are positive parameters. This inertial system combines an isotropic viscous damping which vanishes asymptotically, and a geometrical Hessian driven damping, which makes it naturally related to Newton's and Levenberg–Marquardt methods. For α≥3, and β>0, along any trajectory, fast convergence of the valuesΦ(x(t))−minH⁡Φ=O(t−2) is obtained, together with rapid convergence of the gradients ∇Φ(x(t)) to zero. For α>3, just assuming that argminΦ≠∅, we show that any trajectory converges weakly to a minimizer of Φ, and that Φ(x(t))−minH⁡Φ=o(t−2). Strong convergence is established in various practical situations. In particular, for the strongly convex case, we obtain an even faster speed of convergence which can be arbitrarily fast depending on the choice of α. More precisely, we have Φ(x(t))−minH⁡Φ=O(t−23α). Then, we extend the results to the case of a general proper lower-semicontinuous convex function Φ:H→R∪{+∞}. This is based on the crucial property that the inertial dynamics with Hessian driven damping can be equivalently written as a first-order system in time and space, allowing to extend it by simply replacing the gradient with the subdifferential. By explicit–implicit time discretization, this opens a gate to new − possibly more rapid − inertial algorithms, expanding the field of FISTA methods for convex structured optimization problems.
AbstractList We first study the fast minimization properties of the trajectories of the second-order evolution equationx¨(t)+αtx˙(t)+β∇2Φ(x(t))x˙(t)+∇Φ(x(t))=0, where Φ:H→R is a smooth convex function acting on a real Hilbert space H, and α, β are positive parameters. This inertial system combines an isotropic viscous damping which vanishes asymptotically, and a geometrical Hessian driven damping, which makes it naturally related to Newton's and Levenberg–Marquardt methods. For α≥3, and β>0, along any trajectory, fast convergence of the valuesΦ(x(t))−minH⁡Φ=O(t−2) is obtained, together with rapid convergence of the gradients ∇Φ(x(t)) to zero. For α>3, just assuming that argminΦ≠∅, we show that any trajectory converges weakly to a minimizer of Φ, and that Φ(x(t))−minH⁡Φ=o(t−2). Strong convergence is established in various practical situations. In particular, for the strongly convex case, we obtain an even faster speed of convergence which can be arbitrarily fast depending on the choice of α. More precisely, we have Φ(x(t))−minH⁡Φ=O(t−23α). Then, we extend the results to the case of a general proper lower-semicontinuous convex function Φ:H→R∪{+∞}. This is based on the crucial property that the inertial dynamics with Hessian driven damping can be equivalently written as a first-order system in time and space, allowing to extend it by simply replacing the gradient with the subdifferential. By explicit–implicit time discretization, this opens a gate to new − possibly more rapid − inertial algorithms, expanding the field of FISTA methods for convex structured optimization problems.
Author Attouch, Hedy
Peypouquet, Juan
Redont, Patrick
Author_xml – sequence: 1
  givenname: Hedy
  surname: Attouch
  fullname: Attouch, Hedy
  email: hedy.attouch@univ-montp2.fr
