Multi-domain encoder–decoder neural networks for latent data assimilation in dynamical systems

High-dimensional dynamical systems often require computationally intensive physics-based simulations, making full physical space data assimilation impractical. Latent data assimilation methods perform assimilation in reduced-order latent space for efficiency but struggle with complex, nonlinear stat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer methods in applied mechanics and engineering Ročník 430; s. 117201
Hlavní autori: Cheng, Sibo, Zhuang, Yilin, Kahouadji, Lyes, Liu, Che, Chen, Jianhua, Matar, Omar K., Arcucci, Rossella
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.10.2024
Elsevier
Predmet:
ISSN:0045-7825, 1879-2138
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract High-dimensional dynamical systems often require computationally intensive physics-based simulations, making full physical space data assimilation impractical. Latent data assimilation methods perform assimilation in reduced-order latent space for efficiency but struggle with complex, nonlinear state-observation mappings. Recent solutions like Generalized Latent Data Assimilation (GLA) and Latent Space Data Assimilation (LSDA) address heterogeneous latent spaces by incorporating surrogate mapping functions but introduce computational costs and uncertainties. Furthermore, current algorithms that integrate data assimilation and deep learning still face limitations when it comes to handling non-explicit mapping functions. To address these challenges, this paper introduces a novel deep-learning-based data assimilation scheme, named Multi-domain Encoder–Decoder Latent Data Assimilation (MEDLA), capable of handling diverse data sources by sharing a common latent space. The proposed approach significantly reduces the computational burden since the complex mapping functions are mimicked by the multi-domain encoder–decoder neural network. It also enhances assimilation accuracy by minimizing interpolation and approximation errors. Extensive numerical experiments from three different test cases assess MEDLA’s performance in high dimensional dynamical systems, benchmarking it against state-of-the-art latent data assimilation methods. The numerical results consistently underscore MEDLA’s superiority in managing multi-scale observational data and tackling intricate, non-explicit mapping functions.
AbstractList High-dimensional dynamical systems often require computationally intensive physics-based simulations, making full physical space data assimilation impractical. Latent data assimilation methods perform assimilation in reduced-order latent space for efficiency but struggle with complex, nonlinear state-observation mappings. Recent solutions like Generalized Latent Data Assimilation (GLA) and Latent Space Data Assimilation (LSDA) address heterogeneous latent spaces by incorporating surrogate mapping functions but introduce computational costs and uncertainties. Furthermore, current algorithms that integrate data assimilation and deep learning still face limitations when it comes to handling non-explicit mapping functions. To address these challenges, this paper introduces a novel deep-learning-based data assimilation scheme, named Multi-domain Encoder–Decoder Latent Data Assimilation (MEDLA), capable of handling diverse data sources by sharing a common latent space. The proposed approach significantly reduces the computational burden since the complex mapping functions are mimicked by the multi-domain encoder–decoder neural network. It also enhances assimilation accuracy by minimizing interpolation and approximation errors. Extensive numerical experiments from three different test cases assess MEDLA’s performance in high dimensional dynamical systems, benchmarking it against state-of-the-art latent data assimilation methods. The numerical results consistently underscore MEDLA’s superiority in managing multi-scale observational data and tackling intricate, non-explicit mapping functions.
ArticleNumber 117201
Author Zhuang, Yilin
Cheng, Sibo
Kahouadji, Lyes
Arcucci, Rossella
Matar, Omar K.
Chen, Jianhua
Liu, Che
Author_xml – sequence: 1
  givenname: Sibo
  orcidid: 0000-0002-8707-2589
  surname: Cheng
  fullname: Cheng, Sibo
  email: sibo.cheng@enpc.fr
  organization: CEREA, École des Ponts and EDF R&D, Île-de-France, France
– sequence: 2
  givenname: Yilin
  orcidid: 0000-0002-4959-1847
  surname: Zhuang
  fullname: Zhuang, Yilin
  organization: Department of chemical engineering, Imperial College London, UK
– sequence: 3
  givenname: Lyes
  orcidid: 0000-0001-8805-1192
  surname: Kahouadji
  fullname: Kahouadji, Lyes
  organization: Department of chemical engineering, Imperial College London, UK
– sequence: 4
  givenname: Che
  surname: Liu
  fullname: Liu, Che
  organization: Department of Earth Science & Engineering, Imperial College London, UK
– sequence: 5
  givenname: Jianhua
  surname: Chen
  fullname: Chen, Jianhua
  organization: Department of chemical engineering, Imperial College London, UK
– sequence: 6
  givenname: Omar K.
  orcidid: 0000-0002-0530-8317
  surname: Matar
  fullname: Matar, Omar K.
