Polynomial-division-based algorithms for computing linear recurrence relations

Sparse polynomial interpolation, sparse linear system solving or modular rational reconstruction are fundamental problems in Computer Algebra. They come down to computing linear recurrence relations of a sequence with the Berlekamp–Massey algorithm. Likewise, sparse multivariate polynomial interpola...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of symbolic computation Ročník 109; s. 1 - 30
Hlavní autori: Berthomieu, Jérémy, Faugère, Jean-Charles
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.03.2022
Elsevier
Predmet:
ISSN:0747-7171, 1095-855X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Sparse polynomial interpolation, sparse linear system solving or modular rational reconstruction are fundamental problems in Computer Algebra. They come down to computing linear recurrence relations of a sequence with the Berlekamp–Massey algorithm. Likewise, sparse multivariate polynomial interpolation and multidimensional cyclic code decoding require guessing linear recurrence relations of a multivariate sequence. Several algorithms solve this problem. The so-called Berlekamp–Massey–Sakata algorithm (1988) uses polynomial additions and shifts by a monomial. The Scalar-FGLM algorithm (2015) relies on linear algebra operations on a multi-Hankel matrix, a multivariate generalization of a Hankel matrix. The Artinian Gorenstein border basis algorithm (2017) uses a Gram-Schmidt process. We propose a new algorithm for computing the Gröbner basis of the ideal of relations of a sequence based solely on multivariate polynomial arithmetic. This algorithm allows us to both revisit the Berlekamp–Massey–Sakata algorithm through the use of polynomial divisions and to completely revise the Scalar-FGLM algorithm without linear algebra operations. A key observation in the design of this algorithm is to work on the mirror of the truncated generating series allowing us to use polynomial arithmetic modulo a monomial ideal. It appears to have some similarities with Padé approximants of this mirror polynomial. As an addition from the paper published at the ISSAC conference, we give an adaptive variant of this algorithm taking into account the shape of the final Gröbner basis gradually as it is discovered. The main advantage of this algorithm is that its complexity in terms of operations and sequence queries only depends on the output Gröbner basis. All these algorithms have been implemented in Maple and we report on our comparisons.
AbstractList Sparse polynomial interpolation, sparse linear system solving or modular rational reconstruction are fundamental problems in Computer Algebra. They come down to computing linear recurrence relations of a sequence with the Berlekamp–Massey algorithm. Likewise, sparse multivariate polynomial interpolation and multidimensional cyclic code decoding require guessing linear recurrence relations of a multivariate sequence. Several algorithms solve this problem. The so-called Berlekamp–Massey–Sakata algorithm (1988) uses polynomial additions and shifts by a monomial. The Scalar-FGLM algorithm (2015) relies on linear algebra operations on a multi-Hankel matrix, a multivariate generalization of a Hankel matrix. The Artinian Gorenstein border basis algorithm (2017) uses a Gram-Schmidt process. We propose a new algorithm for computing the Gröbner basis of the ideal of relations of a sequence based solely on multivariate polynomial arithmetic. This algorithm allows us to both revisit the Berlekamp–Massey–Sakata algorithm through the use of polynomial divisions and to completely revise the Scalar-FGLM algorithm without linear algebra operations. A key observation in the design of this algorithm is to work on the mirror of the truncated generating series allowing us to use polynomial arithmetic modulo a monomial ideal. It appears to have some similarities with Padé approximants of this mirror polynomial. As an addition from the paper published at the ISSAC conference, we give an adaptive variant of this algorithm taking into account the shape of the final Gröbner basis gradually as it is discovered. The main advantage of this algorithm is that its complexity in terms of operations and sequence queries only depends on the output Gröbner basis. All these algorithms have been implemented in Maple and we report on our comparisons.