  organization: Institut Montpelliérain Alexander Grothendieck, UMR 5149 CNRS, Université Montpellier 2, place Eugène Bataillon, 34095 Montpellier cedex 5, France
– sequence: 2
  givenname: Juan
  orcidid: 0000-0002-8551-0522
  surname: Peypouquet
  fullname: Peypouquet, Juan
  email: juan.peypouquet@usm.cl
  organization: Univesidad Técnica Federico Santa María, Av España 1680, Valparaiso, Chile
– sequence: 3
  givenname: Patrick
  surname: Redont
  fullname: Redont, Patrick
  email: patrick.redont@univ-montp2.fr
  organization: Institut Montpelliérain Alexander Grothendieck, UMR 5149 CNRS, Université Montpellier 2, place Eugène Bataillon, 34095 Montpellier cedex 5, France
BackLink https://hal.science/hal-02072674$$DView record in HAL
BookMark eNp9kE9P20AQxVcIJJLAB-DmKwe7-8-7tjgh1BBQpF7a82pYj2GiZB3trtymn75OAxcOnGY0er83em_OzsMQkLEbwSvBhfm2qTYdVnJaK95UXPIzNhO85aW0Sp6zGedSlly15pLNU9pwLkRt6hl7XkLKhR_CiH-KYZ9pR38h0xCKkaCggDETbIvuEGBHPhW_Kb8VK0yJIBRdpBGnAbs9hdcrdtHDNuH1-1ywX8vvPx9W5frH49PD_br0yupcQq0NcKHrFjV4gMYYbjuwDSroVY29VlK_qPYFvRXGG6lt00ndixqVbj2oBbs9-b7B1u0j7SAe3ADkVvdrd7xN6a00Vo9i0tqT1schpYi985T_58sRaOsEd8f63MZN9bljfY43R4OJFJ_Ij1dfMXcnBqf4I2F0yRMGjx1F9Nl1A31B_wM_s4n6
CitedBy_id crossref_primary_10_1007_s11228_017_0411_1
crossref_primary_10_1007_s10208_023_09636_5
crossref_primary_10_1007_s10957_024_02417_2
crossref_primary_10_1007_s40574_023_00389_1
crossref_primary_10_1007_s10589_023_00536_6
crossref_primary_10_1007_s10957_023_02290_5
crossref_primary_10_1007_s40314_024_02922_0
crossref_primary_10_1007_s10957_025_02798_y
crossref_primary_10_1080_02331934_2022_2119084
crossref_primary_10_1007_s10589_019_00165_y
crossref_primary_10_1016_j_jde_2021_12_005
crossref_primary_10_1007_s11228_019_00510_7
crossref_primary_10_1007_s10107_021_01681_8
crossref_primary_10_1007_s11228_021_00593_1
crossref_primary_10_1080_02331934_2024_2422563
crossref_primary_10_1007_s11228_023_00663_6
crossref_primary_10_1007_s10107_020_01591_1
crossref_primary_10_1137_17M1136845
crossref_primary_10_1007_s00245_023_10058_6
crossref_primary_10_12677_aam_2024_135200
crossref_primary_10_1287_moor_2023_0186
crossref_primary_10_1007_s10589_023_00547_3
crossref_primary_10_1007_s10589_021_00332_0
crossref_primary_10_1007_s11075_021_01181_y
crossref_primary_10_1016_j_jmaa_2023_127689
crossref_primary_10_1080_02331934_2021_2009828
crossref_primary_10_1016_j_jde_2021_09_021
crossref_primary_10_1109_JAS_2024_124380
crossref_primary_10_1287_moor_2022_1343
crossref_primary_10_1007_s10589_025_00719_3
crossref_primary_10_1137_20M1333316
crossref_primary_10_1007_s10589_023_00509_9
crossref_primary_10_1137_19M1307779
crossref_primary_10_1016_j_cnsns_2024_108010
crossref_primary_10_1007_s10957_024_02462_x
crossref_primary_10_1007_s10957_024_02500_8
crossref_primary_10_1007_s00245_022_09846_3
crossref_primary_10_1080_02331934_2020_1764953
crossref_primary_10_1007_s11228_020_00564_y
crossref_primary_10_1007_s10589_024_00626_z
crossref_primary_10_1080_00036811_2018_1495330
crossref_primary_10_1080_02331934_2025_2526726
crossref_primary_10_1007_s11590_020_01663_3
crossref_primary_10_1016_j_jde_2023_03_014
crossref_primary_10_1007_s10957_023_02330_0
crossref_primary_10_1007_s10957_023_02228_x
crossref_primary_10_1093_imamci_dnac020
crossref_primary_10_1007_s00245_023_09997_x
