Supervised and unsupervised algorithms for bioinformatics and data science

Bioinformatics refers to an ever evolving huge field of research based on millions of algorithms, designated to several data banks. Such algorithms are either supervised or unsupervised. In this article, a detailed overview of the supervised and unsupervised techniques is presented with the aid of e...

Full description

Saved in:
Bibliographic Details
Published in:Progress in biophysics and molecular biology Vol. 151; pp. 14 - 22
Main Authors: Sohail, Ayesha, Arif, Fatima
Format: Journal Article
Language:English
Published: England Elsevier Ltd 01.03.2020
Subjects:
ISSN:0079-6107, 1873-1732, 1873-1732
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Bioinformatics refers to an ever evolving huge field of research based on millions of algorithms, designated to several data banks. Such algorithms are either supervised or unsupervised. In this article, a detailed overview of the supervised and unsupervised techniques is presented with the aid of examples. The aim of this article is to provide the readers with the basic understanding of the state of the art models, which are key ingredients of explainable machine learning in the field of bioinformatics.
AbstractList Bioinformatics refers to an ever evolving huge field of research based on millions of algorithms, designated to several data banks. Such algorithms are either supervised or unsupervised. In this article, a detailed overview of the supervised and unsupervised techniques is presented with the aid of examples. The aim of this article is to provide the readers with the basic understanding of the state of the art models, which are key ingredients of explainable machine learning in the field of bioinformatics.Bioinformatics refers to an ever evolving huge field of research based on millions of algorithms, designated to several data banks. Such algorithms are either supervised or unsupervised. In this article, a detailed overview of the supervised and unsupervised techniques is presented with the aid of examples. The aim of this article is to provide the readers with the basic understanding of the state of the art models, which are key ingredients of explainable machine learning in the field of bioinformatics.
Bioinformatics refers to an ever evolving huge field of research based on millions of algorithms, designated to several data banks. Such algorithms are either supervised or unsupervised. In this article, a detailed overview of the supervised and unsupervised techniques is presented with the aid of examples. The aim of this article is to provide the readers with the basic understanding of the state of the art models, which are key ingredients of explainable machine learning in the field of bioinformatics.
Author Sohail, Ayesha
Arif, Fatima
Author_xml – sequence: 1
  givenname: Ayesha
  surname: Sohail
  fullname: Sohail, Ayesha
  email: ayeshasohail81@gmail.com, asohail@cuilahore.edu.pk
– sequence: 2
  givenname: Fatima
  surname: Arif
  fullname: Arif, Fatima
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31816343$$D View this record in MEDLINE/PubMed
BookMark eNqNkMtOwzAQRS0Eghb4BZQlmwSPnTrOBgkqnqrEAlhbrjMBV0lc7KQSf4-h5SE2sPFY1pk7njMm253rkJAEaAYUxMkiW86ta10Tz4xRKDOAjALbIiOQBU-h4GybjCgtylQALfbIOIQFpZRBIXbJHgcJgud8RG7vhyX6lQ1YJbqrkqELPx6aJ-dt_9yGpHY-icNsFy-t7q0JH3ile50EY7EzeEB2at0EPNzUffJ4efEwvU5nd1c307NZaniR92kpAGVe1ZPK1EIWEynBMK4lRToHWaKpa6oZn9faTBiWOUoTPy4EE6WUuUC-T47XuUvvXgYMvWptMNg0ukM3BMU447ksQEBEjzboMG-xUktvW-1f1ef-EZBrwHgXgsf6CwGq3lWrhfpWrd5VKwAVVcfW01-txvbRjOt6r23zn4DzdQBGWSuLXm1EVtaj6VXl7N8hb3q1occ
CitedBy_id crossref_primary_10_3390_math12223529
crossref_primary_10_3390_horticulturae11010044
crossref_primary_10_3390_jcm10215021
crossref_primary_10_3390_jpm11111132
crossref_primary_10_24883_IberoamericanIC_v13i_439
crossref_primary_10_1016_j_hlpt_2025_101056
crossref_primary_10_1080_10643389_2025_2560435
crossref_primary_10_2147_JIR_S484914
crossref_primary_10_1016_j_compbiomed_2023_107725
crossref_primary_10_1142_S0217595924500313
crossref_primary_10_1007_s11071_021_06777_6
crossref_primary_10_1080_10408398_2022_2089624
crossref_primary_10_3390_jpm12030420
crossref_primary_10_1016_j_jprot_2025_105439