  organization: Department of chemical engineering, Imperial College London, UK
– sequence: 7
  givenname: Rossella
  orcidid: 0000-0002-9471-0585
  surname: Arcucci
  fullname: Arcucci, Rossella
  organization: Department of Earth Science & Engineering, Imperial College London, UK
BackLink https://hal.science/hal-04660347$$DView record in HAL
BookMark eNp9kMFO3DAQQK1qkbq79AN6y5VDtmMnsRP1hBCUSou4wNkM9kT1NomRbUB74x_4Q76k3t1y4cBcZjSaN6N5Czab_ESMfeew4sDlj83KjLgSIOoV50oA_8LmvFVdKXjVztgcoG5K1YrmK1vEuIEcLRdzdnf1OCRXWj-imwqajLcU3l5eLe2rYqLHgENO6dmHv7HofSgGTDSlwmLCAmN0o8sd56cib7DbCUdnMhK3MdEYj9lRj0Okb__zkt1enN-cXZbr61-_z07XpalUnUqJvehtVyuQnYHaAgKgkg3dI5nGWEmKhLDS8kYBik612HSCSPUgha2gWrKTw94_OOiH4EYMW-3R6cvTtd71oJYSqlo98TyrDrMm-BgD9dq4tH8hBXSD5qB3UvVGZ6l6J1UfpGaSfyDfT33G_DwwlN9_chR0NC6bJusCmaStd5_Q_wClDpMu
CitedBy_id crossref_primary_10_1029_2025WR040078
crossref_primary_10_1080_00295639_2024_2403895
crossref_primary_10_3390_ai6010006
crossref_primary_10_1016_j_cpc_2025_109754
crossref_primary_10_3390_s25051521
crossref_primary_10_1016_j_cma_2025_118189
crossref_primary_10_1016_j_cma_2025_118332
crossref_primary_10_1016_j_cma_2025_118285
crossref_primary_10_1016_j_net_2025_103527
crossref_primary_10_1109_JSEN_2024_3453326
crossref_primary_10_1140_epjb_s10051_025_00904_7
crossref_primary_10_1016_j_egyai_2025_100515
crossref_primary_10_1016_j_engappai_2025_111427
Cites_doi 10.1006/jcph.2002.7086
10.1002/nme.6681
10.1016/j.ces.2022.118310
10.1145/3343031.3350955
10.1016/j.patcog.2021.107943
10.1039/D2LC00303A
10.1016/j.jcp.2018.01.010
10.1016/j.neunet.2021.11.022
10.1016/j.advwatres.2020.103611
10.1109/CVPR46437.2021.01637
10.1002/qj.4116
10.1109/CVPR52688.2022.01522
10.1016/j.anucene.2020.107826
10.1016/j.cma.2020.113421
10.1002/fld.4416
10.1109/CVPR52688.2022.01553
10.1029/94JC00572
10.1016/j.nucengdes.2021.111113
10.1016/S0065-2156(08)70100-5
10.5194/gmd-15-3433-2022
10.1007/s12206-017-0322-y
10.1175/MWR-D-21-0288.1
10.1016/j.enganabound.2022.02.016
10.1016/j.neucom.2018.05.083
10.1146/annurev.fluid.31.1.567
10.1175/1520-0493(1915)43<163:SRROTM>2.0.CO;2
10.1016/j.cma.2021.114181
10.1142/S0218488598000094
10.1016/j.jcp.2020.109456
10.1016/j.compfluid.2018.10.006
10.1007/s00477-019-01743-6
10.1109/JAS.2023.123537
10.1038/s42256-021-00402-2
10.1016/j.coastaleng.2018.03.004
10.1002/fld.4491
10.1016/j.jcp.2022.111302
10.1002/qj.4153
10.1016/j.physd.2020.132615
10.1002/wcc.535
10.1007/s10404-018-2149-y
10.1038/s41586-021-03854-z
10.1007/s10915-022-02059-4
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2024 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.cma.2024.117201
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
Computer Science
Environmental Sciences
EISSN 1879-2138
ExternalDocumentID oai:HAL:hal-04660347v1
10_1016_j_cma_2024_117201
S0045782524004572
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY7
M41
R2-
SBC
SET
VH1
VOH
WUQ
ZY4
~HD
1XC
VOOES
ID FETCH-LOGICAL-c374t-6af2fd947069c04d0a00a765ebaec5cd6e7e22d6d1570a2978a592ee7f062d303
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001346797700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7825
IngestDate Sun Oct 19 06:22:32 EDT 2025
Sat Nov 29 06:17:00 EST 2025
Tue Nov 18 22:35:14 EST 2025
Sat Aug 24 15:40:40 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Data fusion
Dynamical systems
Data assimilation
Data assimilation Deep learning Data fusion Dynamical systems
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c374t-6af2fd947069c04d0a00a765ebaec5cd6e7e22d6d1570a2978a592ee7f062d303
ORCID 0000-0001-8805-1192
0000-0002-4959-1847
0000-0002-0530-8317
0000-0002-9471-0585
0000-0002-8707-2589
OpenAccessLink https://hal.science/hal-04660347
ParticipantIDs hal_primary_oai_HAL_hal_04660347v1
crossref_citationtrail_10_1016_j_cma_2024_117201
crossref_primary_10_1016_j_cma_2024_117201
elsevier_sciencedirect_doi_10_1016_j_cma_2024_117201
PublicationCentury 2000
PublicationDate 2024-10-01
2024-10-00
2024-10
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Gong, Cheng, Chen, Li (b5) 2022
Shin, Juric (b57) 2002; 180
Cheng, Argaud, Iooss, Lucor, Ponçot (b51) 2019; 33
James, Zhang, O’Donncha (b7) 2018; 137
Shin, Chergui, Juric, Kahouadji, Matar, Craster (b56) 2018; 359
G. Wei, C. Lan, W. Zeng, Z. Chen, Metaalign: Coordinating domain alignment and classification for unsupervised domain adaptation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 16643–16653.
Cheng, Prentice, Huang, Jin, Guo, Arcucci (b17) 2022
Peyron, Fillion, Gürol, Marchais, Gratton, Boudier, Goret (b15) 2021; 147
Bocquet, Vanderbecken, Farchi, Dumont Le Brazidec, Roustan (b59) 2023; 2023
Finn, Disson, Farchi, Bocquet, Durand (b10) 2023; 2023
Ramponi, Plank (b29) 2020
Burgers (b31) 1948; 1
Mohd Razak, Jahandideh, Djuraev, Jafarpour (b16) 2022
Heaney, Li, Matar, Pain (b33) 2020
K. He, X. Chen, S. Xie, Y. Li, P. Dollár, R. Girshick, Masked autoencoders are scalable vision learners, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 16000–16009.