Sparse polynomial interpolation, sparse linear system solving or modular rational reconstruction are fundamental problems in Computer Algebra. They come down to computing linear recurrence relations of a sequence with the Berlekamp-Massey algorithm. Likewise, sparse multivariate polynomial interpolation and multidimensional cyclic code decoding require guessing linear recurrence relations of a multivariate sequence.Several algorithms solve this problem. The so-called Berlekamp-Massey-Sakata algorithm (1988) uses polynomial additions and shifts by a monomial. The Scalar-FGLM algorithm (2015) relies on linear algebra operations on a multi-Hankel matrix, a multivariate generalization of a Hankel matrix. The Artinian Gorenstein border basis algorithm (2017) uses a Gram-Schmidt process.We propose a new algorithm for computing the Gröbner basis of the ideal of relations of a sequence based solely on multivariate polynomial arithmetic. This algorithm allows us to both revisit the Berlekamp-Massey-Sakata algorithm through the use of polynomial divisions and to completely revise the Scalar-FGLM algorithm without linear algebra operations.A key observation in the design of this algorithm is to work on the mirror of the truncated generating series allowing us to use polynomial arithmetic modulo a monomial ideal. It appears to have some similarities with Padé approximants of this mirror polynomial.As an addition from the paper published at the ISSAC conferance, we give an adaptive variant of this algorithm taking into account the shape of the final Gröbner basis gradually as it is discovered. The main advantage of this algorithm is that its complexity in terms of operations and sequence queries only depends on the output Gröbner basis.All these algorithms have been implemented in Maple and we report on our comparisons.
Author Faugère, Jean-Charles
Berthomieu, Jérémy
Author_xml – sequence: 1
  givenname: Jérémy
  surname: Berthomieu
  fullname: Berthomieu, Jérémy
  email: jeremy.berthomieu@lip6.fr
  organization: Sorbonne Université, CNRS, LIP6, F-75005, Paris, France
– sequence: 2
  givenname: Jean-Charles
  surname: Faugère
  fullname: Faugère, Jean-Charles
  email: jcf@cryptonext-security.com, jean-charles.faugere@inria.fr
  organization: CryptoNext Security, France
BackLink https://inria.hal.science/hal-01935229$$DView record in HAL
BookMark eNp9kEFLwzAUx4NMcJt-AG-9emh9SZqlxdMY6oShHhS8hTRJt5SuGUk32Lc3deLBw07v8fj_Hvx_EzTqXGcQusWQYcCz-yZrgsoIEJwBzwDIBRpjKFlaMPY1QmPgOU855vgKTUJoAKDMKRuj13fXHju3tbJNtT3YYF2XVjIYnch27bztN9uQ1M4nym13-95266S1nZE-8UbtvTedMnFtZR_JcI0ua9kGc_M7p-jz6fFjsUxXb88vi_kqVZTnfVpwqbhmqtKMQGVMXZuS1LKc5WAoK0iuodSqgJxpU4HGOa51TTClVM8qSjGdorvT341sxc7brfRH4aQVy_lKDDfAJWWElAcas_iUVd6F4E39B2AQgzzRiChPDPIEcBHlRYb_Y5Ttfyr2Xtr2LPlwIk2sf7DGi6DsIEnbKKwX2tkz9De54o0U
CitedBy_id crossref_primary_10_1016_j_jsc_2021_11_001
Cites_doi 10.1109/18.59953
10.1002/sapm1946251261
10.1016/S0747-7171(88)80033-6
10.1109/TIT.1987.1057299
10.1016/j.jsc.2016.07.025
10.1016/j.jsc.2019.09.001
10.1016/0196-6774(80)90013-9
10.1007/s00200-006-0015-8
10.1016/S0747-7171(08)80087-9
10.1090/S0025-5718-1965-0178586-1
10.1016/j.jsc.2016.11.005
10.1109/TIT.1969.1054260
10.1109/TIT.1968.1054109
10.1016/0890-5401(90)90039-K
10.1007/BF01178683
10.1016/0024-3795(89)90032-3
10.1109/18.556111
10.1016/S0019-9958(60)90287-4
10.1007/s00200-019-00389-9
10.1137/S0895479892230031
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Attribution
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Attribution
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.jsc.2021.07.002
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1095-855X
