A new regularization method for solving a time-fractional inverse diffusion problem
In this paper, we consider an inverse problem for a time-fractional diffusion equation in a one-dimensional semi-infinite domain. The temperature and heat flux are sought from a measured temperature history at a fixed location inside the body. We show that such problem is severely ill-posed and furt...
Uložené v:
| Vydané v: | Journal of mathematical analysis and applications Ročník 378; číslo 2; s. 418 - 431 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier Inc
15.06.2011
Elsevier |
| Predmet: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper, we consider an inverse problem for a time-fractional diffusion equation in a one-dimensional semi-infinite domain. The temperature and heat flux are sought from a measured temperature history at a fixed location inside the body. We show that such problem is severely ill-posed and further apply a new regularization method to solve it based on the solution given by the Fourier method. Convergence estimates are presented under the a priori bound assumptions for the exact solution. Finally, numerical examples are given to show that the proposed numerical method is effective. |
|---|---|
| AbstractList | In this paper, we consider an inverse problem for a time-fractional diffusion equation in a one-dimensional semi-infinite domain. The temperature and heat flux are sought from a measured temperature history at a fixed location inside the body. We show that such problem is severely ill-posed and further apply a new regularization method to solve it based on the solution given by the Fourier method. Convergence estimates are presented under the a priori bound assumptions for the exact solution. Finally, numerical examples are given to show that the proposed numerical method is effective. |
| Author | Zheng, G.H. Wei, T. |
| Author_xml | – sequence: 1 givenname: G.H. surname: Zheng fullname: Zheng, G.H. – sequence: 2 givenname: T. surname: Wei fullname: Wei, T. email: tingwei@lzu.edu.cn |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23973258$$DView record in Pascal Francis |
| BookMark | eNp9kM9LwzAcxYNMcJv-A55y8diapG3Sgpcx_AUDDyp4C1n6zUxpk5F0E_3rbZ1ePAwefC_v8_i-N0MT5x0gdElJSgnl103adEqljFCakkFcnKApJRVPSEmzCZoSwljCcvF2hmYxNmQwFoJO0fMCO_jAATa7VgX7pXrrHe6gf_c1Nj7g6Nu9dRuscG87SExQerSoFlu3hxAB19aYXRyxbfDrFrpzdGpUG-Hi987R693ty_IhWT3dPy4Xq0RnIu-TUpgCSqMI6IwKTpgQYg3UcFYJQ4mmFeHAWE10kelyXRWVAWV0XlZas5xDNkdXh9ytilq1w2tO2yi3wXYqfEqWVSJjRTn4yoNPBx9jACO17X-K9kHZVlIixxFlI8cR5TiiJIO4GFD2D_1LPwrdHCAYyu8tBBm1BaehtgF0L2tvj-HfwQaOTQ |
| CODEN | JMANAK |
| CitedBy_id | crossref_primary_10_1016_j_matcom_2017_08_004 crossref_primary_10_1155_2020_5865971 crossref_primary_10_1016_j_camwa_2014_02_008 crossref_primary_10_1177_1687814018822360 crossref_primary_10_1007_s11766_019_3613_5 crossref_primary_10_1016_j_enganabound_2018_03_006 crossref_primary_10_1088_1742_6596_1531_1_012088 crossref_primary_10_1016_j_cam_2018_12_038 crossref_primary_10_1002_nme_4991 crossref_primary_10_1016_j_matcom_2023_05_012 crossref_primary_10_3390_en14113082 crossref_primary_10_1186_s13662_015_0679_0 crossref_primary_10_1016_j_camwa_2011_03_058 crossref_primary_10_1016_j_camwa_2015_12_030 crossref_primary_10_1109_ACCESS_2019_2927518 crossref_primary_10_1016_j_apm_2012_01_016 crossref_primary_10_1007_s40314_019_0776_x crossref_primary_10_1016_j_apnum_2018_02_008 crossref_primary_10_1002_mma_2661 crossref_primary_10_1016_j_camwa_2024_04_001 crossref_primary_10_1016_j_jmaa_2023_127721 crossref_primary_10_1007_s11075_020_01025_1 crossref_primary_10_3390_math7090865 crossref_primary_10_1007_s11786_017_0292_6 crossref_primary_10_1016_j_ijleo_2016_08_032 crossref_primary_10_1007_s11075_022_01295_x crossref_primary_10_1007_s10891_019_01932_8 crossref_primary_10_1007_s40314_025_03124_y crossref_primary_10_1016_j_matcom_2025_01_002 |
