A new regularization method for solving a time-fractional inverse diffusion problem

In this paper, we consider an inverse problem for a time-fractional diffusion equation in a one-dimensional semi-infinite domain. The temperature and heat flux are sought from a measured temperature history at a fixed location inside the body. We show that such problem is severely ill-posed and furt...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of mathematical analysis and applications Ročník 378; číslo 2; s. 418 - 431
Hlavní autori: Zheng, G.H., Wei, T.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier Inc 15.06.2011
Elsevier
Predmet:
ISSN:0022-247X, 1096-0813
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we consider an inverse problem for a time-fractional diffusion equation in a one-dimensional semi-infinite domain. The temperature and heat flux are sought from a measured temperature history at a fixed location inside the body. We show that such problem is severely ill-posed and further apply a new regularization method to solve it based on the solution given by the Fourier method. Convergence estimates are presented under the a priori bound assumptions for the exact solution. Finally, numerical examples are given to show that the proposed numerical method is effective.
AbstractList In this paper, we consider an inverse problem for a time-fractional diffusion equation in a one-dimensional semi-infinite domain. The temperature and heat flux are sought from a measured temperature history at a fixed location inside the body. We show that such problem is severely ill-posed and further apply a new regularization method to solve it based on the solution given by the Fourier method. Convergence estimates are presented under the a priori bound assumptions for the exact solution. Finally, numerical examples are given to show that the proposed numerical method is effective.
Author Zheng, G.H.
Wei, T.
Author_xml – sequence: 1
  givenname: G.H.
  surname: Zheng
  fullname: Zheng, G.H.
– sequence: 2
  givenname: T.
  surname: Wei
  fullname: Wei, T.
  email: tingwei@lzu.edu.cn
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23973258$$DView record in Pascal Francis
BookMark eNp9kM9LwzAcxYNMcJv-A55y8diapG3Sgpcx_AUDDyp4C1n6zUxpk5F0E_3rbZ1ePAwefC_v8_i-N0MT5x0gdElJSgnl103adEqljFCakkFcnKApJRVPSEmzCZoSwljCcvF2hmYxNmQwFoJO0fMCO_jAATa7VgX7pXrrHe6gf_c1Nj7g6Nu9dRuscG87SExQerSoFlu3hxAB19aYXRyxbfDrFrpzdGpUG-Hi987R693ty_IhWT3dPy4Xq0RnIu-TUpgCSqMI6IwKTpgQYg3UcFYJQ4mmFeHAWE10kelyXRWVAWV0XlZas5xDNkdXh9ytilq1w2tO2yi3wXYqfEqWVSJjRTn4yoNPBx9jACO17X-K9kHZVlIixxFlI8cR5TiiJIO4GFD2D_1LPwrdHCAYyu8tBBm1BaehtgF0L2tvj-HfwQaOTQ
CODEN JMANAK
CitedBy_id crossref_primary_10_1016_j_matcom_2017_08_004
crossref_primary_10_1155_2020_5865971
crossref_primary_10_1016_j_camwa_2014_02_008
crossref_primary_10_1177_1687814018822360
crossref_primary_10_1007_s11766_019_3613_5
crossref_primary_10_1016_j_enganabound_2018_03_006
crossref_primary_10_1088_1742_6596_1531_1_012088
crossref_primary_10_1016_j_cam_2018_12_038
crossref_primary_10_1002_nme_4991
crossref_primary_10_1016_j_matcom_2023_05_012
crossref_primary_10_3390_en14113082
crossref_primary_10_1186_s13662_015_0679_0
crossref_primary_10_1016_j_camwa_2011_03_058
crossref_primary_10_1016_j_camwa_2015_12_030
crossref_primary_10_1109_ACCESS_2019_2927518
crossref_primary_10_1016_j_apm_2012_01_016
crossref_primary_10_1007_s40314_019_0776_x
crossref_primary_10_1016_j_apnum_2018_02_008
crossref_primary_10_1002_mma_2661
crossref_primary_10_1016_j_camwa_2024_04_001
crossref_primary_10_1016_j_jmaa_2023_127721
crossref_primary_10_1007_s11075_020_01025_1
crossref_primary_10_3390_math7090865
crossref_primary_10_1007_s11786_017_0292_6
crossref_primary_10_1016_j_ijleo_2016_08_032
crossref_primary_10_1007_s11075_022_01295_x
crossref_primary_10_1007_s10891_019_01932_8
crossref_primary_10_1007_s40314_025_03124_y
crossref_primary_10_1016_j_matcom_2025_01_002
Cites_doi 10.1016/j.jde.2008.10.027
10.1016/j.cnsns.2008.08.004
10.1088/0305-4470/27/10/017
10.1088/0305-4470/25/8/023
10.1137/S1064827597331394
10.1016/0893-9659(96)00089-4
10.1016/S0378-4371(00)00255-7
10.1016/j.camwa.2006.05.027
10.1029/2000WR900032
10.1016/j.camwa.2008.05.015
10.1137/0142040
10.1016/0960-0779(95)80003-Y
10.1088/0305-4470/25/8/024
10.1016/0022-247X(72)90189-8
10.1016/S0370-1573(00)00070-3
ContentType Journal Article
Copyright 2011 Elsevier Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier Inc.