crossref_primary_10_3390_app132011362
crossref_primary_10_1016_j_drudis_2021_01_008
crossref_primary_10_1088_1742_6596_1898_1_012006
crossref_primary_10_3390_fi16100367
crossref_primary_10_1109_ACCESS_2021_3057654
crossref_primary_10_3390_sym14101977
crossref_primary_10_1007_s11547_025_02032_9
crossref_primary_10_1002_ctd2_95
crossref_primary_10_24883_eagleSustainable_v13i_439
crossref_primary_10_1371_journal_pone_0298039
crossref_primary_10_1007_s13369_023_08674_z
crossref_primary_10_1155_jnt_8832103
crossref_primary_10_62347_FEEF1483
crossref_primary_10_3390_jcm10194441
crossref_primary_10_1007_s40571_022_00490_w
crossref_primary_10_1109_ACCESS_2023_3278275
crossref_primary_10_1007_s40745_022_00384_x
crossref_primary_10_1007_s40745_022_00439_z
crossref_primary_10_1089_cmb_2019_0371
crossref_primary_10_1093_hr_uhad195
crossref_primary_10_1007_s40745_024_00551_2
crossref_primary_10_1093_gigascience_giaf057
crossref_primary_10_1002_clc_24332
crossref_primary_10_1007_s42773_023_00225_x
crossref_primary_10_3389_fpubh_2024_1391033
crossref_primary_10_1136_lupus_2021_000643
crossref_primary_10_3389_fimmu_2021_787574
Cites_doi 10.1371/journal.pcbi.1000173
10.13164/re.2017.0890
10.1016/j.fertnstert.2018.01.005
10.1038/sj.mn.7800118
10.1016/j.phrp.2011.07.005
10.1109/ACCESS.2017.2779794
10.1016/S0893-6080(99)00032-5
10.1186/1475-2859-6-4
10.1038/srep46070
10.1109/JBHI.2014.2325615
10.1038/nbt.4233
10.1016/j.eswa.2011.01.017
10.1186/1471-2105-15-120
10.1073/pnas.97.1.262
10.1109/MSP.2015.2481563
10.1016/j.pedneo.2018.03.006
10.1016/j.procs.2015.03.178
10.1371/journal.pcbi.0030116
10.1016/0166-218X(94)00161-6
10.1093/bioinformatics/btw771
10.1007/s10916-016-0477-6
10.1021/acs.molpharmaceut.5b00982
10.1016/j.asoc.2015.10.002
10.1038/nrg3920
10.1016/j.csbj.2016.12.005
10.1371/journal.pone.0181142
10.3343/alm.2018.38.5.473
10.1039/C8AN01020J
10.1148/rg.2017160130
10.1037/h0042519
10.1007/s11042-016-4233-1
10.1126/science.aap8062
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.pbiomolbio.2019.11.012
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1873-1732
EndPage 22
ExternalDocumentID 31816343
10_1016_j_pbiomolbio_2019_11_012
S0079610719301981
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
3O-
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABDPE
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABTAH
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADUVX
ADVLN
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HX~
HZ~
IHE
J1W
KOM
LX3
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SDF
SDG
SDP
SES
SEW
SPCBC
SPD
SSH
SSU
SSZ
T5K
UNMZH
UQL
VQP
WUQ
ZGI
ZY4
~G-
9DU
AAYWO
AAYXX
ABUFD
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c374t-961e84df5dcf6875881c23a80e0b189ecff0a23bfac52e94e8c000662698846e3
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000515446900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0079-6107
1873-1732
IngestDate Sun Sep 28 07:17:23 EDT 2025
Thu Apr 03 07:08:04 EDT 2025
Tue Nov 18 22:17:21 EST 2025
Sat Nov 29 07:23:46 EST 2025
Sun Apr 06 06:53:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Algorithms
Support vector machine learning
Evolutionary bioinformatics
Machine learning
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c374t-961e84df5dcf6875881c23a80e0b189ecff0a23bfac52e94e8c000662698846e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 31816343
PQID 2323487161
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2323487161
pubmed_primary_31816343
crossref_primary_10_1016_j_pbiomolbio_2019_11_012
crossref_citationtrail_10_1016_j_pbiomolbio_2019_11_012
elsevier_sciencedirect_doi_10_1016_j_pbiomolbio_2019_11_012
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Progress in biophysics and molecular biology
PublicationTitleAlternate Prog Biophys Mol Biol
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cinelli, Sun, Best, Heather, Reich-Zeliger, Shifrut, Friedman, Shawe-Taylor, Chain (bib17) 2017; 33
Han, Luo, Yu, Pan, Chen (bib22) 2015; 19
Ben-Hur, Ong, Sonnenburg, Schölkopf, Rätsch (bib6) 2008; 4
Vanitha, Devaraj, Venkatesulu (bib53) 2015; 47
Boughorbel, Tarel, Boujemaa (bib8) 2005
Hong, Razaviyayn, Luo, Pang (bib26) 2016; 33
