Polynomial-division-based algorithms for computing linear recurrence relations
Sparse polynomial interpolation, sparse linear system solving or modular rational reconstruction are fundamental problems in Computer Algebra. They come down to computing linear recurrence relations of a sequence with the Berlekamp–Massey algorithm. Likewise, sparse multivariate polynomial interpola...
Saved in:
| Published in: | Journal of symbolic computation Vol. 109; pp. 1 - 30 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.03.2022
Elsevier |
| Subjects: | |
| ISSN: | 0747-7171, 1095-855X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Sparse polynomial interpolation, sparse linear system solving or modular rational reconstruction are fundamental problems in Computer Algebra. They come down to computing linear recurrence relations of a sequence with the Berlekamp–Massey algorithm. Likewise, sparse multivariate polynomial interpolation and multidimensional cyclic code decoding require guessing linear recurrence relations of a multivariate sequence.
Several algorithms solve this problem. The so-called Berlekamp–Massey–Sakata algorithm (1988) uses polynomial additions and shifts by a monomial. The Scalar-FGLM algorithm (2015) relies on linear algebra operations on a multi-Hankel matrix, a multivariate generalization of a Hankel matrix. The Artinian Gorenstein border basis algorithm (2017) uses a Gram-Schmidt process.
We propose a new algorithm for computing the Gröbner basis of the ideal of relations of a sequence based solely on multivariate polynomial arithmetic. This algorithm allows us to both revisit the Berlekamp–Massey–Sakata algorithm through the use of polynomial divisions and to completely revise the Scalar-FGLM algorithm without linear algebra operations.
A key observation in the design of this algorithm is to work on the mirror of the truncated generating series allowing us to use polynomial arithmetic modulo a monomial ideal. It appears to have some similarities with Padé approximants of this mirror polynomial.
As an addition from the paper published at the ISSAC conference, we give an adaptive variant of this algorithm taking into account the shape of the final Gröbner basis gradually as it is discovered. The main advantage of this algorithm is that its complexity in terms of operations and sequence queries only depends on the output Gröbner basis.
All these algorithms have been implemented in Maple and we report on our comparisons. |
|---|---|
| AbstractList | Sparse polynomial interpolation, sparse linear system solving or modular rational reconstruction are fundamental problems in Computer Algebra. They come down to computing linear recurrence relations of a sequence with the Berlekamp–Massey algorithm. Likewise, sparse multivariate polynomial interpolation and multidimensional cyclic code decoding require guessing linear recurrence relations of a multivariate sequence.
Several algorithms solve this problem. The so-called Berlekamp–Massey–Sakata algorithm (1988) uses polynomial additions and shifts by a monomial. The Scalar-FGLM algorithm (2015) relies on linear algebra operations on a multi-Hankel matrix, a multivariate generalization of a Hankel matrix. The Artinian Gorenstein border basis algorithm (2017) uses a Gram-Schmidt process.
We propose a new algorithm for computing the Gröbner basis of the ideal of relations of a sequence based solely on multivariate polynomial arithmetic. This algorithm allows us to both revisit the Berlekamp–Massey–Sakata algorithm through the use of polynomial divisions and to completely revise the Scalar-FGLM algorithm without linear algebra operations.
A key observation in the design of this algorithm is to work on the mirror of the truncated generating series allowing us to use polynomial arithmetic modulo a monomial ideal. It appears to have some similarities with Padé approximants of this mirror polynomial.
As an addition from the paper published at the ISSAC conference, we give an adaptive variant of this algorithm taking into account the shape of the final Gröbner basis gradually as it is discovered. The main advantage of this algorithm is that its complexity in terms of operations and sequence queries only depends on the output Gröbner basis.