EndPage 30
ExternalDocumentID oai:HAL:hal-01935229v3
10_1016_j_jsc_2021_07_002
S0747717121000432
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6OB
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M25
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSW
SSZ
T5K
TN5
UPT
WUQ
XPP
YQT
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
1XC
VOOES
ID FETCH-LOGICAL-c374t-87ac7d5cbd520beeffe92fa9640e35824d09dc8045deb0d141fdf21333d6b3313
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000704001500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0747-7171
IngestDate Tue Oct 14 20:07:00 EDT 2025
Sat Nov 29 07:18:31 EST 2025
Tue Nov 18 21:43:22 EST 2025
Fri Feb 23 02:44:42 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Gröbner bases
Linear recursive sequences
Padé approximants
Extended Euclidean algorithm
Berlekamp–Massey–Sakata
Berlekamp-Massey-Sakata
extended Euclidean algorithm
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c374t-87ac7d5cbd520beeffe92fa9640e35824d09dc8045deb0d141fdf21333d6b3313
ORCID 0000-0002-9011-2211
OpenAccessLink https://inria.hal.science/hal-01935229
PageCount 30
ParticipantIDs hal_primary_oai_HAL_hal_01935229v3
crossref_primary_10_1016_j_jsc_2021_07_002
crossref_citationtrail_10_1016_j_jsc_2021_07_002
elsevier_sciencedirect_doi_10_1016_j_jsc_2021_07_002
PublicationCentury 2000
PublicationDate March-April 2022
2022-03-00
2022-03
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March-April 2022
PublicationDecade 2020
PublicationTitle Journal of symbolic computation
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Berthomieu, Faugère (br0060) 2020; 101
Bras-Amorós, O'Sullivan (br0100) 2006; 17
Dornstetter (br0150) 1987; 33
Bose, Ray-Chaudhuri (br0090) 1960; 3
Hoeven, Larrieu (br0210) 2019; 30
Berthomieu, Faugère (br0070) 2021
Blackburn (br0080) 2006; 43
Massey (br0240) 1969
Sakata (br0270) 1988; 5
Berlekamp (br0020) 1968; 14
Naldi, Neiger (br0260) 2020
Sakata (br0280) 1990; 84
Faugère, Mou (br0170) 2017; 80
Berthomieu, Boyer, Faugère (br0030) 2015
Sakata (br0290) 2009
Berthomieu, Boyer, Faugère (br0040) 2017; 83
Fitzpatrick, Flynn (br0180) 1992; 13
Berthomieu, Faugère (br0050) 2018
Brent, Gustavson, Yun (br0110) 1980; 1
Hocquenghem (br0200) 1959; 2
Cooley, Tukey (br0130) 1965; 19
Faugère, Mou (br0160) 2011
Cox, Little, O'Shea (br0140) 2015
Levinson (br0230) 1947; 25
Fitzpatrick, Norton (br0190) 1990; 36
Wiener (br0300) 1964
Mourrain (br0250) 2017
Beckermann, Labahn (br0010) 1994; 15
Cantor, Kaltofen (br0120) 1991; 28
Jonckheere, Ma (br0220) 1989; 125
Wiener (10.1016/j.jsc.2021.07.002_br0300) 1964
Cox (10.1016/j.jsc.2021.07.002_br0140) 2015
Hoeven (10.1016/j.jsc.2021.07.002_br0210) 2019; 30
Hocquenghem (10.1016/j.jsc.2021.07.002_br0200) 1959; 2
Bras-Amorós (10.1016/j.jsc.2021.07.002_br0100) 2006; 17
Cooley (10.1016/j.jsc.2021.07.002_br0130) 1965; 19
Berthomieu (10.1016/j.jsc.2021.07.002_br0060) 2020; 101
Sakata (10.1016/j.jsc.2021.07.002_br0270) 1988; 5
Naldi (10.1016/j.jsc.2021.07.002_br0260) 2020
Beckermann (10.1016/j.jsc.2021.07.002_br0010) 1994; 15
Bose (10.1016/j.jsc.2021.07.002_br0090) 1960; 3
Fitzpatrick (10.1016/j.jsc.2021.07.002_br0190) 1990; 36
Mourrain (10.1016/j.jsc.2021.07.002_br0250) 2017
Jonckheere (10.1016/j.jsc.2021.07.002_br0220) 1989; 125
Berthomieu (10.1016/j.jsc.2021.07.002_br0050) 2018
Cantor (10.1016/j.jsc.2021.07.002_br0120) 1991; 28
Berlekamp (10.1016/j.jsc.2021.07.002_br0020) 1968; 14
Berthomieu (10.1016/j.jsc.2021.07.002_br0030) 2015
Blackburn (10.1016/j.jsc.2021.07.002_br0080) 2006; 43
Levinson (10.1016/j.jsc.2021.07.002_br0230) 1947; 25
Massey (10.1016/j.jsc.2021.07.002_br0240) 1969
Sakata (10.1016/j.jsc.2021.07.002_br0290) 2009