Wainberg, Merico, Delong, Frey (bib56) 2018; 36
Ye (bib58) 2018; 77
Zurada (bib60) 1992; 8
Levy, Wapner (bib38) 2018; 109
Choudhury, Gupta (bib16) 2019
Cristianini, Shawe-Taylor (bib18) 2000
Rojas-Domínguez, Padierna, Valadez, Puga-Soberanes, Fraire (bib48) 2018; 6
Tarca, Carey, Chen, Romero, Drăghici (bib52) 2007; 3
Brynjolfsson, Mitchell (bib10) 2017; 358
Lederman (bib36) 2018
Boswell (bib7) 2002
Jonsson (bib29) 2018
Brown, Grundy, Lin, Cristianini, Sugnet, Furey, Ares, Haussler (bib9) 2000; 97
Hegedüs, Megiddo (bib24) 1996; 66
Mamoshina, Vieira, Putin, Zhavoronkov (bib43) 2016; 13
Schölkopf, Smola, Bach (bib50) 2002
Vijayarani, Dhayanand, Phil (bib55) 2015; 6
Kim, Kim, Lee, Noh, Kim, Jung, Park, Park (bib32) 2012; 15
Kourou, Exarchos, Exarchos, Karamouzis, Fotiadis (bib34) 2015; 13
Amari, Wu (bib2) 1999; 12
Chen, Xing, Zou (bib15) 2017; 7
Erickson, Korfiatis, Akkus, Kline (bib20) 2017; 37
Lee, Hwang, Kim, Kim, Choi, Woo, Choi, Jun, Lim, Chae (bib1) 2018; 38
Arras, Horn, Montavon, Müller, Samek (bib3) 2017; 12
Cao, Wang, Wang, Smoq (bib13) 2014; 15
Kavzoglu (bib31) 1999
Rojas (bib47) 1996
Rai (bib46) 2011
Wang, Lei, Fu, Li, Jing, Yang, Liu, Li, Liao (bib57) 2019; 60
Prasad, Hasan, Grouchy, Gartia (bib45) 2019; 144
Zanaty (bib59) 2012; 13
Camacho, Collins, Powers, Costello, Collins (bib12) 2018
Souza (bib51) 2010; 3
Delahunt, Kutz (bib19) 2018
Caruana, Lawrence, Giles (bib14) 2001
Li, Gu, Mohan, Baylink (bib39) 2002; 9
Barman, Mukhopadhyay, Das (bib5) 2017; 7
Çalişir, Doğantekin (bib11) 2011; 38
Peker (bib44) 2016; 40
Hand (bib23) 2006; 1–14
Rosenblatt (bib49) 1958; 65
Libbrecht, Noble (bib41) 2015; 16
Back (bib4) 2003
Lee, Keam, Jang, Park, Lee, Kim, Lee, Kim, Oh, Park (bib37) 2011; 2
Hou, Zhou, Liu, Zhu (bib27) 2017; 26
Kavakiotis, Tsave, Salifoglou, Maglaveras, Vlahavas, Chouvarda (bib30) 2017; 15
Koay, Herry, Frize (bib33) 2004; ume 1
Herbrich (bib25) 2001
Li, Wu, Ngom (bib40) 2016; 19
Vijayarani, Dhayanand (bib54) 2015; 4
Jaluria, Konstantopoulos, Betenbaugh, Shiloach (bib28) 2007; 6
Landahl, McCulloch, Pitts (bib35) 1943; 5
Garro, Rodríguez, Vázquez (bib21) 2016; 38
Ye (10.1016/j.pbiomolbio.2019.11.012_bib58) 2018; 77
Choudhury (10.1016/j.pbiomolbio.2019.11.012_bib16) 2019
Herbrich (10.1016/j.pbiomolbio.2019.11.012_bib25) 2001
Tarca (10.1016/j.pbiomolbio.2019.11.012_bib52) 2007; 3
Hand (10.1016/j.pbiomolbio.2019.11.012_bib23) 2006; 1–14
Vanitha (10.1016/j.pbiomolbio.2019.11.012_bib53) 2015; 47
Rojas-Domínguez (10.1016/j.pbiomolbio.2019.11.012_bib48) 2018; 6
Lee (10.1016/j.pbiomolbio.2019.11.012_bib1) 2018; 38
Zurada (10.1016/j.pbiomolbio.2019.11.012_bib60) 1992; 8
Vijayarani (10.1016/j.pbiomolbio.2019.11.012_bib54) 2015; 4
Jaluria (10.1016/j.pbiomolbio.2019.11.012_bib28) 2007; 6
Back (10.1016/j.pbiomolbio.2019.11.012_bib4)
Mamoshina (10.1016/j.pbiomolbio.2019.11.012_bib43) 2016; 13
Landahl (10.1016/j.pbiomolbio.2019.11.012_bib35) 1943; 5
Amari (10.1016/j.pbiomolbio.2019.11.012_bib2) 1999; 12
Koay (10.1016/j.pbiomolbio.2019.11.012_bib33) 2004; ume 1
Rai (10.1016/j.pbiomolbio.2019.11.012_bib46) 2011
Kavakiotis (10.1016/j.pbiomolbio.2019.11.012_bib30) 2017; 15
Han (10.1016/j.pbiomolbio.2019.11.012_bib22) 2015; 19
Levy (10.1016/j.pbiomolbio.2019.11.012_bib38) 2018; 109
Camacho (10.1016/j.pbiomolbio.2019.11.012_bib12) 2018
Caruana (10.1016/j.pbiomolbio.2019.11.012_bib14) 2001
Jonsson (10.1016/j.pbiomolbio.2019.11.012_bib29) 2018
Boswell (10.1016/j.pbiomolbio.2019.11.012_bib7) 2002
Garro (10.1016/j.pbiomolbio.2019.11.012_bib21) 2016; 38
Lederman (10.1016/j.pbiomolbio.2019.11.012_bib36) 2018
Rosenblatt (10.1016/j.pbiomolbio.2019.11.012_bib49) 1958; 65
Kourou (10.1016/j.pbiomolbio.2019.11.012_bib34) 2015; 13
Wainberg (10.1016/j.pbiomolbio.2019.11.012_bib56) 2018; 36
Zanaty (10.1016/j.pbiomolbio.2019.11.012_bib59) 2012; 13
Cinelli (10.1016/j.pbiomolbio.2019.11.012_bib17) 2017; 33
Lee (10.1016/j.pbiomolbio.2019.11.012_bib37) 2011; 2
Arras (10.1016/j.pbiomolbio.2019.11.012_bib3) 2017; 12
Hong (10.1016/j.pbiomolbio.2019.11.012_bib26) 2016; 33
Kim (10.1016/j.pbiomolbio.2019.11.012_bib32) 2012; 15
Chen (10.1016/j.pbiomolbio.2019.11.012_bib15) 2017; 7
Rojas (10.1016/j.pbiomolbio.2019.11.012_bib47) 1996
Kavzoglu (10.1016/j.pbiomolbio.2019.11.012_bib31) 1999