All these algorithms have been implemented in Maple and we report on our comparisons. Sparse polynomial interpolation, sparse linear system solving or modular rational reconstruction are fundamental problems in Computer Algebra. They come down to computing linear recurrence relations of a sequence with the Berlekamp-Massey algorithm. Likewise, sparse multivariate polynomial interpolation and multidimensional cyclic code decoding require guessing linear recurrence relations of a multivariate sequence.Several algorithms solve this problem. The so-called Berlekamp-Massey-Sakata algorithm (1988) uses polynomial additions and shifts by a monomial. The Scalar-FGLM algorithm (2015) relies on linear algebra operations on a multi-Hankel matrix, a multivariate generalization of a Hankel matrix. The Artinian Gorenstein border basis algorithm (2017) uses a Gram-Schmidt process.We propose a new algorithm for computing the Gröbner basis of the ideal of relations of a sequence based solely on multivariate polynomial arithmetic. This algorithm allows us to both revisit the Berlekamp-Massey-Sakata algorithm through the use of polynomial divisions and to completely revise the Scalar-FGLM algorithm without linear algebra operations.A key observation in the design of this algorithm is to work on the mirror of the truncated generating series allowing us to use polynomial arithmetic modulo a monomial ideal. It appears to have some similarities with Padé approximants of this mirror polynomial.As an addition from the paper published at the ISSAC conferance, we give an adaptive variant of this algorithm taking into account the shape of the final Gröbner basis gradually as it is discovered. The main advantage of this algorithm is that its complexity in terms of operations and sequence queries only depends on the output Gröbner basis.All these algorithms have been implemented in Maple and we report on our comparisons. |
| Author | Faugère, Jean-Charles Berthomieu, Jérémy |
| Author_xml | – sequence: 1 givenname: Jérémy surname: Berthomieu fullname: Berthomieu, Jérémy email: jeremy.berthomieu@lip6.fr organization: Sorbonne Université, CNRS, LIP6, F-75005, Paris, France – sequence: 2 givenname: Jean-Charles surname: Faugère fullname: Faugère, Jean-Charles email: jcf@cryptonext-security.com, jean-charles.faugere@inria.fr organization: CryptoNext Security, France |
| BackLink | https://inria.hal.science/hal-01935229$$DView record in HAL |
| BookMark | eNp9kEFLwzAUx4NMcJt-AG-9emh9SZqlxdMY6oShHhS8hTRJt5SuGUk32Lc3deLBw07v8fj_Hvx_EzTqXGcQusWQYcCz-yZrgsoIEJwBzwDIBRpjKFlaMPY1QmPgOU855vgKTUJoAKDMKRuj13fXHju3tbJNtT3YYF2XVjIYnch27bztN9uQ1M4nym13-95266S1nZE-8UbtvTedMnFtZR_JcI0ua9kGc_M7p-jz6fFjsUxXb88vi_kqVZTnfVpwqbhmqtKMQGVMXZuS1LKc5WAoK0iuodSqgJxpU4HGOa51TTClVM8qSjGdorvT341sxc7brfRH4aQVy_lKDDfAJWWElAcas_iUVd6F4E39B2AQgzzRiChPDPIEcBHlRYb_Y5Ttfyr2Xtr2LPlwIk2sf7DGi6DsIEnbKKwX2tkz9De54o0U |
| CitedBy_id | crossref_primary_10_1016_j_jsc_2021_11_001 |
| Cites_doi | 10.1109/18.59953 10.1002/sapm1946251261 10.1016/S0747-7171(88)80033-6 10.1109/TIT.1987.1057299 10.1016/j.jsc.2016.07.025 10.1016/j.jsc.2019.09.001 10.1016/0196-6774(80)90013-9 10.1007/s00200-006-0015-8 10.1016/S0747-7171(08)80087-9 10.1090/S0025-5718-1965-0178586-1 10.1016/j.jsc.2016.11.005 10.1109/TIT.1969.1054260 10.1109/TIT.1968.1054109 10.1016/0890-5401(90)90039-K 10.1007/BF01178683 10.1016/0024-3795(89)90032-3 10.1109/18.556111 10.1016/S0019-9958(60)90287-4 10.1007/s00200-019-00389-9 10.1137/S0895479892230031 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Attribution |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Attribution |
| DBID | AAYXX CITATION 1XC VOOES |