| Cites_doi | 10.1016/j.jde.2008.10.027 10.1016/j.cnsns.2008.08.004 10.1088/0305-4470/27/10/017 10.1088/0305-4470/25/8/023 10.1137/S1064827597331394 10.1016/0893-9659(96)00089-4 10.1016/S0378-4371(00)00255-7 10.1016/j.camwa.2006.05.027 10.1029/2000WR900032 10.1016/j.camwa.2008.05.015 10.1137/0142040 10.1016/0960-0779(95)80003-Y 10.1088/0305-4470/25/8/024 10.1016/0022-247X(72)90189-8 10.1016/S0370-1573(00)00070-3 |
| ContentType | Journal Article |
| Copyright | 2011 Elsevier Inc. 2015 INIST-CNRS |
| Copyright_xml | – notice: 2011 Elsevier Inc. – notice: 2015 INIST-CNRS |
| DBID | 6I. AAFTH AAYXX CITATION IQODW |
| DOI | 10.1016/j.jmaa.2011.01.067 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1096-0813 |
| EndPage | 431 |
| ExternalDocumentID | 23973258 10_1016_j_jmaa_2011_01_067 S0022247X11000941 |
| GrantInformation_xml | – fundername: Lanzhou University – fundername: Fundamental Research Funds for the Central Universities grantid: lzujbky-2010-k10 – fundername: NSF of China grantid: 10971089 |
| GroupedDBID | --K --M --Z -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 85S 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADFGL ADIYS ADMUD AEBSH AEKER AENEX AETEA AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ H~9 IHE IXB J1W KOM LG5 M25 M41 MCRUF MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OHT OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 TWZ UPT VH1 VOH WH7 WUQ XOL XPP YQT YYP ZCG ZMT ZU3 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH |
| ID | FETCH-LOGICAL-c374t-87f5e8fa0ec317602777be1f6297f10c1906e22d0c53c8b959feafc489cc246e3 |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000288191100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-247X |
| IngestDate | Mon Jul 21 09:15:07 EDT 2025 Sat Nov 29 02:56:00 EST 2025 Tue Nov 18 22:25:25 EST 2025 Fri Feb 23 02:23:23 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Regularization method Fourier transform Temperature Laplace transform Caputo's fractional derivatives Heat flux Fourier transformation Fourier analysis Numerical method Bounded solution Convergence Inverse problem Exact solution One-dimensional calculations Mathematical analysis Diffusion equation Ill posed problem Laplace transformation |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c374t-87f5e8fa0ec317602777be1f6297f10c1906e22d0c53c8b959feafc489cc246e3 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.jmaa.2011.01.067 |
| PageCount | 14 |
| ParticipantIDs | pascalfrancis_primary_23973258 crossref_citationtrail_10_1016_j_jmaa_2011_01_067 crossref_primary_10_1016_j_jmaa_2011_01_067 elsevier_sciencedirect_doi_10_1016_j_jmaa_2011_01_067 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-06-15 |
| PublicationDateYYYYMMDD | 2011-06-15 |
| PublicationDate_xml | – month: 06 year: 2011 text: 2011-06-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Journal of mathematical analysis and applications |