– notice: 2015 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/j.jmaa.2011.01.067
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1096-0813
EndPage 431
ExternalDocumentID 23973258
10_1016_j_jmaa_2011_01_067
S0022247X11000941
GrantInformation_xml – fundername: Lanzhou University
– fundername: Fundamental Research Funds for the Central Universities
  grantid: lzujbky-2010-k10
– fundername: NSF of China
  grantid: 10971089
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
85S
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
UPT
VH1
VOH
WH7
WUQ
XOL
XPP
YQT
YYP
ZCG
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c374t-87f5e8fa0ec317602777be1f6297f10c1906e22d0c53c8b959feafc489cc246e3
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000288191100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-247X
IngestDate Mon Jul 21 09:15:07 EDT 2025
Sat Nov 29 02:56:00 EST 2025
Tue Nov 18 22:25:25 EST 2025
Fri Feb 23 02:23:23 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Regularization method
Fourier transform
Temperature
Laplace transform
Caputo's fractional derivatives
Heat flux
Fourier transformation
Fourier analysis
Numerical method
Bounded solution
Convergence
Inverse problem
Exact solution
One-dimensional calculations
Mathematical analysis
Diffusion equation
Ill posed problem
Laplace transformation
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c374t-87f5e8fa0ec317602777be1f6297f10c1906e22d0c53c8b959feafc489cc246e3
OpenAccessLink https://dx.doi.org/10.1016/j.jmaa.2011.01.067
PageCount 14
ParticipantIDs pascalfrancis_primary_23973258
crossref_citationtrail_10_1016_j_jmaa_2011_01_067
crossref_primary_10_1016_j_jmaa_2011_01_067
elsevier_sciencedirect_doi_10_1016_j_jmaa_2011_01_067
PublicationCentury 2000
PublicationDate 2011-06-15
PublicationDateYYYYMMDD 2011-06-15
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-06-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of mathematical analysis and applications
PublicationYear 2011
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Mainardi (br0080) 1996; 9
Podlubny (br0140) 1999; vol. 198
Evans (br0050) 1998
Murio (br0120) 2008; 56
Eldén, Berntsson, Regińska (br0040) 2000; 21
Carasso (br0030) 1982; 42
Mainardi, Luchko, Pagnini (br0090) 2001; 4
Murio (br0110) 2007; 53
Oldham, Spanier (br0130) 1972; 39
Benson, Wheatcraft, Meerschaert (br0020) 2000; 36
Alemany (br0010) 1995; 6
Roman, Giona (br0160) 1992; 25
Metzler, Klafter (br0100) 2000; 339
Scalas, Gorenflo, Mainardi (br0170) 2000; 284
Jia, Huo (br0070) 2009; 246
Giona, Roman (br0060) 1992; 25
Roman, Alemany (br0150) 1994; 27
Wazzan (br0180) 2009; 14
Eldén (10.1016/j.jmaa.2011.01.067_br0040) 2000; 21
Carasso (10.1016/j.jmaa.2011.01.067_br0030) 1982; 42
Roman (10.1016/j.jmaa.2011.01.067_br0150) 1994; 27
Roman (10.1016/j.jmaa.2011.01.067_br0160) 1992; 25
Benson (10.1016/j.jmaa.2011.01.067_br0020) 2000; 36
Scalas (10.1016/j.jmaa.2011.01.067_br0170) 2000; 284
Murio (10.1016/j.jmaa.2011.01.067_br0120) 2008; 56
Mainardi (10.1016/j.jmaa.2011.01.067_br0090) 2001; 4