Kahouadji, Nowak, Kovalchuk, Chergui, Juric, Shin, Simmons, Craster, Matar (b58) 2018; 22
Fukami, Maulik, Ramachandra, Fukagata, Taira (b60) 2021; 3
Amendola, Arcucci, Mottet, Casas, Fan, Pain, Linden, Guo (b26) 2021
Siwek, Osowski (b32) 2017
Cheng, Chen, Anastasiou, Angeli, Matar, Guo, Pain, Arcucci (b22) 2023; 94
Tang, Liu, Durlofsky (b11) 2020; 413
Evensen (b41) 1994; 99
Pawar, San (b20) 2022; 14
Gong, Yu, Peng, Li (b12) 2020; 149
Ravuri, Lenc, Willson, Kangin, Lam, Mirowski, Fitzsimons, Athanassiadou, Kashem, Madge (b1) 2021; 597
Farchi, Laloyaux, Bonavita, Bocquet (b52) 2021; 147
McKinley, Levine (b47) 1998; 45
Casas, Arcucci, Wu, Pain, Guo (b2) 2020; 412
Xu, Song, Sun, Zhang (b35) 2021
Y. Yao, Y. Zhang, X. Li, Y. Ye, Heterogeneous domain adaptation via soft transfer network, in: Proceedings of the 27th ACM International Conference on Multimedia, 2019, pp. 1578–1586.
Carrassi, Bocquet, Bertino, Evensen (b8) 2018; 9
Xiao, Du, Fang, Pain, Li (b13) 2018; 177
Melinc, Zaplotnik (b25) 2023
Wang, Shi, Lei, Fung (b27) 2022
Maulik, Rao, Wang, Mengaldo, Constantinescu, Lusch, Balaprakash, Foster, Kotamarthi (b19) 2022; 15
Wang, Xiao, Fang, Govindan, Pain, Guo (b4) 2018; 86
Landajuela (b46) 2011
Scardovelli, Zaleski (b53) 1999; 31
Fablet, Drumetz, Rousseau (b14) 2020
Bao, Li, Davis (b21) 2022
Fresca, Manzoni (b38) 2022; 388
Brajard, Carrassi, Bocquet, Bertino (b23) 2019; 2019
Geneva, Zabaras (b39) 2022; 146
Voulgaropoulos (b48) 2018
Shin, Chergui, Juric (b55) 2017; 31
Gong, Chen, Maday, Li (b6) 2021; 377
Zhou, Wu, Li, Cao, Ye, Saragih, Li, Sheikh (b34) 2020
Wang, Deng (b28) 2018; 312
Bateman (b45) 1915; 43
Zhuang, Cheng, Kovalchuk, Simmons, Matar, Guo, Arcucci (b54) 2022; 22
Cheng, Quilodrán-Casas, Ouala, Farchi, Liu, Tandeo, Fablet, Lucor, Iooss, Brajard (b24) 2023; 10
Phillips, Heaney, Smith, Pain (b36) 2021; 122
Kumar, Srinivasan (b3) 2020; 141
Liu, Fu, Xiao, Stefanescu, Sharma, Zhu, Sun, Wang (b18) 2022; 139
Wang, Chen, Lin, Sigal, de Silva (b42) 2021; 116
Gatti, Clouteau (b9) 2020; 372
Hochreiter (b40) 1998; 6
Chen, Anastasiou, Cheng, Basha, Kahouadji, Arcucci, Angeli, Matar (b50) 2023; 267
J. Yang, J. Duan, S. Tran, Y. Xu, S. Chanda, L. Chen, B. Zeng, T. Chilimbi, J. Huang, Vision-language pre-training with triple contrastive learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 15671–15680.
Quilodrán-Casas, Arcucci, Pain, Guo (b37) 2021
Liao, Oertel, Kriebitzsch, Schlegel, Lucas (b49) 2018; 87
Cheng (10.1016/j.cma.2024.117201_b22) 2023; 94
Scardovelli (10.1016/j.cma.2024.117201_b53) 1999; 31
Gong (10.1016/j.cma.2024.117201_b6) 2021; 377
Casas (10.1016/j.cma.2024.117201_b2) 2020; 412
Shin (10.1016/j.cma.2024.117201_b57) 2002; 180
Wang (10.1016/j.cma.2024.117201_b28) 2018; 312
Shin (10.1016/j.cma.2024.117201_b55) 2017; 31
Wang (10.1016/j.cma.2024.117201_b27) 2022
Cheng (10.1016/j.cma.2024.117201_b17) 2022
Tang (10.1016/j.cma.2024.117201_b11) 2020; 413
10.1016/j.cma.2024.117201_b30
Heaney (10.1016/j.cma.2024.117201_b33) 2020
Fukami (10.1016/j.cma.2024.117201_b60) 2021; 3
Kumar (10.1016/j.cma.2024.117201_b3) 2020; 141
Liao (10.1016/j.cma.2024.117201_b49) 2018; 87
Kahouadji (10.1016/j.cma.2024.117201_b58) 2018; 22
Geneva (10.1016/j.cma.2024.117201_b39) 2022; 146
Landajuela (10.1016/j.cma.2024.117201_b46) 2011
Wang (10.1016/j.cma.2024.117201_b42) 2021; 116
Ramponi (10.1016/j.cma.2024.117201_b29) 2020
Chen (10.1016/j.cma.2024.117201_b50) 2023; 267
10.1016/j.cma.2024.117201_b43
10.1016/j.cma.2024.117201_b44
Wang (10.1016/j.cma.2024.117201_b4) 2018; 86
Peyron (10.1016/j.cma.2024.117201_b15) 2021; 147
Zhuang (10.1016/j.cma.2024.117201_b54) 2022; 22
Maulik (10.1016/j.cma.2024.117201_b19) 2022; 15
Gong (10.1016/j.cma.2024.117201_b12) 2020; 149
Quilodrán-Casas (10.1016/j.cma.2024.117201_b37) 2021
Cheng (10.1016/j.cma.2024.117201_b24) 2023; 10
McKinley (10.1016/j.cma.2024.117201_b47) 1998; 45