| PublicationYear | 2011 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Mainardi (br0080) 1996; 9 Podlubny (br0140) 1999; vol. 198 Evans (br0050) 1998 Murio (br0120) 2008; 56 Eldén, Berntsson, Regińska (br0040) 2000; 21 Carasso (br0030) 1982; 42 Mainardi, Luchko, Pagnini (br0090) 2001; 4 Murio (br0110) 2007; 53 Oldham, Spanier (br0130) 1972; 39 Benson, Wheatcraft, Meerschaert (br0020) 2000; 36 Alemany (br0010) 1995; 6 Roman, Giona (br0160) 1992; 25 Metzler, Klafter (br0100) 2000; 339 Scalas, Gorenflo, Mainardi (br0170) 2000; 284 Jia, Huo (br0070) 2009; 246 Giona, Roman (br0060) 1992; 25 Roman, Alemany (br0150) 1994; 27 Wazzan (br0180) 2009; 14 Eldén (10.1016/j.jmaa.2011.01.067_br0040) 2000; 21 Carasso (10.1016/j.jmaa.2011.01.067_br0030) 1982; 42 Roman (10.1016/j.jmaa.2011.01.067_br0150) 1994; 27 Roman (10.1016/j.jmaa.2011.01.067_br0160) 1992; 25 Benson (10.1016/j.jmaa.2011.01.067_br0020) 2000; 36 Scalas (10.1016/j.jmaa.2011.01.067_br0170) 2000; 284 Murio (10.1016/j.jmaa.2011.01.067_br0120) 2008; 56 Mainardi (10.1016/j.jmaa.2011.01.067_br0090) 2001; 4 Murio (10.1016/j.jmaa.2011.01.067_br0110) 2007; 53 Giona (10.1016/j.jmaa.2011.01.067_br0060) 1992; 25 Evans (10.1016/j.jmaa.2011.01.067_br0050) 1998 Metzler (10.1016/j.jmaa.2011.01.067_br0100) 2000; 339 Alemany (10.1016/j.jmaa.2011.01.067_br0010) 1995; 6 Jia (10.1016/j.jmaa.2011.01.067_br0070) 2009; 246 Oldham (10.1016/j.jmaa.2011.01.067_br0130) 1972; 39 Mainardi (10.1016/j.jmaa.2011.01.067_br0080) 1996; 9 Podlubny (10.1016/j.jmaa.2011.01.067_br0140) 1999; vol. 198 Wazzan (10.1016/j.jmaa.2011.01.067_br0180) 2009; 14 |
| References_xml | – volume: 25 start-page: 2107 year: 1992 end-page: 2117 ident: br0160 article-title: Fractional diffusion equation on fractals: three-dimensional case and scattering function publication-title: J. Phys. A – volume: 25 start-page: 2093 year: 1992 end-page: 2105 ident: br0060 article-title: Fractional diffusion equation on fractals: one-dimensional case and asymptotic behaviour publication-title: J. Phys. A – volume: 284 start-page: 376 year: 2000 end-page: 384 ident: br0170 article-title: Fractional calculus and continuous-time finance publication-title: Phys. A – volume: 246 start-page: 2448 year: 2009 end-page: 2467 ident: br0070 article-title: Well-posedness for the fifth-order shallow water equations publication-title: J. Differential Equations – volume: 21 start-page: 2187 year: 2000 end-page: 2205 ident: br0040 article-title: Wavelet and Fourier methods for solving the sideways heat equation publication-title: SIAM J. Sci. Comput. – volume: 39 start-page: 655 year: 1972 end-page: 669 ident: br0130 article-title: A general solution of the diffusion equation for semiinfinite geometries publication-title: J. Math. Anal. Appl. – volume: 339 start-page: 77 year: 2000 ident: br0100 article-title: The random walk's guide to anomalous diffusion: a fractional dynamics approach publication-title: Phys. Rep. – volume: 56 start-page: 2371 year: 2008 end-page: 2381 ident: br0120 article-title: Time fractional IHCP with Caputo fractional derivatives publication-title: Comput. Math. Appl. – volume: 9 start-page: 23 year: 1996 end-page: 28 ident: br0080 article-title: The fundamental solutions for the fractional diffusion-wave equation publication-title: Appl. Math. Lett. – year: 1998 ident: br0050 article-title: Partial Differential Equations – volume: 6 start-page: 7 year: 1995 end-page: 10 ident: br0010 article-title: Fractional diffusion equation for fractal-time–continuous-time random walks publication-title: Chaos Solitons Fractals – volume: 42 start-page: 558 year: 1982 end-page: 574 ident: br0030 article-title: Determining surface temperatures from interior observations publication-title: SIAM J. Appl. Math. – volume: 36 start-page: 1413 year: 2000 end-page: 1423 ident: br0020 article-title: The fractional-order governing equation of Lévy motion publication-title: Water Resour. Res. – volume: 27 start-page: 3407 year: 1994 end-page: 3410 ident: br0150 article-title: Continuous-time random walks and the fractional diffusion equation publication-title: J. Phys. A – volume: 53 start-page: 1492 year: 2007 end-page: 