crossref_primary_10_1080_00207179_2020_1756415
crossref_primary_10_1109_TAC_2019_2945287
crossref_primary_10_1186_s13663_021_00702_7
crossref_primary_10_3934_eect_2025054
crossref_primary_10_1080_02331934_2021_1925896
crossref_primary_10_1007_s10107_020_01528_8
crossref_primary_10_1137_22M1474357
crossref_primary_10_1137_23M158111X
crossref_primary_10_1137_23M1599045
crossref_primary_10_1080_02331934_2024_2359540
crossref_primary_10_1137_18M1230207
crossref_primary_10_1080_02331934_2018_1452922
crossref_primary_10_1080_02331934_2023_2253813
crossref_primary_10_1137_22M1498486
crossref_primary_10_3390_app10062036
crossref_primary_10_1016_j_nahs_2023_101402
crossref_primary_10_1007_s00245_023_10055_9
crossref_primary_10_1137_20M1382027
crossref_primary_10_1007_s10107_020_01534_w
crossref_primary_10_1137_18M1234795
crossref_primary_10_1007_s10107_021_01721_3
crossref_primary_10_1137_22M1504305
crossref_primary_10_1007_s00245_020_09692_1
crossref_primary_10_1007_s10957_021_01859_2
crossref_primary_10_1137_23M1549675
crossref_primary_10_1007_s11228_020_00548_y
crossref_primary_10_1007_s40305_024_00542_3
crossref_primary_10_1007_s00186_024_00867_y
crossref_primary_10_1007_s10589_024_00620_5
crossref_primary_10_1007_s10884_022_10160_3
Cites_doi 10.1016/0022-1236(75)90027-0
10.1016/S0021-7824(01)01253-3
10.1137/130910294
10.1142/S0219199700000025
10.1137/080716542
10.1007/s10107-004-0552-5
10.1090/S0002-9904-1967-11761-0
10.1007/978-1-4419-9467-7
10.1090/S0002-9947-09-04785-0
10.1137/S0363012998335802
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1016/j.jde.2016.08.020
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1090-2732
EndPage 5783
ExternalDocumentID oai:HAL:hal-02072674v1
10_1016_j_jde_2016_08_020
S002203961630225X
GrantInformation_xml – fundername: FONDECYT
  grantid: 1140829
  funderid: http://dx.doi.org/10.13039/501100002850
– fundername: Universidad de Chile
  funderid: http://dx.doi.org/10.13039/501100005853
– fundername: ECOS-CONICYT
  grantid: C13E03
– fundername: ICM/FIC
  grantid: RC130003
– fundername: CONICYT
  grantid: ACT-1106
  funderid: http://dx.doi.org/10.13039/501100002848
– fundername: CONICYT
  grantid: 140183
  funderid: http://dx.doi.org/10.13039/501100002848
– fundername: Air Force Office of Scientific Research
  grantid: FA9550-14-1-0056
  funderid: http://dx.doi.org/10.13039/100000181
– fundername: CONICYT
  grantid: 15MATH-02
  funderid: http://dx.doi.org/10.13039/501100002848
GroupedDBID --K
--M
--Z
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AASFE
AAXUO
ABAOU
ABJNI
ABLJU
ABMAC
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
UPT
WH7
YQT
ZMT
ZU3
~G-
29K
5VS
6TJ
9DU
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABUFD
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
D-I
EFKBS
FGOYB
G-2
HZ~
MVM
OHT
R2-
SEW
WUQ
XPP
YYP
ZCG
~HD
1XC
ID FETCH-LOGICAL-c374t-a546a01459e4acaa86607da78e3af35ef4324b39bec716c62478d24f15e349ca3
ISICitedReferencesCount 95
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000384874400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-0396
IngestDate Tue Oct 14 20:30:51 EDT 2025
Sat Nov 29 07:28:35 EST 2025
Tue Nov 18 22:24:11 EST 2025