Prasad (10.1016/j.pbiomolbio.2019.11.012_bib45) 2019; 144
Li (10.1016/j.pbiomolbio.2019.11.012_bib40) 2016; 19
Hegedüs (10.1016/j.pbiomolbio.2019.11.012_bib24) 1996; 66
Cristianini (10.1016/j.pbiomolbio.2019.11.012_bib18) 2000
Libbrecht (10.1016/j.pbiomolbio.2019.11.012_bib41) 2015; 16
Brown (10.1016/j.pbiomolbio.2019.11.012_bib9) 2000; 97
Hou (10.1016/j.pbiomolbio.2019.11.012_bib27) 2017; 26
Barman (10.1016/j.pbiomolbio.2019.11.012_bib5) 2017; 7
Cao (10.1016/j.pbiomolbio.2019.11.012_bib13) 2014; 15
Schölkopf (10.1016/j.pbiomolbio.2019.11.012_bib50) 2002
Delahunt (10.1016/j.pbiomolbio.2019.11.012_bib19) 2018
Peker (10.1016/j.pbiomolbio.2019.11.012_bib44) 2016; 40
Çalişir (10.1016/j.pbiomolbio.2019.11.012_bib11) 2011; 38
Erickson (10.1016/j.pbiomolbio.2019.11.012_bib20) 2017; 37
Boughorbel (10.1016/j.pbiomolbio.2019.11.012_bib8) 2005
Wang (10.1016/j.pbiomolbio.2019.11.012_bib57) 2019; 60
Ben-Hur (10.1016/j.pbiomolbio.2019.11.012_bib6) 2008; 4
Brynjolfsson (10.1016/j.pbiomolbio.2019.11.012_bib10) 2017; 358
Li (10.1016/j.pbiomolbio.2019.11.012_bib39) 2002; 9
Vijayarani (10.1016/j.pbiomolbio.2019.11.012_bib55) 2015; 6
Souza (10.1016/j.pbiomolbio.2019.11.012_bib51) 2010; 3
References_xml – volume: 47
  start-page: 13
  year: 2015
  end-page: 21
  ident: bib53
  article-title: Gene expression data classification using support vector machine and mutual information-based gene selection
  publication-title: Procedia. Comput. Sci.
– volume: 358
  start-page: 1530
  year: 2017
  end-page: 1534
  ident: bib10
  article-title: What can machine learning do? workforce implications
  publication-title: Science
– volume: 97
  start-page: 262
  year: 2000
  end-page: 267
  ident: bib9
  article-title: Knowledge-based analysis of microarray gene expression data by using support vector machines
  publication-title: Proc. Natl. Acad. Sci.
– start-page: 113
  year: 2005
  end-page: 116
  ident: bib8
  article-title: Conditionally positive definite kernels for svm based image recognition
  publication-title: 2005 IEEE International Conference on Multimedia and Expo
– volume: 65
  start-page: 386
  year: 1958
  ident: bib49
  article-title: The perceptron: a probabilistic model for information storage and organization in the brain
  publication-title: Psychol. Rev.
– volume: 38
  start-page: 473
  year: 2018
  end-page: 480
  ident: bib1
  article-title: Chromosomal microarray with clinical diagnostic utility in children with developmental delay or intellectual disability
  publication-title: Ann. Lab. Med.
– year: 2018
  ident: bib19
  article-title: Insect Cyborgs: Biological Feature Generators Improve Machine Learning Accuracy on Limited Data
– volume: 37
  start-page: 505
  year: 2017
  end-page: 515
  ident: bib20
  article-title: Machine learning for medical imaging
  publication-title: RadioGraphics
– volume: 77
  start-page: 3889
  year: 2018
  end-page: 3918
  ident: bib58
  article-title: Evolving the svm model based on a hybrid method using swarm optimization techniques in combination with a genetic algorithm for medical diagnosis
  publication-title: Multimed. Tools Appl.
– volume: 13
  start-page: 177
  year: 2012
  end-page: 183
  ident: bib59
  article-title: Support vector machines (svms) versus multilayer perception (mlp) in data classification
  publication-title: Egypt. Inf. J.
– volume: 13
  year: 2015
  ident: bib34
  article-title: Machine learning applications in cancer prognosis and prediction
  publication-title: Comput. Struct. Biotechnol. J.
– volume: ume 1
  start-page: 1159
  year: 2004
  end-page: 1162
  ident: bib33
  article-title: Analysis of breast thermography with an artificial neural network
  publication-title: The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– year: 2002
  ident: bib50
  article-title: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond
– volume: 16
  start-page: 321
  year: 2015
  ident: bib41
  article-title: Machine learning applications in genetics and genomics
  publication-title: Nat. Rev. Genet.
– volume: 5
  start-page: 135
  year: 1943
  end-page: 137
  ident: bib35
  article-title: A statistical consequence of the logical calculus of nervous nets
  publication-title: Bull. Math. Biol.