Faugère (10.1016/j.jsc.2021.07.002_br0170) 2017; 80
Faugère (10.1016/j.jsc.2021.07.002_br0160) 2011
Brent (10.1016/j.jsc.2021.07.002_br0110) 1980; 1
Fitzpatrick (10.1016/j.jsc.2021.07.002_br0180) 1992; 13
Sakata (10.1016/j.jsc.2021.07.002_br0280) 1990; 84
Dornstetter (10.1016/j.jsc.2021.07.002_br0150) 1987; 33
Berthomieu (10.1016/j.jsc.2021.07.002_br0070)
Berthomieu (10.1016/j.jsc.2021.07.002_br0040) 2017; 83
References_xml – start-page: 380
  year: 2020
  end-page: 387
  ident: br0260
  article-title: A divide-and-conquer algorithm for computing Gröbner bases of syzygies in finite dimension
  publication-title: Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation
– volume: 1
  start-page: 259
  year: 1980
  end-page: 295
  ident: br0110
  article-title: Fast solution of Toeplitz systems of equations and computation of Padé approximants
  publication-title: J. Algorithms
– volume: 19
  start-page: 297
  year: 1965
  end-page: 301
  ident: br0130
  article-title: An algorithm for the machine calculation of complex Fourier series
  publication-title: Math. Comput.
– volume: 15
  start-page: 804
  year: 1994
  end-page: 823
  ident: br0010
  article-title: A uniform approach for the fast computation of matrix-type Pade approximants
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 2
  start-page: 147
  year: 1959
  end-page: 156
  ident: br0200
  article-title: Codes correcteurs d'erreurs
  publication-title: Chiffres
– start-page: 61
  year: 2015
  end-page: 68
  ident: br0030
  article-title: Linear algebra for computing Gröbner bases of linear recursive multidimensional sequences
  publication-title: Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation
– start-page: 122
  year: 1969
  end-page: 127
  ident: br0240
  article-title: Shift-register synthesis and BCH decoding
  publication-title: IEEE Trans. Inf. Theory
– volume: 28
  start-page: 693
  year: 1991
  end-page: 701
  ident: br0120
  article-title: On fast multiplication of polynomials over arbitrary algebras
  publication-title: Acta Inform.
– volume: 80
  start-page: 538
  year: 2017
  end-page: 569
  ident: br0170
  article-title: Sparse FGLM algorithms
  publication-title: J. Symb. Comput.
– volume: 101
  start-page: 270
  year: 2020
  end-page: 303
  ident: br0060
  article-title: In-depth comparison of the Berlekamp–Massey–Sakata and the scalar-FGLM algorithms: the adaptive variants
  publication-title: J. Symb. Comput.
– year: 2021
  ident: br0070
  article-title: Experiments
– start-page: 79
  year: 2018
  end-page: 86
  ident: br0050
  article-title: A polynomial-division-based algorithm for computing linear recurrence relations
  publication-title: Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation
– year: 1964
  ident: br0300
  article-title: Extrapolation
  publication-title: Interpolation and Smoothing of Stationary Time Series
– volume: 17
  start-page: 315
  year: 2006
  end-page: 335
  ident: br0100
  article-title: The correction capability of the Berlekamp–Massey–Sakata algorithm with majority voting
  publication-title: Appl. Algebra Eng. Commun. Comput.
– volume: 84
  start-page: 207
  year: 1990
  end-page: 239
  ident: br0280
  article-title: Extension of the Berlekamp-Massey algorithm to
  publication-title: Inf. Comput.
– year: 2015
  ident: br0140
  article-title: Ideals, varieties, and algorithms
  publication-title: An Introduction to Computational Algebraic Geometry and Commutative Algebra
– volume: 13
  start-page: 133
  year: 1992
  end-page: 138
  ident: br0180
  article-title: A Gröbner basis technique for Padé approximation
  publication-title: J. Symb. Comput.