Fri Feb 23 02:32:25 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Gradient flows
Inertial dynamics
Convex optimization
Hessian-driven damping
Fast convergent methods
Forward–backward algorithm
Gradient flowsInertial dynamics
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c374t-a546a01459e4acaa86607da78e3af35ef4324b39bec716c62478d24f15e349ca3
ORCID 0000-0002-8551-0522
OpenAccessLink http://americanae.aecid.es/americanae/es/registros/registro.do?tipoRegistro=MTD&idBib=3263257
PageCount 50
ParticipantIDs hal_primary_oai_HAL_hal_02072674v1
crossref_citationtrail_10_1016_j_jde_2016_08_020
crossref_primary_10_1016_j_jde_2016_08_020
elsevier_sciencedirect_doi_10_1016_j_jde_2016_08_020
PublicationCentury 2000
PublicationDate 2016-11-15
PublicationDateYYYYMMDD 2016-11-15
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-15
  day: 15
PublicationDecade 2010
PublicationTitle Journal of Differential Equations
PublicationYear 2016
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Bruck (br0190) 1975; 18
Chambolle, Dossal (br0230)
Cabot, Engler, Gadat (br0220) 2009; 17
Alvarez, Attouch, Bolte, Redont (br0060) 2002; 81
Bauschke, Combettes (br0150) 2011
Attouch, Goudou, Redont (br0100) 2000; 2
Beck, Teboulle (br0160) 2009; 2
Su, Boyd, Candès (br0360) 2014; 27
Attouch, Chbani, Peypouquet, Redont (br0130) 2015
Attouch, Peypouquet, Redont (br0120) 2014; 24
Lebedev (br0240) 1972
Opial (br0330) 1967; 73
Peypouquet (br0350) 2015
Nesterov (br0300) 2004; vol. 87
Nesterov (br0310) 2005; 103
Attouch, Cabot, Redont (br0080) 2002; 12
Cabot, Engler, Gadat (br0210) 2009; 361
Alvarez (br0030) 2000; 38
Attouch, Maingé, Redont (br0110) 2012; 4
Nesterov (br0320) 2007
Brézis (br0170) 1972; vol. 5
R. May, Asymptotic for a second order evolution equation with convex potential and vanishing damping term, preprint.
Nesterov (br0290) 1983; 27
Bauschke (10.1016/j.jde.2016.08.020_br0150) 2011
Chambolle (10.1016/j.jde.2016.08.020_br0230)
Nesterov (10.1016/j.jde.2016.08.020_br0320) 2007
Su (10.1016/j.jde.2016.08.020_br0360) 2014; 27
Attouch (10.1016/j.jde.2016.08.020_br0100) 2000; 2
Nesterov (10.1016/j.jde.2016.08.020_br0290) 1983; 27
Opial (10.1016/j.jde.2016.08.020_br0330) 1967; 73
10.1016/j.jde.2016.08.020_br0270
Attouch (10.1016/j.jde.2016.08.020_br0080) 2002; 12
Bruck (10.1016/j.jde.2016.08.020_br0190) 1975; 18
Cabot (10.1016/j.jde.2016.08.020_br0220) 2009; 17
Attouch (10.1016/j.jde.2016.08.020_br0110) 2012; 4
Attouch (10.1016/j.jde.2016.08.020_br0130) 2015
Peypouquet (10.1016/j.jde.2016.08.020_br0350) 2015
Alvarez (10.1016/j.jde.2016.08.020_br0030) 2000; 38
Nesterov (10.1016/j.jde.2016.08.020_br0300) 2004; vol. 87
Nesterov (10.1016/j.jde.2016.08.020_br0310) 2005; 103
Alvarez (10.1016/j.jde.2016.08.020_br0060) 2002; 81
Attouch (10.1016/j.jde.2016.08.020_br0120) 2014; 24
Beck (10.1016/j.jde.2016.08.020_br0160) 2009; 2
Brézis (10.1016/j.jde.2016.08.020_br0170) 1972; vol. 5
Cabot (10.1016/j.jde.2016.08.020_br0210) 2009; 361
Lebedev (10.1016/j.jde.2016.08.020_br0240) 1972
References_xml – volume: 12
  start-page: 273
  year: 2002
  end-page: 306
  ident: br0080
  article-title: The dynamics of elastic shocks via epigraphical regularization of a differential inclusion
  publication-title: Adv. Math. Sci. Appl.