– volume: 9
  start-page: 13
  year: 2002
  end-page: 22
  ident: bib39
  article-title: Dna microarrays: their use and misuse
  publication-title: Microcirculation
– volume: 38
  start-page: 8311
  year: 2011
  end-page: 8315
  ident: bib11
  article-title: An automatic diabetes diagnosis system based on lda-wavelet support vector machine classifier
  publication-title: Expert Syst. Appl.
– start-page: 287
  year: 1996
  end-page: 308
  ident: bib47
  article-title: Fuzzy logic
  publication-title: Neural Networks
– year: 2003
  ident: bib4
  article-title: Classification Using Support Vector Machines
– volume: 4
  year: 2008
  ident: bib6
  article-title: Support vector machines and kernels for computational biology
  publication-title: PLoS Comput. Biol.
– volume: 12
  start-page: 783
  year: 1999
  end-page: 789
  ident: bib2
  article-title: Improving support vector machine classifiers by modifying kernel functions
  publication-title: Neural Netw.
– start-page: 675
  year: 1999
  end-page: 682
  ident: bib31
  article-title: Determining optimum structure for artificial neural networks
  publication-title: Proceedings of the 25th Annual Technical Conference and Exhibition of the Remote Sensing Society
– start-page: 402
  year: 2001
  end-page: 408
  ident: bib14
  article-title: Overfitting in neural nets: backpropagation, conjugate gradient, and early stopping
  publication-title: Advances in Neural Information Processing Systems
– year: 2018
  ident: bib29
  article-title: Ways to Use Machine Learning Approaches for Software Development
– year: 2011
  ident: bib46
  article-title: Kernel Methods and Nonlinear Classification
– start-page: 67
  year: 2019
  end-page: 78
  ident: bib16
  article-title: A survey on medical diagnosis of diabetes using machine learning techniques
  publication-title: Recent Developments in Machine Learning and Data Analytics
– volume: 36
  start-page: 829
  year: 2018
  ident: bib56
  article-title: Deep learning in biomedicine
  publication-title: Nat. Biotechnol.
– volume: 15
  start-page: 230
  year: 2012
  end-page: 238
  ident: bib32
  article-title: Development of novel breast cancer recurrence prediction model using support vector machine
  publication-title: J. Breast Canc.
– volume: 13
  start-page: 1445
  year: 2016
  end-page: 1454
  ident: bib43
  article-title: Applications of deep learning in biomedicine
  publication-title: Mol. Pharm.
– volume: 38
  start-page: 548
  year: 2016
  end-page: 560
  ident: bib21
  article-title: Classification of dna microarrays using artificial neural networks and abc algorithm
  publication-title: Appl. Soft Comput.
– year: 2018
  ident: bib12
  article-title: Next-generation Machine Learning for Biological Networks
– volume: 144
  start-page: 197
  year: 2019
  end-page: 205
  ident: bib45
  article-title: Dna microarray analysis using a smartphone to detect the brca-1 gene
  publication-title: Analyst
– volume: 66
  start-page: 205
  year: 1996
  end-page: 218
  ident: bib24
  article-title: On the geometric separability of boolean functions
  publication-title: Discrete Appl. Math.
– year: 2001
  ident: bib25
  article-title: Learning Kernel Classifiers: Theory and Algorithms
– year: 2018
  ident: bib36
  article-title: Comment on” the impact of machine learning on economics”
  publication-title: Economics of Artificial Intelligence
– volume: 19
  start-page: 728
  year: 2015
  end-page: 734
  ident: bib22
  article-title: Rule extraction from support vector machines using ensemble learning approach: an application for diagnosis of diabetes
  publication-title: IEEE J. Bbiomed. Health. Inform.
– volume: 4
  start-page: 816
  year: 2015
  end-page: 820
  ident: bib54
  article-title: Liver disease prediction using svm and naïve bayes algorithms
  publication-title: Int. J. Comput. Sci. Eng. Inf. Technol. Res.
– volume: 6
  start-page: 4
  year: 2007
  ident: bib28
  article-title: A perspective on microarrays: current applications, pitfalls, and potential uses
  publication-title: Microb. Cell Factories
– volume: 7
  year: 2017
  ident: bib5
  article-title: An improved method for identification of small non-coding rnas in bacteria using support vector machine
  publication-title: Sci. Rep.
– volume: 2
  start-page: 75
  year: 2011
  end-page: 82
  ident: bib37
  article-title: Development of a predictive model for type 2 diabetes mellitus using genetic and clinical data
  publication-title: Osong public health and research perspectives
– volume: 60
  start-page: 35
  year: 2019
  end-page: 42
  ident: bib57
  article-title: Application of chromosome microarray analysis in patients with unexplained developmental delay/intellectual disability in south China
  publication-title: Pediatr. Neonatol.
– volume: 3
  year: 2010
  ident: bib51
  article-title: Kernel functions for machine learning applications
  publication-title: Creativ. Common Attribut. Noncomm. Share Alike.
– volume: 3
  start-page: e116
  year: 2007
  ident: bib52
  article-title: Machine learning and its applications to biology
  publication-title: PLoS Comput. Biol.