– volume: 36
  start-page: 1480
  year: 1990
  end-page: 1487
  ident: br0190
  article-title: Finding a basis for the characteristic ideal of an
  publication-title: IEEE Trans. Inf. Theory
– start-page: 333
  year: 2017
  end-page: 340
  ident: br0250
  article-title: Fast algorithm for border bases of Artinian Gorenstein algebras
  publication-title: Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation
– volume: 43
  start-page: 537
  year: 2006
  end-page: 548
  ident: br0080
  article-title: Fast rational interpolation, Reed-Solomon decoding, and the linear complexity profiles of sequences
  publication-title: IEEE Trans. Inf. Theory
– volume: 3
  start-page: 68
  year: 1960
  end-page: 79
  ident: br0090
  article-title: On a class of error correcting binary group codes
  publication-title: Inf. Control
– volume: 14
  start-page: 242
  year: 1968
  ident: br0020
  article-title: Nonbinary BCH decoding
  publication-title: IEEE Trans. Inf. Theory
– volume: 125
  start-page: 65
  year: 1989
  end-page: 76
  ident: br0220
  article-title: A simple Hankel interpretation of the Berlekamp-Massey algorithm
  publication-title: Linear Algebra Appl.
– volume: 83
  start-page: 36
  year: 2017
  end-page: 67
  ident: br0040
  article-title: Linear algebra for computing Gröbner bases of linear recursive multidimensional sequences
  publication-title: J. Symb. Comput.
– start-page: 115
  year: 2011
  end-page: 122
  ident: br0160
  article-title: Fast algorithm for change of ordering of zero-dimensional Gröbner bases with sparse multiplication matrices
  publication-title: Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation
– volume: 33
  start-page: 428
  year: 1987
  end-page: 431
  ident: br0150
  article-title: On the equivalence between Berlekamp's and Euclid's algorithms (corresp.)
  publication-title: IEEE Trans. Inf. Theory
– volume: 5
  start-page: 321
  year: 1988
  end-page: 337
  ident: br0270
  article-title: Finding a minimal set of linear recurring relations capable of generating a given finite two-dimensional array
  publication-title: J. Symb. Comput.
– volume: 30
  start-page: 509
  year: 2019
  end-page: 539
  ident: br0210
  article-title: Fast Gröbner basis computation and polynomial reduction for generic bivariate ideals
  publication-title: AAECC
– volume: 25
  start-page: 261
  year: 1947
  end-page: 278
  ident: br0230
  article-title: The Wiener RMS (Root-Mean-Square) error criterion in the filter design and prediction
  publication-title: J. Math. Phys.
– start-page: 143
  year: 2009
  end-page: 163
  ident: br0290
  article-title: The BMS algorithm
  publication-title: Gröbner Bases, Coding, and Cryptography
– start-page: 115
  year: 2011
  ident: 10.1016/j.jsc.2021.07.002_br0160
  article-title: Fast algorithm for change of ordering of zero-dimensional Gröbner bases with sparse multiplication matrices
– volume: 36
  start-page: 1480
  year: 1990
  ident: 10.1016/j.jsc.2021.07.002_br0190
  article-title: Finding a basis for the characteristic ideal of an n-dimensional linear recurring sequence
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.59953
– start-page: 380
  year: 2020
  ident: 10.1016/j.jsc.2021.07.002_br0260
  article-title: A divide-and-conquer algorithm for computing Gröbner bases of syzygies in finite dimension
– volume: 25
  start-page: 261
  year: 1947
  ident: 10.1016/j.jsc.2021.07.002_br0230
  article-title: The Wiener RMS (Root-Mean-Square) error criterion in the filter design and prediction
  publication-title: J. Math. Phys.
  doi: 10.1002/sapm1946251261
– year: 2015
  ident: 10.1016/j.jsc.2021.07.002_br0140
  article-title: Ideals, varieties, and algorithms
– year: 1964
  ident: 10.1016/j.jsc.2021.07.002_br0300
  article-title: Extrapolation
– volume: 5
  start-page: 321
  year: 1988
  ident: 10.1016/j.jsc.2021.07.002_br0270
  article-title: Finding a minimal set of linear recurring relations capable of generating a given finite two-dimensional array
  publication-title: J. Symb. Comput.
  doi: 10.1016/S0747-7171(88)80033-6
– volume: 33
  start-page: 428
  year: 1987
  ident: 10.1016/j.jsc.2021.07.002_br0150
  article-title: On the equivalence between Berlekamp's and Euclid's algorithms (corresp.)