Murio (10.1016/j.jmaa.2011.01.067_br0110) 2007; 53
Giona (10.1016/j.jmaa.2011.01.067_br0060) 1992; 25
Evans (10.1016/j.jmaa.2011.01.067_br0050) 1998
Metzler (10.1016/j.jmaa.2011.01.067_br0100) 2000; 339
Alemany (10.1016/j.jmaa.2011.01.067_br0010) 1995; 6
Jia (10.1016/j.jmaa.2011.01.067_br0070) 2009; 246
Oldham (10.1016/j.jmaa.2011.01.067_br0130) 1972; 39
Mainardi (10.1016/j.jmaa.2011.01.067_br0080) 1996; 9
Podlubny (10.1016/j.jmaa.2011.01.067_br0140) 1999; vol. 198
Wazzan (10.1016/j.jmaa.2011.01.067_br0180) 2009; 14
References_xml – volume: 25
  start-page: 2107
  year: 1992
  end-page: 2117
  ident: br0160
  article-title: Fractional diffusion equation on fractals: three-dimensional case and scattering function
  publication-title: J. Phys. A
– volume: 25
  start-page: 2093
  year: 1992
  end-page: 2105
  ident: br0060
  article-title: Fractional diffusion equation on fractals: one-dimensional case and asymptotic behaviour
  publication-title: J. Phys. A
– volume: 284
  start-page: 376
  year: 2000
  end-page: 384
  ident: br0170
  article-title: Fractional calculus and continuous-time finance
  publication-title: Phys. A
– volume: 246
  start-page: 2448
  year: 2009
  end-page: 2467
  ident: br0070
  article-title: Well-posedness for the fifth-order shallow water equations
  publication-title: J. Differential Equations
– volume: 21
  start-page: 2187
  year: 2000
  end-page: 2205
  ident: br0040
  article-title: Wavelet and Fourier methods for solving the sideways heat equation
  publication-title: SIAM J. Sci. Comput.
– volume: 39
  start-page: 655
  year: 1972
  end-page: 669
  ident: br0130
  article-title: A general solution of the diffusion equation for semiinfinite geometries
  publication-title: J. Math. Anal. Appl.
– volume: 339
  start-page: 77
  year: 2000
  ident: br0100
  article-title: The random walk's guide to anomalous diffusion: a fractional dynamics approach
  publication-title: Phys. Rep.
– volume: 56
  start-page: 2371
  year: 2008
  end-page: 2381
  ident: br0120
  article-title: Time fractional IHCP with Caputo fractional derivatives
  publication-title: Comput. Math. Appl.
– volume: 9
  start-page: 23
  year: 1996
  end-page: 28
  ident: br0080
  article-title: The fundamental solutions for the fractional diffusion-wave equation
  publication-title: Appl. Math. Lett.
– year: 1998
  ident: br0050
  article-title: Partial Differential Equations
– volume: 6
  start-page: 7
  year: 1995
  end-page: 10
  ident: br0010
  article-title: Fractional diffusion equation for fractal-time–continuous-time random walks
  publication-title: Chaos Solitons Fractals
– volume: 42
  start-page: 558
  year: 1982
  end-page: 574
  ident: br0030
  article-title: Determining surface temperatures from interior observations
  publication-title: SIAM J. Appl. Math.
– volume: 36
  start-page: 1413
  year: 2000
  end-page: 1423
  ident: br0020
  article-title: The fractional-order governing equation of Lévy motion
  publication-title: Water Resour. Res.