Phillips (10.1016/j.cma.2024.117201_b36) 2021; 122
Cheng (10.1016/j.cma.2024.117201_b51) 2019; 33
James (10.1016/j.cma.2024.117201_b7) 2018; 137
Bao (10.1016/j.cma.2024.117201_b21) 2022
Amendola (10.1016/j.cma.2024.117201_b26) 2021
Bocquet (10.1016/j.cma.2024.117201_b59) 2023; 2023
Pawar (10.1016/j.cma.2024.117201_b20) 2022; 14
Voulgaropoulos (10.1016/j.cma.2024.117201_b48) 2018
Ravuri (10.1016/j.cma.2024.117201_b1) 2021; 597
Siwek (10.1016/j.cma.2024.117201_b32) 2017
Fresca (10.1016/j.cma.2024.117201_b38) 2022; 388
Fablet (10.1016/j.cma.2024.117201_b14) 2020
Bateman (10.1016/j.cma.2024.117201_b45) 1915; 43
Farchi (10.1016/j.cma.2024.117201_b52) 2021; 147
Gong (10.1016/j.cma.2024.117201_b5) 2022
Zhou (10.1016/j.cma.2024.117201_b34) 2020
Xu (10.1016/j.cma.2024.117201_b35) 2021
Burgers (10.1016/j.cma.2024.117201_b31) 1948; 1
Shin (10.1016/j.cma.2024.117201_b56) 2018; 359
Xiao (10.1016/j.cma.2024.117201_b13) 2018; 177
Mohd Razak (10.1016/j.cma.2024.117201_b16) 2022
10.1016/j.cma.2024.117201_b61
Hochreiter (10.1016/j.cma.2024.117201_b40) 1998; 6
Carrassi (10.1016/j.cma.2024.117201_b8) 2018; 9
Liu (10.1016/j.cma.2024.117201_b18) 2022; 139
Brajard (10.1016/j.cma.2024.117201_b23) 2019; 2019
Gatti (10.1016/j.cma.2024.117201_b9) 2020; 372
Finn (10.1016/j.cma.2024.117201_b10) 2023; 2023
Melinc (10.1016/j.cma.2024.117201_b25) 2023
Evensen (10.1016/j.cma.2024.117201_b41) 1994; 99
References_xml – reference: Y. Yao, Y. Zhang, X. Li, Y. Ye, Heterogeneous domain adaptation via soft transfer network, in: Proceedings of the 27th ACM International Conference on Multimedia, 2019, pp. 1578–1586.
– volume: 267
  year: 2023
  ident: b50
  article-title: Computational fluid dynamics simulations of phase separation in dispersed oil-water pipe flows
  publication-title: Chem. Eng. Sci.
– volume: 31
  start-page: 1739
  year: 2017
  end-page: 1751
  ident: b55
  article-title: A solver for massively parallel direct numerical simulation of three-dimensional multiphase flows
  publication-title: J. Mech. Sci. Technol.
– volume: 2023
  start-page: 1
  year: 2023
  end-page: 39
  ident: b10
  article-title: Representation learning with unconditional denoising diffusion models for dynamical systems
  publication-title: EGUsphere
– volume: 31
  start-page: 567
  year: 1999
  end-page: 603
  ident: b53
  article-title: Direct numerical simulation of free-surface and interfacial flow
  publication-title: Annu. Rev. Fluid Mech.
– volume: 15
  start-page: 3433
  year: 2022
  end-page: 3445
  ident: b19
  article-title: Efficient high-dimensional variational data assimilation with machine-learned reduced-order models
  publication-title: Geosci. Model Dev.
– year: 2011
  ident: b46
  article-title: Burgers equation
  publication-title: BCAM Internship-Summer
– start-page: 373
  year: 2021
  end-page: 386
  ident: b26
  article-title: Data assimilation in the latent space of a convolutional autoencoder
  publication-title: International Conference on Computational Science
– volume: 2023
  start-page: 1
  year: 2023
  end-page: 36
  ident: b59
  article-title: Bridging classical data assimilation and optimal transport
  publication-title: EGUsphere
– volume: 43
  start-page: 163
  year: 1915
  end-page: 170
  ident: b45
  article-title: Some recent researches on the motion of fluids
  publication-title: Mon. Weather Rev.
– year: 2018
  ident: b48
  article-title: Dynamics of Spatially Evolving Dispersed Flows
– volume: 22
  start-page: 3187
  year: 2022
  end-page: 3202
  ident: b54
  article-title: Ensemble latent assimilation with deep learning surrogate model: application to drop interaction in a microfluidics device
  publication-title: Lab Chip
– volume: 1
  start-page: 171
  year: 1948
  end-page: 199
  ident: b31
  article-title: A mathematical model illustrating the theory of turbulence
  publication-title: Adv. Appl. Mech.