| DOI | 10.1016/j.jsc.2021.07.002 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1095-855X |
| EndPage | 30 |
| ExternalDocumentID | oai:HAL:hal-01935229v3 10_1016_j_jsc_2021_07_002 S0747717121000432 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6I. 6OB 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE IXB J1W KOM LG5 M25 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSV SSW SSZ T5K TN5 UPT WUQ XPP YQT ZMT ZU3 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 1XC VOOES |
| ID | FETCH-LOGICAL-c374t-87ac7d5cbd520beeffe92fa9640e35824d09dc8045deb0d141fdf21333d6b3313 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000704001500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0747-7171 |
| IngestDate | Tue Oct 14 20:07:00 EDT 2025 Sat Nov 29 07:18:31 EST 2025 Tue Nov 18 21:43:22 EST 2025 Fri Feb 23 02:44:42 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Gröbner bases Linear recursive sequences Padé approximants Extended Euclidean algorithm Berlekamp–Massey–Sakata Berlekamp-Massey-Sakata extended Euclidean algorithm |
| Language | English |
| License | Attribution: http://creativecommons.org/licenses/by |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c374t-87ac7d5cbd520beeffe92fa9640e35824d09dc8045deb0d141fdf21333d6b3313 |
| ORCID | 0000-0002-9011-2211 |
| OpenAccessLink | https://inria.hal.science/hal-01935229 |
| PageCount | 30 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01935229v3 crossref_primary_10_1016_j_jsc_2021_07_002 crossref_citationtrail_10_1016_j_jsc_2021_07_002 elsevier_sciencedirect_doi_10_1016_j_jsc_2021_07_002 |
| PublicationCentury | 2000 |
| PublicationDate | March-April 2022 2022-03-00 2022-03 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: March-April 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of symbolic computation |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Berthomieu, Faugère (br0060) 2020; 101 Bras-Amorós, O'Sullivan (br0100) 2006; 17 Dornstetter (br0150) 1987; 33 Bose, Ray-Chaudhuri (br0090) 1960; 3 Hoeven, Larrieu (br0210) 2019; 30 Berthomieu, Faugère (br0070) 2021 Blackburn (br0080) 2006; 43 Massey (br0240) 1969 Sakata (br0270) 1988; 5 Berlekamp (br0020) 1968; 14 Naldi, Neiger (br0260) 2020 Sakata (br0280) 1990; 84 Faugère, Mou (br0170) 2017; 80 Berthomieu, Boyer, Faugère (br0030) 2015 Sakata (br0290) 2009 Berthomieu, Boyer, Faugère (br0040) 2017; 83 Fitzpatrick, Flynn (br0180) 1992; 13 Berthomieu, Faugère (br0050) 2018 Brent, Gustavson, Yun (br0110) 1980; 1 Hocquenghem (br0200) 1959; 2 Cooley, Tukey (br0130) 1965; 19 Faugère, Mou (br0160) 2011 Cox, Little, O'Shea (br0140) 2015 Levinson (br0230) 1947; 25 Fitzpatrick, Norton (br0190) 1990; 36 Wiener (br0300) 1964 Mourrain (br0250) 2017 Beckermann, Labahn (br0010) 1994; 15 Cantor, Kaltofen (br0120) 1991; 28 Jonckheere, Ma (br0220) 1989; 125 Wiener (10.1016/j.jsc.2021.07.002_br0300) 1964 Cox (10.1016/j.jsc.2021.07.002_br0140) 2015 Hoeven (10.1016/j.jsc.2021.07.002_br0210) 2019; 30 Hocquenghem (10.1016/j.jsc.2021.07.002_br0200) 1959; 2 Bras-Amorós (10.1016/j.jsc.2021.07.002_br0100) 2006; 17 Cooley (10.1016/j.jsc.2021.07.002_br0130) 1965; 19 Berthomieu (10.1016/j.jsc.2021.07.002_br0060) 2020; 101 Sakata (10.1016/j.jsc.2021.07.002_br0270) 1988; 5 Naldi (10.1016/j.jsc.2021.07.002_br0260) 2020 Beckermann (10.1016/j.jsc.2021.07.002_br0010) 1994; 15 Bose (10.1016/j.jsc.2021.07.002_br0090) 1960; 3 Fitzpatrick (10.1016/j.jsc.2021.07.002_br0190) 1990; 36 Mourrain (10.1016/j.jsc.2021.07.002_br0250) 2017 Jonckheere (10.1016/j.jsc.2021.07.002_br0220) 1989; 125 Berthomieu (10.1016/j.jsc.2021.07.002_br0050) 2018 Cantor (10.1016/j.jsc.2021.07.002_br0120) 1991; 28 