– volume: 27
  start-page: 3407
  year: 1994
  end-page: 3410
  ident: br0150
  article-title: Continuous-time random walks and the fractional diffusion equation
  publication-title: J. Phys. A
– volume: 53
  start-page: 1492
  year: 2007
  end-page: 1501
  ident: br0110
  article-title: Stable numerical solution of a fractional-diffusion inverse heat conduction problem
  publication-title: Comput. Math. Appl.
– volume: 4
  start-page: 153
  year: 2001
  end-page: 192
  ident: br0090
  article-title: The fundamental solution of the space–time fractional diffusion equation
  publication-title: Fract. Calc. Appl. Anal.
– volume: vol. 198
  year: 1999
  ident: br0140
  article-title: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
  publication-title: Math. Sci. Eng.
– volume: 14
  start-page: 2642
  year: 2009
  end-page: 2652
  ident: br0180
  article-title: A modified tanh–coth method for solving the general Burgers–Fisher and the Kuramoto–Sivashinsky equations
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 246
  start-page: 2448
  year: 2009
  ident: 10.1016/j.jmaa.2011.01.067_br0070
  article-title: Well-posedness for the fifth-order shallow water equations
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2008.10.027
– volume: 4
  start-page: 153
  issue: 2
  year: 2001
  ident: 10.1016/j.jmaa.2011.01.067_br0090
  article-title: The fundamental solution of the space–time fractional diffusion equation
  publication-title: Fract. Calc. Appl. Anal.
– volume: 14
  start-page: 2642
  year: 2009
  ident: 10.1016/j.jmaa.2011.01.067_br0180
  article-title: A modified tanh–coth method for solving the general Burgers–Fisher and the Kuramoto–Sivashinsky equations
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2008.08.004
– volume: 27
  start-page: 3407
  issue: 10
  year: 1994
  ident: 10.1016/j.jmaa.2011.01.067_br0150
  article-title: Continuous-time random walks and the fractional diffusion equation
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/27/10/017
– volume: 25
  start-page: 2093
  issue: 8
  year: 1992
  ident: 10.1016/j.jmaa.2011.01.067_br0060
  article-title: Fractional diffusion equation on fractals: one-dimensional case and asymptotic behaviour
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/25/8/023
– volume: 21
  start-page: 2187
  issue: 6
  year: 2000
  ident: 10.1016/j.jmaa.2011.01.067_br0040
  article-title: Wavelet and Fourier methods for solving the sideways heat equation
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827597331394
– volume: 9
  start-page: 23
  issue: 6
  year: 1996
  ident: 10.1016/j.jmaa.2011.01.067_br0080
  article-title: The fundamental solutions for the fractional diffusion-wave equation
  publication-title: Appl. Math. Lett.
  doi: 10.1016/0893-9659(96)00089-4
– volume: 284
  start-page: 376
  issue: 1–4
  year: 2000
  ident: 10.1016/j.jmaa.2011.01.067_br0170
  article-title: Fractional calculus and continuous-time finance
  publication-title: Phys. A
  doi: 10.1016/S0378-4371(00)00255-7
– volume: 53
  start-page: 1492
  issue: 10
  year: 2007
  ident: 10.1016/j.jmaa.2011.01.067_br0110
  article-title: Stable numerical solution of a fractional-diffusion inverse heat conduction problem
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2006.05.027
– year: 1998
  ident: 10.1016/j.jmaa.2011.01.067_br0050
– volume: 36
  start-page: 1413
  year: 2000
  ident: 10.1016/j.jmaa.2011.01.067_br0020
  article-title: The fractional-order governing equation of Lévy motion
  publication-title: Water Resour. Res.