– year: 2021
  ident: b37
  article-title: Adversarially trained LSTMs on reduced order models of urban air pollution simulations
– volume: 312
  start-page: 135
  year: 2018
  end-page: 153
  ident: b28
  article-title: Deep visual domain adaptation: A survey
  publication-title: Neurocomputing
– start-page: 1
  year: 2017
  end-page: 4
  ident: b32
  article-title: Autoencoder versus PCA in face recognition
  publication-title: 2017 18th International Conference on Computational Problems of Electrical Engineering
– year: 2020
  ident: b33
  article-title: Applying convolutional neural networks to data on unstructured meshes with space-filling curves
– volume: 372
  year: 2020
  ident: b9
  article-title: Towards blending physics-based numerical simulations and seismic databases using generative adversarial network
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 3
  start-page: 945
  year: 2021
  end-page: 951
  ident: b60
  article-title: Global field reconstruction from sparse sensors with voronoi tessellation-assisted deep learning
  publication-title: Nat. Mach. Intell.
– year: 2020
  ident: b34
  article-title: Fully convolutional mesh autoencoder using efficient spatially varying kernels
– volume: 388
  year: 2022
  ident: b38
  article-title: POD-DL-ROM: Enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition
  publication-title: Comput. Methods Appl. Mech. Engrg.
– reference: J. Yang, J. Duan, S. Tran, Y. Xu, S. Chanda, L. Chen, B. Zeng, T. Chilimbi, J. Huang, Vision-language pre-training with triple contrastive learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 15671–15680.
– volume: 147
  start-page: 3067
  year: 2021
  end-page: 3084
  ident: b52
  article-title: Using machine learning to correct model error in data assimilation and forecast applications
  publication-title: Q. J. R. Meteorol. Soc.
– year: 2022
  ident: b27
  article-title: Deep learning augmented data assimilation: Reconstructing missing information with convolutional autoencoders
  publication-title: Mon. Weather Rev.
– year: 2020
  ident: b14
  article-title: Joint learning of variational representations and solvers for inverse problems with partially-observed data
– volume: 137
  start-page: 1
  year: 2018
  end-page: 10
  ident: b7
  article-title: A machine learning framework to forecast wave conditions
  publication-title: Coast. Eng.
– volume: 177
  start-page: 69
  year: 2018
  end-page: 77
  ident: b13
  article-title: Parameterised non-intrusive reduced order methods for ensemble Kalman filter data assimilation
  publication-title: Comput. & Fluids
– volume: 14
  year: 2022
  ident: b20
  article-title: Equation-free surrogate modeling of geophysical flows at the intersection of machine learning and data assimilation
  publication-title: J. Adv. Modelling Earth Syst.
– volume: 412
  year: 2020
  ident: b2
  article-title: A reduced order deep data assimilation model
  publication-title: Physica D
– volume: 149
  year: 2020
  ident: b12
  article-title: A data-driven strategy for xenon dynamical forecasting using dynamic mode decomposition
  publication-title: Ann. Nucl. Energy
– volume: 86
  start-page: 255
  year: 2018
  end-page: 268
  ident: b4
  article-title: Model identification of reduced order fluid dynamics systems using deep learning
  publication-title: Internat. J. Numer. Methods Fluids
– reference: K. He, X. Chen, S. Xie, Y. Li, P. Dollár, R. Girshick, Masked autoencoders are scalable vision learners, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 16000–16009.
– volume: 180
  start-page: 427
  year: 2002
  end-page: 470
  ident: b57
  article-title: Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity
  publication-title: J. Comput. Phys.
– year: 2022
  ident: b17
  article-title: Data-driven surrogate model with latent data assimilation: Application to wildfire forecasting
  publication-title: J. Comput. Phys.
– year: 2023
  ident: b25
  article-title: 3D-var data assimilation using a variational autoencoder
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 359
  start-page: 409
  year: 2018
  end-page: 435
  ident: b56
  article-title: A hybrid interface tracking – level set technique for multiphase flow with soluble surfactant
  publication-title: J. Comput. Phys.
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 21
  ident: b23
  article-title: Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: a case study with the lorenz 96 model
  publication-title: Geosci. Model Dev. Discuss.
– reference: G. Wei, C. Lan, W. Zeng, Z. Chen, Metaalign: Coordinating domain alignment and classification for unsupervised domain adaptation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 16643–16653.
– volume: 33
  start-page: 2033
  year: 2019
  end-page: 2051
  ident: b51
  article-title: Background error covariance iterative updating with invariant observation measures for data assimilation
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 22
  start-page: 1
  year: 2018
  end-page: 12
  ident: b58
  article-title: Simulation of immiscible liquid–liquid flows in complex microchannel geometries using a front-tracking scheme
  publication-title: Microfluidics Nanofluidics
– volume: 147
  start-page: 3759
  year: 2021
  end-page: 3777
  ident: b15
  article-title: Latent space data assimilation by using deep learning
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 94
  start-page: 11
  year: 2023
  ident: b22
  article-title: Generalised latent assimilation in heterogeneous reduced spaces with machine learning surrogate models
  publication-title: J. Sci. Comput.
– volume: 146
  start-page: 272
  year: 2022
  end-page: 289
  ident: b39
  article-title: Transformers for modeling physical systems
  publication-title: Neural Netw.
– year: 2021
  ident: b35
  article-title: UCNN: A convolutional strategy on unstructured mesh
– year: 2020
  ident: b29
  article-title: Neural unsupervised domain adaptation in NLP—A survey
– volume: 139
  start-page: 46
  year: 2022
  end-page: 55
  ident: b18
  article-title: EnKF data-driven reduced order assimilation system
  publication-title: Eng. Anal. Bound. Elem.