1501 ident: br0110 article-title: Stable numerical solution of a fractional-diffusion inverse heat conduction problem publication-title: Comput. Math. Appl. – volume: 4 start-page: 153 year: 2001 end-page: 192 ident: br0090 article-title: The fundamental solution of the space–time fractional diffusion equation publication-title: Fract. Calc. Appl. Anal. – volume: vol. 198 year: 1999 ident: br0140 article-title: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications publication-title: Math. Sci. Eng. – volume: 14 start-page: 2642 year: 2009 end-page: 2652 ident: br0180 article-title: A modified tanh–coth method for solving the general Burgers–Fisher and the Kuramoto–Sivashinsky equations publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 246 start-page: 2448 year: 2009 ident: 10.1016/j.jmaa.2011.01.067_br0070 article-title: Well-posedness for the fifth-order shallow water equations publication-title: J. Differential Equations doi: 10.1016/j.jde.2008.10.027 – volume: 4 start-page: 153 issue: 2 year: 2001 ident: 10.1016/j.jmaa.2011.01.067_br0090 article-title: The fundamental solution of the space–time fractional diffusion equation publication-title: Fract. Calc. Appl. Anal. – volume: 14 start-page: 2642 year: 2009 ident: 10.1016/j.jmaa.2011.01.067_br0180 article-title: A modified tanh–coth method for solving the general Burgers–Fisher and the Kuramoto–Sivashinsky equations publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2008.08.004 – volume: 27 start-page: 3407 issue: 10 year: 1994 ident: 10.1016/j.jmaa.2011.01.067_br0150 article-title: Continuous-time random walks and the fractional diffusion equation publication-title: J. Phys. A doi: 10.1088/0305-4470/27/10/017 – volume: 25 start-page: 2093 issue: 8 year: 1992 ident: 10.1016/j.jmaa.2011.01.067_br0060 article-title: Fractional diffusion equation on fractals: one-dimensional case and asymptotic behaviour publication-title: J. Phys. A doi: 10.1088/0305-4470/25/8/023 – volume: 21 start-page: 2187 issue: 6 year: 2000 ident: 10.1016/j.jmaa.2011.01.067_br0040 article-title: Wavelet and Fourier methods for solving the sideways heat equation publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827597331394 – volume: 9 start-page: 23 issue: 6 year: 1996 ident: 10.1016/j.jmaa.2011.01.067_br0080 article-title: The fundamental solutions for the fractional diffusion-wave equation publication-title: Appl. Math. Lett. doi: 10.1016/0893-9659(96)00089-4 – volume: 284 start-page: 376 issue: 1–4 year: 2000 ident: 10.1016/j.jmaa.2011.01.067_br0170 article-title: Fractional calculus and continuous-time finance publication-title: Phys. A doi: 10.1016/S0378-4371(00)00255-7 – volume: 53 start-page: 1492 issue: 10 year: 2007 ident: 10.1016/j.jmaa.2011.01.067_br0110 article-title: Stable numerical solution of a fractional-diffusion inverse heat conduction problem publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2006.05.027 – year: 1998 ident: 10.1016/j.jmaa.2011.01.067_br0050 – volume: 36 start-page: 1413 year: 2000 ident: 10.1016/j.jmaa.2011.01.067_br0020 article-title: The fractional-order governing equation of Lévy motion publication-title: Water Resour. Res. doi: 10.1029/2000WR900032 – volume: 56 start-page: 2371 issue: 9 year: 2008 ident: 10.1016/j.jmaa.2011.01.067_br0120 article-title: Time fractional IHCP with Caputo fractional derivatives publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2008.05.015 – volume: 42 start-page: 558 issue: 3 year: 1982 ident: 10.1016/j.jmaa.2011.01.067_br0030 article-title: Determining surface temperatures from interior observations publication-title: SIAM J. Appl. Math. doi: 10.1137/0142040 – volume: vol. 198 year: 1999 ident: 10.1016/j.jmaa.2011.01.067_br0140 article-title: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications – volume: 6 start-page: 7 year: 1995 ident: 10.1016/j.jmaa.2011.01.067_br0010 article-title: Fractional diffusion equation for fractal-time–continuous-time random walks publication-title: Chaos Solitons Fractals doi: 10.1016/0960-0779(95)80003-Y – volume: 25 start-page: 2107 issue: 8 year: 1992 ident: 10.1016/j.jmaa.2011.01.067_br0160 article-title: Fractional diffusion equation on fractals: three-dimensional case and scattering function publication-title: J. Phys. A doi: 10.1088/0305-4470/25/8/024 – volume: 39 start-page: 655 issue: 3 year: 1972 ident: 10.1016/j.jmaa.2011.01.067_br0130 article-title: A general solution of the diffusion equation for semiinfinite geometries publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(72)90189-8 – volume: 339 start-page: 77 issue: 1 year: 2000 ident: 10.1016/j.jmaa.2011.01.067_br0100 article-title: The random walk's guide to anomalous diffusion: a fractional dynamics approach publication-title: Phys. Rep. doi: 10.1016/S0370-1573(00)00070-3 |
| SSID | ssj0011571 |
| Score | 2.179011 |
| Snippet | In this paper, we consider an inverse problem for a time-fractional diffusion equation in a one-dimensional semi-infinite domain. The temperature and heat flux... |
| SourceID | pascalfrancis crossref elsevier |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 418 |
| SubjectTerms | Caputo's fractional derivatives Exact sciences and technology Fourier transform Heat flux Laplace transform Mathematical analysis Mathematics Numerical analysis Numerical analysis in abstract spaces Numerical analysis. Scientific computation Numerical linear algebra Numerical methods in probability and statistics Real functions Regularization method Sciences and techniques of general use Temperature |
| Title | A new regularization method for solving a time-fractional inverse diffusion problem |
| URI | https://dx.doi.org/10.1016/j.jmaa.2011.01.067 |
| Volume | 378 |
| WOSCitedRecordID | wos000288191100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1096-0813 dateEnd: 20180131 omitProxy: false ssIdentifier: ssj0011571 issn: 0022-247X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdbu4eVMfbJuo-ih70FF1uWJesxjGztYGWwjuXNSLIEC6sXnLT0z9_pw4qT0W57GBgTjBUF3S93p9Pd_RB6mxe1ISD3rNTcZlTABkVJQ7PaFrSFIUVrlCeb4Gdn9XwuPsdQ9srTCfCuq6-vxfK_ihqegbBd6ew_iDt9KTyAzyB0uIPY4f5Xgp86lvBJ7znm-1hlGYmifU4hzO6DCNLzyme2D6UNvvmGy9EwnjTl0kXRJpFu5gYP9iK1fPUNB2J3E9_9dXQsnkLTJ7NQH_XheFMR8W12usnUbjfRVJaF8ssQEYvme6xhYXNLKJ-PNWzJ6xGUyEhf0qh8g-mlwSD8ptVDgGFxvLiQMnZdhSvQeGy30N4xbSnhkJSuK1FV30X7hFcC1N_-9HQ2_5gOnIqKF0NjeffzY31VSAXcnfcmH-bBUq5gxW2gRBn5KeeP0MMoHjwNwHiM7pjuCTr4lES1eoq-TDFABG9DBAeIYIAIjhDBEu9ABEeI4AQRHCHyDH19Pzt_d5JFco1Ml5yuwQraytRW5kaDC8ncUT5XprCMCG6LXIOjyAwhba6rUtdKVMIaaTWthdaEMlM-R3vdz868QJiVplWFIsoY2OxTKi1nkivBlFCKWnaIimG5Gh07zzsClB_NkGK4aNwSN26Jmxwuxg_RJI1Zhr4rt75dDVJooucYPMIGIHTruKMtkaWpBry8_NMLr9D9zf_iNdpb95fmDbqnr9bfV_1RRNkvSIiaUg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+regularization+method+for+solving+a+time-fractional+inverse+diffusion+problem&rft.jtitle=Journal+of+mathematical+analysis+and+applications&rft.au=ZHENG%2C+G.+H&rft.au=WEI%2C+T&rft.date=2011-06-15&rft.pub=Elsevier&rft.issn=0022-247X&rft.volume=378&rft.issue=2&rft.spage=418&rft.epage=431&rft_id=info:doi/10.1016%2Fj.jmaa.2011.01.067&rft.externalDBID=n%2Fa&rft.externalDocID=23973258 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-247X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-247X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-247X&client=summon |