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1987.1057299
– volume: 80
  start-page: 538
  year: 2017
  ident: 10.1016/j.jsc.2021.07.002_br0170
  article-title: Sparse FGLM algorithms
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2016.07.025
– start-page: 61
  year: 2015
  ident: 10.1016/j.jsc.2021.07.002_br0030
  article-title: Linear algebra for computing Gröbner bases of linear recursive multidimensional sequences
– volume: 101
  start-page: 270
  year: 2020
  ident: 10.1016/j.jsc.2021.07.002_br0060
  article-title: In-depth comparison of the Berlekamp–Massey–Sakata and the scalar-FGLM algorithms: the adaptive variants
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2019.09.001
– volume: 2
  start-page: 147
  year: 1959
  ident: 10.1016/j.jsc.2021.07.002_br0200
  article-title: Codes correcteurs d'erreurs
  publication-title: Chiffres
– volume: 1
  start-page: 259
  year: 1980
  ident: 10.1016/j.jsc.2021.07.002_br0110
  article-title: Fast solution of Toeplitz systems of equations and computation of Padé approximants
  publication-title: J. Algorithms
  doi: 10.1016/0196-6774(80)90013-9
– volume: 17
  start-page: 315
  year: 2006
  ident: 10.1016/j.jsc.2021.07.002_br0100
  article-title: The correction capability of the Berlekamp–Massey–Sakata algorithm with majority voting
  publication-title: Appl. Algebra Eng. Commun. Comput.
  doi: 10.1007/s00200-006-0015-8
– volume: 13
  start-page: 133
  year: 1992
  ident: 10.1016/j.jsc.2021.07.002_br0180
  article-title: A Gröbner basis technique for Padé approximation
  publication-title: J. Symb. Comput.
  doi: 10.1016/S0747-7171(08)80087-9
– volume: 19
  start-page: 297
  year: 1965
  ident: 10.1016/j.jsc.2021.07.002_br0130
  article-title: An algorithm for the machine calculation of complex Fourier series
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1965-0178586-1
– volume: 83
  start-page: 36
  year: 2017
  ident: 10.1016/j.jsc.2021.07.002_br0040
  article-title: Linear algebra for computing Gröbner bases of linear recursive multidimensional sequences
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2016.11.005
– start-page: 122
  year: 1969
  ident: 10.1016/j.jsc.2021.07.002_br0240
  article-title: Shift-register synthesis and BCH decoding
  publication-title: IEEE Trans. Inf. Theory it-15
  doi: 10.1109/TIT.1969.1054260
– volume: 14
  start-page: 242
  year: 1968
  ident: 10.1016/j.jsc.2021.07.002_br0020
  article-title: Nonbinary BCH decoding
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1968.1054109
– volume: 84
  start-page: 207
  year: 1990
  ident: 10.1016/j.jsc.2021.07.002_br0280
  article-title: Extension of the Berlekamp-Massey algorithm to N dimensions
  publication-title: Inf. Comput.
  doi: 10.1016/0890-5401(90)90039-K
– volume: 28
  start-page: 693
  year: 1991
  ident: 10.1016/j.jsc.2021.07.002_br0120
  article-title: On fast multiplication of polynomials over arbitrary algebras
  publication-title: Acta Inform.