– volume: 4
  start-page: 27
  year: 2012
  end-page: 65
  ident: br0110
  article-title: A second-order differential system with Hessian-driven damping; application to non-elastic shock laws
  publication-title: Differ. Equ. Appl.
– year: 2007
  ident: br0320
  article-title: Gradient methods for minimizing composite objective function
– volume: 2
  start-page: 1
  year: 2000
  end-page: 34
  ident: br0100
  article-title: The heavy ball with friction method. The continuous dynamical system, global exploration of the local minima of a real-valued function by asymptotical analysis of a dissipative dynamical system
  publication-title: Commun. Contemp. Math.
– volume: 27
  start-page: 2510
  year: 2014
  end-page: 2518
  ident: br0360
  article-title: A differential equation for modeling Nesterov's accelerated gradient method: theory and insights
  publication-title: Neural Inf. Process. Syst.
– volume: 73
  start-page: 591
  year: 1967
  end-page: 597
  ident: br0330
  article-title: Weak convergence of the sequence of successive approximations for nonexpansive mappings
  publication-title: Bull. Amer. Math. Soc.
– volume: 24
  start-page: 232
  year: 2014
  end-page: 256
  ident: br0120
  article-title: A dynamical approach to an inertial forward–backward algorithm for convex minimization
  publication-title: SIAM J. Optim.
– volume: 18
  start-page: 15
  year: 1975
  end-page: 26
  ident: br0190
  article-title: Asymptotic convergence of nonlinear contraction semigroups in Hilbert spaces
  publication-title: J. Funct. Anal.
– volume: 17
  year: 2009
  ident: br0220
  article-title: Second order differential equations with asymptotically small dissipation and piecewise flat potentials
  publication-title: Electron. J. Differential Equations
– volume: 38
  start-page: 1102
  year: 2000
  end-page: 1119
  ident: br0030
  article-title: On the minimizing property of a second-order dissipative system in Hilbert spaces
  publication-title: SIAM J. Control Optim.
– volume: 81
  start-page: 747
  year: 2002
  end-page: 779
  ident: br0060
  article-title: A second-order gradient-like dissipative dynamical system with Hessian-driven damping. Application to optimization and mechanics
  publication-title: J. Math. Pures Appl.
– year: 2015
  ident: br0130
  article-title: Fast convergence of an inertial gradient-like system with vanishing viscosity
  publication-title: Math. Program.
– year: 2011
  ident: br0150
  article-title: Convex Analysis and Monotone Operator Theory in Hilbert spaces
  publication-title: CMS Books Math.
– volume: 2
  start-page: 183
  year: 2009
  end-page: 202
  ident: br0160
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imaging Sci.
– year: 1972
  ident: br0240
  article-title: Special Functions and Their Applications
– volume: vol. 5
  year: 1972
  ident: br0170
  article-title: Opérateurs maximaux monotones dans les espaces de Hilbert et équations d'évolution
  publication-title: Lect. Notes
– reference: R. May, Asymptotic for a second order evolution equation with convex potential and vanishing damping term, preprint.
– volume: 361
  start-page: 5983
  year: 2009
  end-page: 6017
  ident: br0210
  article-title: On the long time behavior of second order differential equations with asymptotically small dissipation
  publication-title: Trans. Amer. Math. Soc.
– ident: br0230
  article-title: On the convergence of the iterates of Fista
– year: 2015
  ident: br0350
  article-title: Convex Optimization in Normed Spaces. Theory, Methods and Examples
  publication-title: Springer Briefs Optim.
– volume: 103
  start-page: 127
  year: 2005
  end-page: 152
  ident: br0310
  article-title: Smooth minimization of non-smooth functions
  publication-title: Math. Program.
– volume: 27
  start-page: 372
  year: 1983
  end-page: 376
  ident: br0290
  article-title: A method of solving a convex programming problem with convergence rate O(1/k2)
  publication-title: Sov. Math., Dokl.
– volume: vol. 87
  year: 2004
  ident: br0300
  article-title: Introductory Lectures on Convex Optimization: A Basic Course
  publication-title: Appl. Optim.
