A new regularization method for solving a time-fractional inverse diffusion problem

In this paper, we consider an inverse problem for a time-fractional diffusion equation in a one-dimensional semi-infinite domain. The temperature and heat flux are sought from a measured temperature history at a fixed location inside the body. We show that such problem is severely ill-posed and furt...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical analysis and applications Ročník 378; číslo 2; s. 418 - 431
Hlavní autoři: Zheng, G.H., Wei, T.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Inc 15.06.2011
Elsevier
Témata:
ISSN:0022-247X, 1096-0813
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we consider an inverse problem for a time-fractional diffusion equation in a one-dimensional semi-infinite domain. The temperature and heat flux are sought from a measured temperature history at a fixed location inside the body. We show that such problem is severely ill-posed and further apply a new regularization method to solve it based on the solution given by the Fourier method. Convergence estimates are presented under the a priori bound assumptions for the exact solution. Finally, numerical examples are given to show that the proposed numerical method is effective.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2011.01.067