Berlekamp (10.1016/j.jsc.2021.07.002_br0020) 1968; 14 Berthomieu (10.1016/j.jsc.2021.07.002_br0030) 2015 Blackburn (10.1016/j.jsc.2021.07.002_br0080) 2006; 43 Levinson (10.1016/j.jsc.2021.07.002_br0230) 1947; 25 Massey (10.1016/j.jsc.2021.07.002_br0240) 1969 Sakata (10.1016/j.jsc.2021.07.002_br0290) 2009 Faugère (10.1016/j.jsc.2021.07.002_br0170) 2017; 80 Faugère (10.1016/j.jsc.2021.07.002_br0160) 2011 Brent (10.1016/j.jsc.2021.07.002_br0110) 1980; 1 Fitzpatrick (10.1016/j.jsc.2021.07.002_br0180) 1992; 13 Sakata (10.1016/j.jsc.2021.07.002_br0280) 1990; 84 Dornstetter (10.1016/j.jsc.2021.07.002_br0150) 1987; 33 Berthomieu (10.1016/j.jsc.2021.07.002_br0070) Berthomieu (10.1016/j.jsc.2021.07.002_br0040) 2017; 83 |
| References_xml | – start-page: 380 year: 2020 end-page: 387 ident: br0260 article-title: A divide-and-conquer algorithm for computing Gröbner bases of syzygies in finite dimension publication-title: Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation – volume: 1 start-page: 259 year: 1980 end-page: 295 ident: br0110 article-title: Fast solution of Toeplitz systems of equations and computation of Padé approximants publication-title: J. Algorithms – volume: 19 start-page: 297 year: 1965 end-page: 301 ident: br0130 article-title: An algorithm for the machine calculation of complex Fourier series publication-title: Math. Comput. – volume: 15 start-page: 804 year: 1994 end-page: 823 ident: br0010 article-title: A uniform approach for the fast computation of matrix-type Pade approximants publication-title: SIAM J. Matrix Anal. Appl. – volume: 2 start-page: 147 year: 1959 end-page: 156 ident: br0200 article-title: Codes correcteurs d'erreurs publication-title: Chiffres – start-page: 61 year: 2015 end-page: 68 ident: br0030 article-title: Linear algebra for computing Gröbner bases of linear recursive multidimensional sequences publication-title: Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation – start-page: 122 year: 1969 end-page: 127 ident: br0240 article-title: Shift-register synthesis and BCH decoding publication-title: IEEE Trans. Inf. Theory – volume: 28 start-page: 693 year: 1991 end-page: 701 ident: br0120 article-title: On fast multiplication of polynomials over arbitrary algebras publication-title: Acta Inform. – volume: 80 start-page: 538 year: 2017 end-page: 569 ident: br0170 article-title: Sparse FGLM algorithms publication-title: J. Symb. Comput. – volume: 101 start-page: 270 year: 2020 end-page: 303 ident: br0060 article-title: In-depth comparison of the Berlekamp–Massey–Sakata and the scalar-FGLM algorithms: the adaptive variants publication-title: J. Symb. Comput. – year: 2021 ident: br0070 article-title: Experiments – start-page: 79 year: 2018 end-page: 86 ident: br0050 article-title: A polynomial-division-based algorithm for computing linear recurrence relations publication-title: Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation – year: 1964 ident: br0300 article-title: Extrapolation publication-title: Interpolation and Smoothing of Stationary Time Series – volume: 17 start-page: 315 year: 2006 end-page: 335 ident: br0100 article-title: The correction capability of the Berlekamp–Massey–Sakata algorithm with majority voting publication-title: Appl. Algebra Eng. Commun. Comput. – volume: 84 start-page: 207 year: 1990 end-page: 239 ident: br0280 article-title: Extension of the Berlekamp-Massey algorithm to publication-title: Inf. Comput. – year: 2015 ident: br0140 article-title: Ideals, varieties, and algorithms publication-title: An Introduction to Computational Algebraic Geometry and Commutative Algebra – volume: 13 start-page: 133 year: 1992 end-page: 