– volume: 27
  start-page: 372
  year: 1983
  ident: 10.1016/j.jde.2016.08.020_br0290
  article-title: A method of solving a convex programming problem with convergence rate O(1/k2)
  publication-title: Sov. Math., Dokl.
– volume: 18
  start-page: 15
  year: 1975
  ident: 10.1016/j.jde.2016.08.020_br0190
  article-title: Asymptotic convergence of nonlinear contraction semigroups in Hilbert spaces
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(75)90027-0
– year: 2015
  ident: 10.1016/j.jde.2016.08.020_br0130
  article-title: Fast convergence of an inertial gradient-like system with vanishing viscosity
  publication-title: Math. Program.
– volume: 81
  start-page: 747
  issue: 8
  year: 2002
  ident: 10.1016/j.jde.2016.08.020_br0060
  article-title: A second-order gradient-like dissipative dynamical system with Hessian-driven damping. Application to optimization and mechanics
  publication-title: J. Math. Pures Appl.
  doi: 10.1016/S0021-7824(01)01253-3
– volume: 24
  start-page: 232
  issue: 1
  year: 2014
  ident: 10.1016/j.jde.2016.08.020_br0120
  article-title: A dynamical approach to an inertial forward–backward algorithm for convex minimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/130910294
– volume: vol. 87
  year: 2004
  ident: 10.1016/j.jde.2016.08.020_br0300
  article-title: Introductory Lectures on Convex Optimization: A Basic Course
– year: 1972
  ident: 10.1016/j.jde.2016.08.020_br0240
– year: 2015
  ident: 10.1016/j.jde.2016.08.020_br0350
  article-title: Convex Optimization in Normed Spaces. Theory, Methods and Examples
– volume: 2
  start-page: 1
  issue: 1
  year: 2000
  ident: 10.1016/j.jde.2016.08.020_br0100
  article-title: The heavy ball with friction method. The continuous dynamical system, global exploration of the local minima of a real-valued function by asymptotical analysis of a dissipative dynamical system
  publication-title: Commun. Contemp. Math.
  doi: 10.1142/S0219199700000025
– ident: 10.1016/j.jde.2016.08.020_br0230
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  ident: 10.1016/j.jde.2016.08.020_br0160
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080716542
– volume: 4
  start-page: 27
  issue: 1
  year: 2012
  ident: 10.1016/j.jde.2016.08.020_br0110
  article-title: A second-order differential system with Hessian-driven damping; application to non-elastic shock laws
  publication-title: Differ. Equ. Appl.
– ident: 10.1016/j.jde.2016.08.020_br0270
– year: 2007
  ident: 10.1016/j.jde.2016.08.020_br0320
– volume: 17
  year: 2009
  ident: 10.1016/j.jde.2016.08.020_br0220
  article-title: Second order differential equations with asymptotically small dissipation and piecewise flat potentials
  publication-title: Electron. J. Differential Equations
– volume: 27
  start-page: 2510
  year: 2014
  ident: 10.1016/j.jde.2016.08.020_br0360
  article-title: A differential equation for modeling Nesterov's accelerated gradient method: theory and insights
  publication-title: Neural Inf. Process. Syst.
– volume: 103
  start-page: 127
  issue: 1
  year: 2005
  ident: 10.1016/j.jde.2016.08.020_br0310
  article-title: Smooth minimization of non-smooth functions
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0552-5
– volume: 73
  start-page: 591
  year: 1967
  ident: 10.1016/j.jde.2016.08.020_br0330
  article-title: Weak convergence of the sequence of successive approximations for nonexpansive mappings
  publication-title: Bull. Amer. Math. Soc.
  doi: 10.1090/S0002-9904-1967-11761-0
– volume: 12
  start-page: 273
  issue: 1
  year: 2002
  ident: 10.1016/j.jde.2016.08.020_br0080
  article-title: The dynamics of elastic shocks via epigraphical regularization of a differential inclusion
  publication-title: Adv. Math. Sci. Appl.