  doi: 10.1007/BF01178683
– volume: 125
  start-page: 65
  year: 1989
  ident: 10.1016/j.jsc.2021.07.002_br0220
  article-title: A simple Hankel interpretation of the Berlekamp-Massey algorithm
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(89)90032-3
– start-page: 143
  year: 2009
  ident: 10.1016/j.jsc.2021.07.002_br0290
  article-title: The BMS algorithm
– start-page: 333
  year: 2017
  ident: 10.1016/j.jsc.2021.07.002_br0250
  article-title: Fast algorithm for border bases of Artinian Gorenstein algebras
– volume: 43
  start-page: 537
  year: 2006
  ident: 10.1016/j.jsc.2021.07.002_br0080
  article-title: Fast rational interpolation, Reed-Solomon decoding, and the linear complexity profiles of sequences
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.556111
– start-page: 79
  year: 2018
  ident: 10.1016/j.jsc.2021.07.002_br0050
  article-title: A polynomial-division-based algorithm for computing linear recurrence relations
– ident: 10.1016/j.jsc.2021.07.002_br0070
– volume: 3
  start-page: 68
  year: 1960
  ident: 10.1016/j.jsc.2021.07.002_br0090
  article-title: On a class of error correcting binary group codes
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(60)90287-4
– volume: 30
  start-page: 509
  year: 2019
  ident: 10.1016/j.jsc.2021.07.002_br0210
  article-title: Fast Gröbner basis computation and polynomial reduction for generic bivariate ideals
  publication-title: AAECC
  doi: 10.1007/s00200-019-00389-9
– volume: 15
  start-page: 804
  year: 1994
  ident: 10.1016/j.jsc.2021.07.002_br0010
  article-title: A uniform approach for the fast computation of matrix-type Pade approximants
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479892230031
SSID ssj0009435
Score 2.296244
Snippet Sparse polynomial interpolation, sparse linear system solving or modular rational reconstruction are fundamental problems in Computer Algebra. They come down...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Berlekamp–Massey–Sakata
Computer Science
Extended Euclidean algorithm
Gröbner bases
Linear recursive sequences
Padé approximants
Symbolic Computation
Title Polynomial-division-based algorithms for computing linear recurrence relations
URI https://dx.doi.org/10.1016/j.jsc.2021.07.002
https://inria.hal.science/hal-01935229
Volume 109
WOSCitedRecordID wos000704001500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-855X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009435
  issn: 0747-7171
  databaseCode: AIEXJ
  dateStart: 20211213
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbppode2qYPmj6CKT01uMiWvJaO25KQhrDkkMLejF7OZtl4g9cbkn_f0cP2JmVDcujFGGEPwvN5ZjQz-oTQt5JppQnDsZacxpRQ-KWY1HFGcoWpSEkuHWX-ST4es8mEn4Ze1aU7TiCvKnZzw6_-q6phDJRtt84-Qd2dUBiAe1A6XEHtcH2U4k8X81u711jMY7vXymbDYuur9L6Yny_qi2bqORhcN_nKdT3bUFPU-7XNvXvW2brtkdsQvC5vL6VlFA5C7pTzf5q6mcIEzMpBxJfiQ0W-3z9xKFbnboz5LPixEVUciv_rqQhYxXa9WMFiwdokhvVhcse8Yr5mIJM1T-sLMv_YcJ9OmP2YLS3FZJo4clWc9g6rLdLf82Ndd2HbuDYrQERhRRTYVtnBU2-necbZAG2Pfh9Mjnt2ZupPYm3n35a_XSPgvXlsCmCeTdtUvAtNzl6jl0Et0chjYQdtmeoNetWe1xEF8_0WjTdCI-qhEQE0og4akYdG1EMj6qDxDv05PDj7dRSH8zRiRXLagOMTKteZkjpLsTS2YYinpeBDio3dME015loxCPK1kVgnNCl1mSaEED2UhCTkPRpUi8p8QBGhQ-trVS5ZRofCSKYdkb_SKeGlUrsItx-pUIFs3p55Mi82KmcXfe9eufJMKw89TNsvX4RQ0YeABaDoode-gpY68ZZa_Wh0UtgxWOrYtQi_Jh-fMpFP6EX_J3xGg6ZemS_oubpuLpb1XsDZXzB6ljk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polynomial-division-based+algorithms+for+computing+linear+recurrence+relations&rft.jtitle=Journal+of+symbolic+computation&rft.au=Berthomieu%2C+J%C3%A9r%C3%A9my&rft.au=Faug%C3%A8re%2C+Jean-Charles&rft.date=2022-03-01&rft.issn=0747-7171&rft.volume=109&rft.spage=1&rft.epage=30&rft_id=info:doi/10.1016%2Fj.jsc.2021.07.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jsc_2021_07_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-7171&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-7171&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-7171&client=summon