138 ident: br0180 article-title: A Gröbner basis technique for Padé approximation publication-title: J. Symb. Comput. – volume: 36 start-page: 1480 year: 1990 end-page: 1487 ident: br0190 article-title: Finding a basis for the characteristic ideal of an publication-title: IEEE Trans. Inf. Theory – start-page: 333 year: 2017 end-page: 340 ident: br0250 article-title: Fast algorithm for border bases of Artinian Gorenstein algebras publication-title: Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation – volume: 43 start-page: 537 year: 2006 end-page: 548 ident: br0080 article-title: Fast rational interpolation, Reed-Solomon decoding, and the linear complexity profiles of sequences publication-title: IEEE Trans. Inf. Theory – volume: 3 start-page: 68 year: 1960 end-page: 79 ident: br0090 article-title: On a class of error correcting binary group codes publication-title: Inf. Control – volume: 14 start-page: 242 year: 1968 ident: br0020 article-title: Nonbinary BCH decoding publication-title: IEEE Trans. Inf. Theory – volume: 125 start-page: 65 year: 1989 end-page: 76 ident: br0220 article-title: A simple Hankel interpretation of the Berlekamp-Massey algorithm publication-title: Linear Algebra Appl. – volume: 83 start-page: 36 year: 2017 end-page: 67 ident: br0040 article-title: Linear algebra for computing Gröbner bases of linear recursive multidimensional sequences publication-title: J. Symb. Comput. – start-page: 115 year: 2011 end-page: 122 ident: br0160 article-title: Fast algorithm for change of ordering of zero-dimensional Gröbner bases with sparse multiplication matrices publication-title: Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation – volume: 33 start-page: 428 year: 1987 end-page: 431 ident: br0150 article-title: On the equivalence between Berlekamp's and Euclid's algorithms (corresp.) publication-title: IEEE Trans. Inf. Theory – volume: 5 start-page: 321 year: 1988 end-page: 337 ident: br0270 article-title: Finding a minimal set of linear recurring relations capable of generating a given finite two-dimensional array publication-title: J. Symb. Comput. – volume: 30 start-page: 509 year: 2019 end-page: 539 ident: br0210 article-title: Fast Gröbner basis computation and polynomial reduction for generic bivariate ideals publication-title: AAECC – volume: 25 start-page: 261 year: 1947 end-page: 278 ident: br0230 article-title: The Wiener RMS (Root-Mean-Square) error criterion in the filter design and prediction publication-title: J. Math. Phys. – start-page: 143 year: 2009 end-page: 163 ident: br0290 article-title: The BMS algorithm publication-title: Gröbner Bases, Coding, and Cryptography – start-page: 115 year: 2011 ident: 10.1016/j.jsc.2021.07.002_br0160 article-title: Fast algorithm for change of ordering of zero-dimensional Gröbner bases with sparse multiplication matrices – volume: 36 start-page: 1480 year: 1990 ident: 10.1016/j.jsc.2021.07.002_br0190 article-title: Finding a basis for the characteristic ideal of an n-dimensional linear recurring sequence publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.59953 – start-page: 380 year: 2020 ident: 10.1016/j.jsc.2021.07.002_br0260 article-title: A divide-and-conquer algorithm for computing Gröbner bases of syzygies in finite dimension – volume: 25 start-page: 261 year: 1947 ident: 10.1016/j.jsc.2021.07.002_br0230 article-title: The Wiener RMS (Root-Mean-Square) error criterion in the filter design and prediction publication-title: J. Math. Phys. doi: 10.1002/sapm1946251261 – year: 2015 ident: 10.1016/j.jsc.2021.07.002_br0140 article-title: Ideals, varieties, and algorithms – year: 1964 ident: 10.1016/j.jsc.2021.07.002_br0300 