– year: 2011
  ident: 10.1016/j.jde.2016.08.020_br0150
  article-title: Convex Analysis and Monotone Operator Theory in Hilbert spaces
  doi: 10.1007/978-1-4419-9467-7
– volume: 361
  start-page: 5983
  year: 2009
  ident: 10.1016/j.jde.2016.08.020_br0210
  article-title: On the long time behavior of second order differential equations with asymptotically small dissipation
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-09-04785-0
– volume: 38
  start-page: 1102
  issue: 4
  year: 2000
  ident: 10.1016/j.jde.2016.08.020_br0030
  article-title: On the minimizing property of a second-order dissipative system in Hilbert spaces
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012998335802
– volume: vol. 5
  year: 1972
  ident: 10.1016/j.jde.2016.08.020_br0170
  article-title: Opérateurs maximaux monotones dans les espaces de Hilbert et équations d'évolution
SSID ssj0011565
Score 2.5497377
Snippet We first study the fast minimization properties of the trajectories of the second-order evolution equationx¨(t)+αtx˙(t)+β∇2Φ(x(t))x˙(t)+∇Φ(x(t))=0, where Φ:H→R...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 5734
SubjectTerms Convex optimization
Fast convergent methods
Forward–backward algorithm
Gradient flows
Hessian-driven damping
Inertial dynamics
Mathematics
Title Fast convex optimization via inertial dynamics with Hessian driven damping
URI https://dx.doi.org/10.1016/j.jde.2016.08.020
https://hal.science/hal-02072674
Volume 261
WOSCitedRecordID wos000384874400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1090-2732
  dateEnd: 20171215
  omitProxy: false
  ssIdentifier: ssj0011565
  issn: 0022-0396
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6jQMcJj7FGCALcaIKSuOv5FhBpzKNCaEh9Ra5tiPWbUlpk6r773mu7TTatIkduESt21hJ3s_PL-_j9xD6mGRUGRWTiDNGIiqncTQdTItIMaEyo4jKHEnSiTg9TSeT7Eev14RamNWlKMt0vc7m_1XUMAbCtqWzDxB3OykMwGcQOhxB7HD8J8EfyWXtksnX_QoUwpWvtOyvzmXflvrV1kmuXSd6X9w2tsmwsNL1wiq_vpZX87Cl3TZcv_qeKpt5Rn-ajs_PIqeuq8b1lxobfb1VvdfzqoFNyMU-mi0ofxpdOfID1y7gouuIGHBbkedKMTuFATFxDWqDck0c1XpAUdzRlUx4N6bxX11Hm1s63bkXZp9n2tKaDviGcjWJtxtYCNrf2NfabMOQyDbLYYrcTpHb1ptJvIP2EsEyUIZ7w2-jyXEbfoKXWhZo5u0dhXD4JjHwxnXcZdDs_A6u-Y2pcvYU7XtR4aHDxjPUM-Vz9OR7S9C7fIGOLUqwQwnuogQDSnBACQ4owRYl2KMEO5Rgj5KX6NfR6OzLOPJtNSJFBK0jySiXNpqcGSqVlCnnsdBSpIbIgjBTWJLGKclgdcPLtOIJFalOaDFghtBMSfIK7ZZVaV4jzFNNSSF1wZShgsmUcC0l41TFhqSJOEBxeDa58pzztvXJZX6nTA7Qp_aUuSNcue_PNDzw3FuMzhLMATz3nfYBhNNObxnWx8OT3I7BryLhgq4Gbx5yIYfo8XZJvEW79aIx79AjtarPl4v3Hl5_Aa3KmOo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+convex+optimization+via+inertial+dynamics+with+Hessian+driven+damping&rft.jtitle=Journal+of+Differential+Equations&rft.au=Attouch%2C+Hedy&rft.au=Peypouquet%2C+Juan&rft.au=Redont%2C+Patrick&rft.date=2016-11-15&rft.issn=0022-0396&rft.volume=261&rft.issue=10&rft.spage=5734&rft.epage=5783&rft_id=info:doi/10.1016%2Fj.jde.2016.08.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jde_2016_08_020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0396&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0396&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0396&client=summon