– year: 2000
  ident: bib18
  article-title: An Introduction to Support Vector Machines
– volume: 40
  start-page: 116
  year: 2016
  ident: bib44
  article-title: A decision support system to improve medical diagnosis using a combination of k-medoids clustering based attribute weighting and svm
  publication-title: J. Med. Syst.
– volume: 6
  start-page: 7164
  year: 2018
  end-page: 7176
  ident: bib48
  article-title: Optimal hyper-parameter tuning of svm classifiers with application to medical diagnosis
  publication-title: IEEE Access
– volume: 26
  start-page: 890
  year: 2017
  end-page: 902
  ident: bib27
  article-title: Wavelet support vector machine algorithm in power analysis attacks
  publication-title: Radioengineering
– volume: 7
  year: 2017
  ident: bib15
  article-title: Detecting n 6-methyladenosine sites from rna transcriptomes using ensemble support vector machines
  publication-title: Sci. Rep.
– volume: 8
  year: 1992
  ident: bib60
  publication-title: Introduction to Artificial Neural Systems
– year: 2002
  ident: bib7
  article-title: Introduction to Support Vector Machines
– volume: 15
  start-page: 104
  year: 2017
  end-page: 116
  ident: bib30
  article-title: Machine learning and data mining methods in diabetes research
  publication-title: Comput. Struct. Biotechnol. J.
– volume: 1–14
  year: 2006
  ident: bib23
  article-title: Classifier technology and the illusion of progress
  publication-title: Stat. Sci.
– volume: 33
  start-page: 57
  year: 2016
  end-page: 77
  ident: bib26
  article-title: A unified algorithmic framework for block-structured optimization involving big data: with applications in machine learning and signal processing
  publication-title: IEEE Signal Process. Mag.
– volume: 6
  year: 2015
  ident: bib55
  article-title: Kidney disease prediction using svm and ann algorithms
  publication-title: Int. J. Comput. Bus. Res. (IJCBR)
– volume: 12
  year: 2017
  ident: bib3
  article-title: What is relevant in a text document?”: an interpretable machine learning approach
  publication-title: PLoS One
– volume: 33
  start-page: 951
  year: 2017
  end-page: 955
  ident: bib17
  article-title: Feature selection using a one dimensional naïve bayes’ classifier increases the accuracy of support vector machine classification of cdr3 repertoires
  publication-title: Bioinformatics
– volume: 19
  start-page: 325
  year: 2016
  end-page: 340
  ident: bib40
  article-title: A review on machine learning principles for multi-view biological data integration
  publication-title: Briefings Bioinf.
– volume: 109
  start-page: 201
  year: 2018
  end-page: 212
  ident: bib38
  article-title: Prenatal diagnosis by chromosomal microarray analysis
  publication-title: Fertil. Steril.
– volume: 15
  start-page: 120
  year: 2014
  ident: bib13
  article-title: A tool for predicting the absolute residue-specific quality of a single protein model with support vector machines
  publication-title: BMC Bioinf.
– volume: 4
  issue: 10
  year: 2008
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib6
  article-title: Support vector machines and kernels for computational biology
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000173
– volume: 26
  start-page: 890
  issue: 3
  year: 2017
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib27
  article-title: Wavelet support vector machine algorithm in power analysis attacks
  publication-title: Radioengineering
  doi: 10.13164/re.2017.0890
– volume: 109
  start-page: 201
  issue: 2
  year: 2018
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib38
  article-title: Prenatal diagnosis by chromosomal microarray analysis
  publication-title: Fertil. Steril.
  doi: 10.1016/j.fertnstert.2018.01.005
– volume: 13
  start-page: 177
  issue: 3
  year: 2012
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib59
  article-title: Support vector machines (svms) versus multilayer perception (mlp) in data classification
  publication-title: Egypt. Inf. J.
– volume: 9
  start-page: 13
  issue: 1
  year: 2002
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib39
  article-title: Dna microarrays: their use and misuse
  publication-title: Microcirculation
  doi: 10.1038/sj.mn.7800118
– volume: ume 1
  start-page: 1159
  year: 2004
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib33
  article-title: Analysis of breast thermography with an artificial neural network
– volume: 2
  start-page: 75
  issue: 2
  year: 2011
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib37
  article-title: Development of a predictive model for type 2 diabetes mellitus using genetic and clinical data
  publication-title: Osong public health and research perspectives
  doi: 10.1016/j.phrp.2011.07.005
– volume: 6
  start-page: 7164
  year: 2018
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib48
  article-title: Optimal hyper-parameter tuning of svm classifiers with application to medical diagnosis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2779794
– year: 2002
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib50
– volume: 12
  start-page: 783
  issue: 6
  year: 1999
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib2
  article-title: Improving support vector machine classifiers by modifying kernel functions
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(99)00032-5
– volume: 6
  start-page: 4
  issue: 1
  year: 2007
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib28
  article-title: A perspective on microarrays: current applications, pitfalls, and potential uses
  publication-title: Microb. Cell Factories
  doi: 10.1186/1475-2859-6-4
– start-page: 67
  year: 2019
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib16
  article-title: A survey on medical diagnosis of diabetes using machine learning techniques
– start-page: 287
  year: 1996
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib47
  article-title: Fuzzy logic
– volume: 7
  year: 2017
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib15
  article-title: Detecting n 6-methyladenosine sites from rna transcriptomes using ensemble support vector machines
  publication-title: Sci. Rep.