article-title: Extrapolation – volume: 5 start-page: 321 year: 1988 ident: 10.1016/j.jsc.2021.07.002_br0270 article-title: Finding a minimal set of linear recurring relations capable of generating a given finite two-dimensional array publication-title: J. Symb. Comput. doi: 10.1016/S0747-7171(88)80033-6 – volume: 33 start-page: 428 year: 1987 ident: 10.1016/j.jsc.2021.07.002_br0150 article-title: On the equivalence between Berlekamp's and Euclid's algorithms (corresp.) publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1987.1057299 – volume: 80 start-page: 538 year: 2017 ident: 10.1016/j.jsc.2021.07.002_br0170 article-title: Sparse FGLM algorithms publication-title: J. Symb. Comput. doi: 10.1016/j.jsc.2016.07.025 – start-page: 61 year: 2015 ident: 10.1016/j.jsc.2021.07.002_br0030 article-title: Linear algebra for computing Gröbner bases of linear recursive multidimensional sequences – volume: 101 start-page: 270 year: 2020 ident: 10.1016/j.jsc.2021.07.002_br0060 article-title: In-depth comparison of the Berlekamp–Massey–Sakata and the scalar-FGLM algorithms: the adaptive variants publication-title: J. Symb. Comput. doi: 10.1016/j.jsc.2019.09.001 – volume: 2 start-page: 147 year: 1959 ident: 10.1016/j.jsc.2021.07.002_br0200 article-title: Codes correcteurs d'erreurs publication-title: Chiffres – volume: 1 start-page: 259 year: 1980 ident: 10.1016/j.jsc.2021.07.002_br0110 article-title: Fast solution of Toeplitz systems of equations and computation of Padé approximants publication-title: J. Algorithms doi: 10.1016/0196-6774(80)90013-9 – volume: 17 start-page: 315 year: 2006 ident: 10.1016/j.jsc.2021.07.002_br0100 article-title: The correction capability of the Berlekamp–Massey–Sakata algorithm with majority voting publication-title: Appl. Algebra Eng. Commun. Comput. doi: 10.1007/s00200-006-0015-8 – volume: 13 start-page: 133 year: 1992 ident: 10.1016/j.jsc.2021.07.002_br0180 article-title: A Gröbner basis technique for Padé approximation publication-title: J. Symb. Comput. doi: 10.1016/S0747-7171(08)80087-9 – volume: 19 start-page: 297 year: 1965 ident: 10.1016/j.jsc.2021.07.002_br0130 article-title: An algorithm for the machine calculation of complex Fourier series publication-title: Math. Comput. doi: 10.1090/S0025-5718-1965-0178586-1 – volume: 83 start-page: 36 year: 2017 ident: 10.1016/j.jsc.2021.07.002_br0040 article-title: Linear algebra for computing Gröbner bases of linear recursive multidimensional sequences publication-title: J. Symb. Comput. doi: 10.1016/j.jsc.2016.11.005 – start-page: 122 year: 1969 ident: 10.1016/j.jsc.2021.07.002_br0240 article-title: Shift-register synthesis and BCH decoding publication-title: IEEE Trans. Inf. Theory it-15 doi: 10.1109/TIT.1969.1054260 – volume: 14 start-page: 242 year: 1968 ident: 10.1016/j.jsc.2021.07.002_br0020 article-title: Nonbinary BCH decoding publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1968.1054109 – volume: 84 start-page: 207 year: 1990 ident: 10.1016/j.jsc.2021.07.002_br0280 article-title: Extension of the Berlekamp-Massey algorithm to N dimensions publication-title: Inf. Comput. doi: 10.1016/0890-5401(90)90039-K – volume: 28 start-page: 693 year: 1991 ident: 10.1016/j.jsc.2021.07.002_br0120 article-title: On fast multiplication of polynomials over arbitrary algebras publication-title: Acta Inform. doi: 10.1007/BF01178683 – volume: 125 start-page: 65 year: 1989 ident: 10.1016/j.jsc.2021.07.002_br0220 article-title: A simple Hankel interpretation of the Berlekamp-Massey algorithm publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(89)90032-3 – start-page: 143 year: 2009 ident: 10.1016/j.jsc.2021.07.002_br0290 