– volume: 9
  year: 2018
  ident: b8
  article-title: Data assimilation in the geosciences: An overview of methods, issues, and perspectives
  publication-title: Wiley Interdiscip. Rev. Clim. Change
– volume: 45
  start-page: 1049
  year: 1998
  end-page: 1060
  ident: b47
  article-title: Cubic spline interpolation
  publication-title: Coll. Redw.
– start-page: 1
  year: 2022
  end-page: 21
  ident: b16
  article-title: Deep learning for latent space data assimilation in subsurface flow systems
  publication-title: SPE J.
– volume: 377
  year: 2021
  ident: b6
  article-title: Optimal and fast field reconstruction with reduced basis and limited observations: Application to reactor core online monitoring
  publication-title: Nucl. Eng. Des.
– volume: 87
  start-page: 202
  year: 2018
  end-page: 215
  ident: b49
  article-title: A discrete population balance equation for binary breakage
  publication-title: Internat. J. Numer. Methods Fluids
– start-page: 1
  year: 2022
  end-page: 26
  ident: b5
  article-title: Data-enabled physics-informed machine learning for reduced-order modeling digital twin: Application to nuclear reactor physics
  publication-title: Nucl. Sci. Eng.
– volume: 141
  year: 2020
  ident: b3
  article-title: Indicator-based data assimilation with multiple-point statistics for updating an ensemble of models with non-Gaussian parameter distributions
  publication-title: Adv. Water Resour.
– volume: 10
  start-page: 1361
  year: 2023
  end-page: 1387
  ident: b24
  article-title: Machine learning with data assimilation and uncertainty quantification for dynamical systems: a review
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 122
  start-page: 3780
  year: 2021
  end-page: 3811
  ident: b36
  article-title: An autoencoder-based reduced-order model for eigenvalue problems with application to neutron diffusion
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 597
  start-page: 672
  year: 2021
  end-page: 677
  ident: b1
  article-title: Skilful precipitation nowcasting using deep generative models of radar
  publication-title: Nature
– start-page: 1
  year: 2022
  end-page: 26
  ident: b21
  article-title: Variational autoencoder or generative adversarial networks? A comparison of two deep learning methods for flow and transport data assimilation
  publication-title: Math. Geosci.
– volume: 116
  year: 2021
  ident: b42
  article-title: Discriminative feature alignment: Improving transferability of unsupervised domain adaptation by Gaussian-guided latent alignment
  publication-title: Pattern Recognit.
– volume: 413
  year: 2020
  ident: b11
  article-title: A deep-learning-based surrogate model for data assimilation in dynamic subsurface flow problems
  publication-title: J. Comput. Phys.
– volume: 6
  start-page: 107
  year: 1998
  end-page: 116
  ident: b40
  article-title: The vanishing gradient problem during learning recurrent neural nets and problem solutions
  publication-title: Internat. J. Uncertain. Fuzziness Knowledge-Based Systems
– volume: 99
  start-page: 10143
  year: 1994
  end-page: 10162
  ident: b41
  article-title: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics
  publication-title: J. Geophys. Res.: Oceans
– start-page: 1
  year: 2022
  ident: 10.1016/j.cma.2024.117201_b16
  article-title: Deep learning for latent space data assimilation in subsurface flow systems
  publication-title: SPE J.
– volume: 180
  start-page: 427
  year: 2002
  ident: 10.1016/j.cma.2024.117201_b57
  article-title: Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2002.7086
– volume: 122
  start-page: 3780
  issue: 15
  year: 2021
  ident: 10.1016/j.cma.2024.117201_b36
  article-title: An autoencoder-based reduced-order model for eigenvalue problems with application to neutron diffusion
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.6681
– year: 2020
  ident: 10.1016/j.cma.2024.117201_b34
– volume: 267
  year: 2023
  ident: 10.1016/j.cma.2024.117201_b50
  article-title: Computational fluid dynamics simulations of phase separation in dispersed oil-water pipe flows
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2022.118310
– ident: 10.1016/j.cma.2024.117201_b30
  doi: 10.1145/3343031.3350955
– volume: 116
  year: 2021
  ident: 10.1016/j.cma.2024.117201_b42
  article-title: Discriminative feature alignment: Improving transferability of unsupervised domain adaptation by Gaussian-guided latent alignment
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.107943
– volume: 2019
  start-page: 1
  year: 2019
  ident: 10.1016/j.cma.2024.117201_b23
  article-title: Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: a case study with the lorenz 96 model
  publication-title: Geosci. Model Dev. Discuss.