– start-page: 675
  year: 1999
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib31
  article-title: Determining optimum structure for artificial neural networks
– volume: 7
  year: 2017
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib5
  article-title: An improved method for identification of small non-coding rnas in bacteria using support vector machine
  publication-title: Sci. Rep.
  doi: 10.1038/srep46070
– volume: 19
  start-page: 325
  issue: 2
  year: 2016
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib40
  article-title: A review on machine learning principles for multi-view biological data integration
  publication-title: Briefings Bioinf.
– volume: 19
  start-page: 728
  issue: 2
  year: 2015
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib22
  article-title: Rule extraction from support vector machines using ensemble learning approach: an application for diagnosis of diabetes
  publication-title: IEEE J. Bbiomed. Health. Inform.
  doi: 10.1109/JBHI.2014.2325615
– volume: 4
  start-page: 816
  issue: 4
  year: 2015
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib54
  article-title: Liver disease prediction using svm and naïve bayes algorithms
  publication-title: Int. J. Comput. Sci. Eng. Inf. Technol. Res.
– volume: 36
  start-page: 829
  issue: 9
  year: 2018
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib56
  article-title: Deep learning in biomedicine
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4233
– volume: 38
  start-page: 8311
  issue: 7
  year: 2011
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib11
  article-title: An automatic diabetes diagnosis system based on lda-wavelet support vector machine classifier
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.01.017
– volume: 15
  start-page: 120
  issue: 1
  year: 2014
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib13
  article-title: A tool for predicting the absolute residue-specific quality of a single protein model with support vector machines
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-15-120
– volume: 97
  start-page: 262
  issue: 1
  year: 2000
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib9
  article-title: Knowledge-based analysis of microarray gene expression data by using support vector machines
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.97.1.262
– year: 2018
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib12
– volume: 33
  start-page: 57
  issue: 1
  year: 2016
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib26
  article-title: A unified algorithmic framework for block-structured optimization involving big data: with applications in machine learning and signal processing
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2015.2481563
– volume: 5
  start-page: 135
  issue: 4
  year: 1943
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib35
  article-title: A statistical consequence of the logical calculus of nervous nets
  publication-title: Bull. Math. Biol.
– volume: 60
  start-page: 35
  issue: 1
  year: 2019
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib57
  article-title: Application of chromosome microarray analysis in patients with unexplained developmental delay/intellectual disability in south China
  publication-title: Pediatr. Neonatol.
  doi: 10.1016/j.pedneo.2018.03.006
– year: 2001
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib25
– volume: 6
  issue: 2
  year: 2015
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib55
  article-title: Kidney disease prediction using svm and ann algorithms
  publication-title: Int. J. Comput. Bus. Res. (IJCBR)
– year: 2018
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib36
  article-title: Comment on” the impact of machine learning on economics”
– ident: 10.1016/j.pbiomolbio.2019.11.012_bib4
– year: 2018
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib19
– volume: 47
  start-page: 13
  year: 2015
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib53
  article-title: Gene expression data classification using support vector machine and mutual information-based gene selection
  publication-title: Procedia. Comput. Sci.
  doi: 10.1016/j.procs.2015.03.178
– volume: 3
  start-page: e116
  issue: 6
  year: 2007
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib52
  article-title: Machine learning and its applications to biology
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0030116
– volume: 66
  start-page: 205
  issue: 3
  year: 1996
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib24
  article-title: On the geometric separability of boolean functions
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(94)00161-6
– volume: 8
  year: 1992
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib60
– volume: 33
  start-page: 951
  issue: 7
  year: 2017
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib17
  article-title: Feature selection using a one dimensional naïve bayes’ classifier increases the accuracy of support vector machine classification of cdr3 repertoires
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw771
– volume: 13
  issue: 8–17
  year: 2015
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib34
  article-title: Machine learning applications in cancer prognosis and prediction
  publication-title: Comput. Struct. Biotechnol. J.
– volume: 40
  start-page: 116
  issue: 5
  year: 2016
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib44
  article-title: A decision support system to improve medical diagnosis using a combination of k-medoids clustering based attribute weighting and svm
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-016-0477-6
– year: 2002
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib7
– year: 2011
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib46
– year: 2000
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib18
– volume: 1–14
  year: 2006
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib23
  article-title: Classifier technology and the illusion of progress
  publication-title: Stat. Sci.
– volume: 13
  start-page: 1445
  issue: 5
  year: 2016
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib43
  article-title: Applications of deep learning in biomedicine
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.5b00982
– volume: 38
  start-page: 548
  year: 2016
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib21
  article-title: Classification of dna microarrays using artificial neural networks and abc algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.10.002
– volume: 16
  start-page: 321
  issue: 6
  year: 2015
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib41
  article-title: Machine learning applications in genetics and genomics
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3920
– volume: 15
  start-page: 104
  year: 2017
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib30
  article-title: Machine learning and data mining methods in diabetes research
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2016.12.005
– volume: 12
  issue: 8
  year: 2017
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib3
  article-title: What is relevant in a text document?”: an interpretable machine learning approach
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0181142
– volume: 38
  start-page: 473
  issue: 5
  year: 2018
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib1
  article-title: Chromosomal microarray with clinical diagnostic utility in children with developmental delay or intellectual disability
  publication-title: Ann. Lab. Med.