article-title: The BMS algorithm – start-page: 333 year: 2017 ident: 10.1016/j.jsc.2021.07.002_br0250 article-title: Fast algorithm for border bases of Artinian Gorenstein algebras – volume: 43 start-page: 537 year: 2006 ident: 10.1016/j.jsc.2021.07.002_br0080 article-title: Fast rational interpolation, Reed-Solomon decoding, and the linear complexity profiles of sequences publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.556111 – start-page: 79 year: 2018 ident: 10.1016/j.jsc.2021.07.002_br0050 article-title: A polynomial-division-based algorithm for computing linear recurrence relations – ident: 10.1016/j.jsc.2021.07.002_br0070 – volume: 3 start-page: 68 year: 1960 ident: 10.1016/j.jsc.2021.07.002_br0090 article-title: On a class of error correcting binary group codes publication-title: Inf. Control doi: 10.1016/S0019-9958(60)90287-4 – volume: 30 start-page: 509 year: 2019 ident: 10.1016/j.jsc.2021.07.002_br0210 article-title: Fast Gröbner basis computation and polynomial reduction for generic bivariate ideals publication-title: AAECC doi: 10.1007/s00200-019-00389-9 – volume: 15 start-page: 804 year: 1994 ident: 10.1016/j.jsc.2021.07.002_br0010 article-title: A uniform approach for the fast computation of matrix-type Pade approximants publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479892230031 |
| SSID | ssj0009435 |
| Score | 2.296244 |
| Snippet | Sparse polynomial interpolation, sparse linear system solving or modular rational reconstruction are fundamental problems in Computer Algebra. They come down... |
| SourceID | hal crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Berlekamp–Massey–Sakata Computer Science Extended Euclidean algorithm Gröbner bases Linear recursive sequences Padé approximants Symbolic Computation |
| Title | Polynomial-division-based algorithms for computing linear recurrence relations |
| URI | https://dx.doi.org/10.1016/j.jsc.2021.07.002 https://inria.hal.science/hal-01935229 |
| Volume | 109 |
| WOSCitedRecordID | wos000704001500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-855X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009435 issn: 0747-7171 databaseCode: AIEXJ dateStart: 20211213 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdbuoe97Hus-8KMPa14yJZdSY_ZaOnKCIV1kDcjWXLTkDnFTkr73-9Oku10I2Ub7MUYYSlC94t0uvvdHSHvM5VWzCoaixwQnHElYq2rKs4roSkzRiorXLEJPpmI6VSeBOpQ68oJ8LoWV1fy4r-KGtpA2Bg6-xfi7geFBngHocMTxA7PPxL8yXJxjbHGahFjrBVaw2I8q8yeWpwtm_PVzOdgcGzytWM9o6qpmr0Gbe8-62zTceS2KK_t9Q-NGYXDIDfc-Z9ss5rBBOzaQcS74oNHfoifOFTrM9cmvBX82Ko6Ds7_TVME3GJ7Lpa3j3UxMgMhqXUZsXkMl0b_nfXbLCh2gI58emMfpnJjJ002jmTvuflts_d2h_nHeYu5KNPEZWGl6XCy9XzDbzgJnEOaON8nnNk7Kc-lGJGd8ZeD6fGQpznzNVm7SXeOcEcJ_OWHtqkyd2edUd4pKaePyIMgoGjsUfGY3LH1E_Kwq9wRhY38KZlsBUk0gCQCkEQ9SCIPkmgASdSD5Bn5fnhw-vkoDpU14pLxbAVHoCq5yUtt8pRqi9QhmVZK7mfUYuh0Zqg0pQB131hNTZIllanShDFm9jVjCXtORvWyti9IJJE7p23GTYLdcqkVT0rLtTVGi4rvEtotUlGGtPNY_WRRdPzCeQHrWuC6FhTJEOku-dB3ufA5V277OOtWvghKo1cGC4DJbd3egZT64THJ-tH4a4FtcOnBW4m8ZC__bexX5P7w73hNRqtmbd-Qe-Xl6rxt3gbE_QQZX54u |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polynomial-division-based+algorithms+for+computing+linear+recurrence+relations&rft.jtitle=Journal+of+symbolic+computation&rft.au=Berthomieu%2C+J%C3%A9r%C3%A9my&rft.au=Faug%C3%A8re%2C+Jean-Charles&rft.date=2022-03-01&rft.pub=Elsevier+Ltd&rft.issn=0747-7171&rft.eissn=1095-855X&rft.volume=109&rft.spage=1&rft.epage=30&rft_id=info:doi/10.1016%2Fj.jsc.2021.07.002&rft.externalDocID=S0747717121000432 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-7171&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-7171&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-7171&client=summon |