– volume: 22
  start-page: 3187
  issue: 17
  year: 2022
  ident: 10.1016/j.cma.2024.117201_b54
  article-title: Ensemble latent assimilation with deep learning surrogate model: application to drop interaction in a microfluidics device
  publication-title: Lab Chip
  doi: 10.1039/D2LC00303A
– volume: 359
  start-page: 409
  year: 2018
  ident: 10.1016/j.cma.2024.117201_b56
  article-title: A hybrid interface tracking – level set technique for multiphase flow with soluble surfactant
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.01.010
– volume: 146
  start-page: 272
  year: 2022
  ident: 10.1016/j.cma.2024.117201_b39
  article-title: Transformers for modeling physical systems
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2021.11.022
– volume: 141
  year: 2020
  ident: 10.1016/j.cma.2024.117201_b3
  article-title: Indicator-based data assimilation with multiple-point statistics for updating an ensemble of models with non-Gaussian parameter distributions
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2020.103611
– ident: 10.1016/j.cma.2024.117201_b44
  doi: 10.1109/CVPR46437.2021.01637
– volume: 147
  start-page: 3067
  issue: 739
  year: 2021
  ident: 10.1016/j.cma.2024.117201_b52
  article-title: Using machine learning to correct model error in data assimilation and forecast applications
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.4116
– volume: 2023
  start-page: 1
  year: 2023
  ident: 10.1016/j.cma.2024.117201_b10
  article-title: Representation learning with unconditional denoising diffusion models for dynamical systems
  publication-title: EGUsphere
– ident: 10.1016/j.cma.2024.117201_b43
  doi: 10.1109/CVPR52688.2022.01522
– volume: 149
  year: 2020
  ident: 10.1016/j.cma.2024.117201_b12
  article-title: A data-driven strategy for xenon dynamical forecasting using dynamic mode decomposition
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2020.107826
– volume: 372
  year: 2020
  ident: 10.1016/j.cma.2024.117201_b9
  article-title: Towards blending physics-based numerical simulations and seismic databases using generative adversarial network
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113421
– volume: 86
  start-page: 255
  issue: 4
  year: 2018
  ident: 10.1016/j.cma.2024.117201_b4
  article-title: Model identification of reduced order fluid dynamics systems using deep learning
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.4416
– ident: 10.1016/j.cma.2024.117201_b61
  doi: 10.1109/CVPR52688.2022.01553
– volume: 99
  start-page: 10143
  issue: C5
  year: 1994
  ident: 10.1016/j.cma.2024.117201_b41
  article-title: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics
  publication-title: J. Geophys. Res.: Oceans
  doi: 10.1029/94JC00572
– volume: 377
  year: 2021
  ident: 10.1016/j.cma.2024.117201_b6
  article-title: Optimal and fast field reconstruction with reduced basis and limited observations: Application to reactor core online monitoring
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2021.111113
– volume: 1
  start-page: 171
  year: 1948
  ident: 10.1016/j.cma.2024.117201_b31
  article-title: A mathematical model illustrating the theory of turbulence
  publication-title: Adv. Appl. Mech.
  doi: 10.1016/S0065-2156(08)70100-5
– volume: 15
  start-page: 3433
  issue: 8
  year: 2022
  ident: 10.1016/j.cma.2024.117201_b19
  article-title: Efficient high-dimensional variational data assimilation with machine-learned reduced-order models
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-15-3433-2022
– volume: 31
  start-page: 1739
  year: 2017
  ident: 10.1016/j.cma.2024.117201_b55
  article-title: A solver for massively parallel direct numerical simulation of three-dimensional multiphase flows
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-017-0322-y
– year: 2022
  ident: 10.1016/j.cma.2024.117201_b27
  article-title: Deep learning augmented data assimilation: Reconstructing missing information with convolutional autoencoders
  publication-title: Mon. Weather Rev.
  doi: 10.1175/MWR-D-21-0288.1
– volume: 139
  start-page: 46
  year: 2022
  ident: 10.1016/j.cma.2024.117201_b18
  article-title: EnKF data-driven reduced order assimilation system
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2022.02.016
– volume: 312
  start-page: 135
  year: 2018
  ident: 10.1016/j.cma.2024.117201_b28
  article-title: Deep visual domain adaptation: A survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.083
– volume: 31
  start-page: 567
  issue: 1
  year: 1999
  ident: 10.1016/j.cma.2024.117201_b53
  article-title: Direct numerical simulation of free-surface and interfacial flow
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.31.1.567
– year: 2020
  ident: 10.1016/j.cma.2024.117201_b33
– volume: 43
  start-page: 163
  issue: 4
  year: 1915
  ident: 10.1016/j.cma.2024.117201_b45
  article-title: Some recent researches on the motion of fluids
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1915)43<163:SRROTM>2.0.CO;2
– volume: 388
  year: 2022
  ident: 10.1016/j.cma.2024.117201_b38
  article-title: POD-DL-ROM: Enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.114181
– volume: 6
  start-page: 107
  issue: 02
  year: 1998
  ident: 10.1016/j.cma.2024.117201_b40
  article-title: The vanishing gradient problem during learning recurrent neural nets and problem solutions
  publication-title: Internat. J. Uncertain. Fuzziness Knowledge-Based Systems
  doi: 10.1142/S0218488598000094
– volume: 413
  year: 2020
  ident: 10.1016/j.cma.2024.117201_b11
  article-title: A deep-learning-based surrogate model for data assimilation in dynamic subsurface flow problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109456
– volume: 177
  start-page: 69
  year: 2018
  ident: 10.1016/j.cma.2024.117201_b13
  article-title: Parameterised non-intrusive reduced order methods for ensemble Kalman filter data assimilation
  publication-title: Comput. & Fluids
  doi: 10.1016/j.compfluid.2018.10.006
– start-page: 1
  year: 2017
  ident: 10.1016/j.cma.2024.117201_b32
  article-title: Autoencoder versus PCA in face recognition
– year: 2018
  ident: 10.1016/j.cma.2024.117201_b48
– volume: 33
  start-page: 2033
  issue: 11
  year: 2019
  ident: 10.1016/j.cma.2024.117201_b51
  article-title: Background error covariance iterative updating with invariant observation measures for data assimilation
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-019-01743-6
– volume: 10
  start-page: 1361
  issue: 6
  year: 2023
  ident: 10.1016/j.cma.2024.117201_b24
  article-title: Machine learning with data assimilation and uncertainty quantification for dynamical systems: a review
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2023.123537
– start-page: 373
  year: 2021
  ident: 10.1016/j.cma.2024.117201_b26
  article-title: Data assimilation in the latent space of a convolutional autoencoder
– year: 2011
  ident: 10.1016/j.cma.2024.117201_b46
  article-title: Burgers equation
– volume: 3
  start-page: 945
  issue: 11
  year: 2021
  ident: 10.1016/j.cma.2024.117201_b60
  article-title: Global field reconstruction from sparse sensors with voronoi tessellation-assisted deep learning
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00402-2
– start-page: 1
  year: 2022
  ident: 10.1016/j.cma.2024.117201_b21
  article-title: Variational autoencoder or generative adversarial networks? A comparison of two deep learning methods for flow and transport data assimilation
  publication-title: Math. Geosci.
