Infinite dimensional weak Dirichlet processes and convolution type processes

The present paper continues the study of infinite dimensional calculus via regularization, started by C. Di Girolami and the second named author, introducing the notion of weak Dirichlet process in this context. Such a process X, taking values in a Banach space H, is the sum of a local martingale an...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Stochastic processes and their applications Ročník 127; číslo 1; s. 325 - 357
Hlavní autori: Fabbri, Giorgio, Russo, Francesco
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.01.2017
Elsevier
Predmet:
ISSN:0304-4149, 1879-209X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The present paper continues the study of infinite dimensional calculus via regularization, started by C. Di Girolami and the second named author, introducing the notion of weak Dirichlet process in this context. Such a process X, taking values in a Banach space H, is the sum of a local martingale and a suitable orthogonal process. The concept of weak Dirichlet process fits the notion of convolution type processes, a class including mild solutions for stochastic evolution equations on infinite dimensional Hilbert spaces and in particular of several classes of stochastic partial differential equations (SPDEs). In particular the mentioned decomposition appears to be a substitute of an Itô’s type formula applied to f(t,X(t)) where f:[0,T]×H→R is a C0,1 function and X a convolution type process.
ISSN:0304-4149
1879-209X
DOI:10.1016/j.spa.2016.06.010