  doi: 10.1029/2000WR900032
– volume: 56
  start-page: 2371
  issue: 9
  year: 2008
  ident: 10.1016/j.jmaa.2011.01.067_br0120
  article-title: Time fractional IHCP with Caputo fractional derivatives
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2008.05.015
– volume: 42
  start-page: 558
  issue: 3
  year: 1982
  ident: 10.1016/j.jmaa.2011.01.067_br0030
  article-title: Determining surface temperatures from interior observations
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0142040
– volume: vol. 198
  year: 1999
  ident: 10.1016/j.jmaa.2011.01.067_br0140
  article-title: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
– volume: 6
  start-page: 7
  year: 1995
  ident: 10.1016/j.jmaa.2011.01.067_br0010
  article-title: Fractional diffusion equation for fractal-time–continuous-time random walks
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/0960-0779(95)80003-Y
– volume: 25
  start-page: 2107
  issue: 8
  year: 1992
  ident: 10.1016/j.jmaa.2011.01.067_br0160
  article-title: Fractional diffusion equation on fractals: three-dimensional case and scattering function
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/25/8/024
– volume: 39
  start-page: 655
  issue: 3
  year: 1972
  ident: 10.1016/j.jmaa.2011.01.067_br0130
  article-title: A general solution of the diffusion equation for semiinfinite geometries
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(72)90189-8
– volume: 339
  start-page: 77
  issue: 1
  year: 2000
  ident: 10.1016/j.jmaa.2011.01.067_br0100
  article-title: The random walk's guide to anomalous diffusion: a fractional dynamics approach
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(00)00070-3
SSID ssj0011571
Score 2.179011
Snippet In this paper, we consider an inverse problem for a time-fractional diffusion equation in a one-dimensional semi-infinite domain. The temperature and heat flux...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 418
SubjectTerms Caputo's fractional derivatives
Exact sciences and technology
Fourier transform
Heat flux
Laplace transform
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis in abstract spaces
Numerical analysis. Scientific computation
Numerical linear algebra
Numerical methods in probability and statistics
Real functions
Regularization method
Sciences and techniques of general use
Temperature
Title A new regularization method for solving a time-fractional inverse diffusion problem
URI https://dx.doi.org/10.1016/j.jmaa.2011.01.067
Volume 378
WOSCitedRecordID wos000288191100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-0813
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0011571
  issn: 0022-247X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdbu4eVMfbJuo-ih70FF1uWJesxjGztYGWwjuXNSLIEC6sXnLT0z9_pw4qT0W57GBgTjBUF3S93p9Pd_RB6mxe1ISD3rNTcZlTABkVJQ7PaFrSFIUVrlCeb4Gdn9XwuPsdQ9srTCfCuq6-vxfK_ihqegbBd6ew_iDt9KTyAzyB0uIPY4f5Xgp86lvBJ7znm-1hlGYmifU4hzO6DCNLzyme2D6UNvvmGy9EwnjTl0kXRJpFu5gYP9iK1fPUNB2J3E9_9dXQsnkLTJ7NQH_XheFMR8W12usnUbjfRVJaF8ssQEYvme6xhYXNLKJ-PNWzJ6xGUyEhf0qh8g-mlwSD8ptVDgGFxvLiQMnZdhSvQeGy30N4xbSnhkJSuK1FV30X7hFcC1N_-9HQ2_5gOnIqKF0NjeffzY31VSAXcnfcmH-bBUq5gxW2gRBn5KeeP0MMoHjwNwHiM7pjuCTr4lES1eoq-TDFABG9DBAeIYIAIjhDBEu9ABEeI4AQRHCHyDH19Pzt_d5JFco1Ml5yuwQraytRW5kaDC8ncUT5XprCMCG6LXIOjyAwhba6rUtdKVMIaaTWthdaEMlM-R3vdz868QJiVplWFIsoY2OxTKi1nkivBlFCKWnaIimG5Gh07zzsClB_NkGK4aNwSN26Jmxwuxg_RJI1Zhr4rt75dDVJooucYPMIGIHTruKMtkaWpBry8_NMLr9D9zf_iNdpb95fmDbqnr9bfV_1RRNkvSIiaUg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+regularization+method+for+solving+a+time-fractional+inverse+diffusion+problem&rft.jtitle=Journal+of+mathematical+analysis+and+applications&rft.au=ZHENG%2C+G.+H&rft.au=WEI%2C+T&rft.date=2011-06-15&rft.pub=Elsevier&rft.issn=0022-247X&rft.volume=378&rft.issue=2&rft.spage=418&rft.epage=431&rft_id=info:doi/10.1016%2Fj.jmaa.2011.01.067&rft.externalDBID=n%2Fa&rft.externalDocID=23973258
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-247X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-247X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-247X&client=summon