  doi: 10.3343/alm.2018.38.5.473
– year: 2018
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib29
– start-page: 113
  year: 2005
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib8
  article-title: Conditionally positive definite kernels for svm based image recognition
– volume: 144
  start-page: 197
  issue: 1
  year: 2019
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib45
  article-title: Dna microarray analysis using a smartphone to detect the brca-1 gene
  publication-title: Analyst
  doi: 10.1039/C8AN01020J
– volume: 37
  start-page: 505
  issue: 2
  year: 2017
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib20
  article-title: Machine learning for medical imaging
  publication-title: RadioGraphics
  doi: 10.1148/rg.2017160130
– start-page: 402
  year: 2001
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib14
  article-title: Overfitting in neural nets: backpropagation, conjugate gradient, and early stopping
– volume: 15
  start-page: 230
  issue: 2
  year: 2012
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib32
  article-title: Development of novel breast cancer recurrence prediction model using support vector machine
  publication-title: J. Breast Canc.
– volume: 3
  issue: 29
  year: 2010
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib51
  article-title: Kernel functions for machine learning applications
  publication-title: Creativ. Common Attribut. Noncomm. Share Alike.
– volume: 65
  start-page: 386
  issue: 6
  year: 1958
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib49
  article-title: The perceptron: a probabilistic model for information storage and organization in the brain
  publication-title: Psychol. Rev.
  doi: 10.1037/h0042519
– volume: 77
  start-page: 3889
  issue: 3
  year: 2018
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib58
  article-title: Evolving the svm model based on a hybrid method using swarm optimization techniques in combination with a genetic algorithm for medical diagnosis
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-016-4233-1
– volume: 358
  start-page: 1530
  issue: 6370
  year: 2017
  ident: 10.1016/j.pbiomolbio.2019.11.012_bib10
  article-title: What can machine learning do? workforce implications
  publication-title: Science
  doi: 10.1126/science.aap8062
SSID ssj0002176
Score 2.4774108
SecondaryResourceType review_article
Snippet Bioinformatics refers to an ever evolving huge field of research based on millions of algorithms, designated to several data banks. Such algorithms are either...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14
SubjectTerms Algorithms
Computational Biology - methods
Data Science - methods
Evolutionary bioinformatics
Machine learning
Supervised Machine Learning
Support vector machine learning
Unsupervised Machine Learning
Title Supervised and unsupervised algorithms for bioinformatics and data science
URI https://dx.doi.org/10.1016/j.pbiomolbio.2019.11.012
https://www.ncbi.nlm.nih.gov/pubmed/31816343
https://www.proquest.com/docview/2323487161
Volume 151
WOSCitedRecordID wos000515446900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-1732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002176
  issn: 0079-6107
  databaseCode: AIEXJ
  dateStart: 20091101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdbusFexr6XfRQP9hZc_CFbEnsKo2UroxTajbwJWZVXl8wOcVLa_753kmynbIWMsRcRhBWZu_Pp7nT3O0I-FmAm57nJwxzLc6mOVchFpkOE6koVWvy2FubHN3Z0xGczcex7tra2nQCra351JRb_ldUwB8zG0tm_YHf_pzABv4HpMALbYdyK8SfrBX7_rbEgrJN13W5MzH82y2p17lAYJkXVeODUHqwZM0Yn_ljcNFyPMY8LtWJV4zIXEHFLfnUddice0amP2jTnyoWYp9d4szQIV2WhIA9gW38s-LgDMLJPvHLBsK4gZsg-sgqWCfBGXSPbXsF6SFmnIl3NqD9sXU3yb2rcRRQu9haIQdDMYcQkPLGHeKs-6_o2SPYJboz7gj0KD2It_k7CMsFHZGf6dX922J_O4ILZ--vuRX12l8v5-_N-d5ksd7kk1jQ5fUIee58imDpZeErumfoZeei6jF4_J4eDRATAr2BTIoJBIgIQhOC2RNjHUSICLxEvyPeD_dPPX0LfQiPUKaOrEGhiOD0rszNd5uCach7rJFU8MlERc2F0WUYqSYtS6SwxghqurRWa5IKDZWrSl2RUN7V5TYIiNjpjmiVxwajJMwW2YRYpWtA4ikzCxoR1VJLa48tjm5O57BIJL-RAX4n0BfdTAn3HJO5XLhzGyhZrPnWMkJ4EzgaUIENbrP7Q8U6COsU7MlWbZt1KcDBSikGEeExeOab27wTHH3gvNH3zT3u_JY-Gz-kdGa2Wa_OePNCXq6pd7pL7bMZ3vdDeALctqvM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+and+unsupervised+algorithms+for+bioinformatics+and+data+science&rft.jtitle=Progress+in+biophysics+and+molecular+biology&rft.au=Sohail%2C+Ayesha&rft.au=Arif%2C+Fatima&rft.date=2020-03-01&rft.pub=Elsevier+Ltd&rft.issn=0079-6107&rft.volume=151&rft.spage=14&rft.epage=22&rft_id=info:doi/10.1016%2Fj.pbiomolbio.2019.11.012&rft.externalDocID=S0079610719301981
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0079-6107&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0079-6107&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0079-6107&client=summon