– year: 2023
  ident: 10.1016/j.cma.2024.117201_b25
  article-title: 3D-var data assimilation using a variational autoencoder
  publication-title: Q. J. R. Meteorol. Soc.
– year: 2020
  ident: 10.1016/j.cma.2024.117201_b14
– volume: 137
  start-page: 1
  year: 2018
  ident: 10.1016/j.cma.2024.117201_b7
  article-title: A machine learning framework to forecast wave conditions
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2018.03.004
– volume: 87
  start-page: 202
  issue: 4
  year: 2018
  ident: 10.1016/j.cma.2024.117201_b49
  article-title: A discrete population balance equation for binary breakage
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.4491
– year: 2021
  ident: 10.1016/j.cma.2024.117201_b37
– volume: 2023
  start-page: 1
  year: 2023
  ident: 10.1016/j.cma.2024.117201_b59
  article-title: Bridging classical data assimilation and optimal transport
  publication-title: EGUsphere
– year: 2020
  ident: 10.1016/j.cma.2024.117201_b29
– start-page: 1
  year: 2022
  ident: 10.1016/j.cma.2024.117201_b5
  article-title: Data-enabled physics-informed machine learning for reduced-order modeling digital twin: Application to nuclear reactor physics
  publication-title: Nucl. Sci. Eng.
– year: 2021
  ident: 10.1016/j.cma.2024.117201_b35
– year: 2022
  ident: 10.1016/j.cma.2024.117201_b17
  article-title: Data-driven surrogate model with latent data assimilation: Application to wildfire forecasting
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2022.111302
– volume: 147
  start-page: 3759
  issue: 740
  year: 2021
  ident: 10.1016/j.cma.2024.117201_b15
  article-title: Latent space data assimilation by using deep learning
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.4153
– volume: 45
  start-page: 1049
  issue: 1
  year: 1998
  ident: 10.1016/j.cma.2024.117201_b47
  article-title: Cubic spline interpolation
  publication-title: Coll. Redw.
– volume: 412
  year: 2020
  ident: 10.1016/j.cma.2024.117201_b2
  article-title: A reduced order deep data assimilation model
  publication-title: Physica D
  doi: 10.1016/j.physd.2020.132615
– volume: 9
  issue: 5
  year: 2018
  ident: 10.1016/j.cma.2024.117201_b8
  article-title: Data assimilation in the geosciences: An overview of methods, issues, and perspectives
  publication-title: Wiley Interdiscip. Rev. Clim. Change
  doi: 10.1002/wcc.535
– volume: 14
  issue: 11
  year: 2022
  ident: 10.1016/j.cma.2024.117201_b20
  article-title: Equation-free surrogate modeling of geophysical flows at the intersection of machine learning and data assimilation
  publication-title: J. Adv. Modelling Earth Syst.
– volume: 22
  start-page: 1
  year: 2018
  ident: 10.1016/j.cma.2024.117201_b58
  article-title: Simulation of immiscible liquid–liquid flows in complex microchannel geometries using a front-tracking scheme
  publication-title: Microfluidics Nanofluidics
  doi: 10.1007/s10404-018-2149-y
– volume: 597
  start-page: 672
  issue: 7878
  year: 2021
  ident: 10.1016/j.cma.2024.117201_b1
  article-title: Skilful precipitation nowcasting using deep generative models of radar
  publication-title: Nature
  doi: 10.1038/s41586-021-03854-z
– volume: 94
  start-page: 11
  issue: 1
  year: 2023
  ident: 10.1016/j.cma.2024.117201_b22
  article-title: Generalised latent assimilation in heterogeneous reduced spaces with machine learning surrogate models
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-022-02059-4
SSID ssj0000812
Score 2.563446
Snippet High-dimensional dynamical systems often require computationally intensive physics-based simulations, making full physical space data assimilation impractical....
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 117201
SubjectTerms Computer Science
Data assimilation
Data fusion
Deep learning
Dynamical systems
Environmental Sciences
Nonlinear Sciences
Physics
Title Multi-domain encoder–decoder neural networks for latent data assimilation in dynamical systems
URI https://dx.doi.org/10.1016/j.cma.2024.117201
https://hal.science/hal-04660347
Volume 430
WOSCitedRecordID wos001346797700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXKxgM88DFAjC9ZiCeqoMR17PixQkMDVRMSA5Wn4NiOlqpNp66txgMS_4F_yC_hOraTwMQESLxESdTcVL4n9vX1uccIPUu51aErygjGXh1RJVkkWQaXMoPxOxVp2exF8GHCj46y6VS8HQy-hFqY7ZzXdXZ-Lk7_q6vhHjjbls7-hbtbo3ADzsHpcAS3w_GPHN-U1EZ6uZBWDaS2NeurQGkYadNcD62MJTindiTwRpNhOIews14PLWd0CCF1tagcT64hzLqN621xSU_iPCgc-J0h_HbUDcNW-uh2YWxpcZCCNp36YccrMD5jXRXLLo298Xnsj9W86ogC8mS5kXrmKro_d_THSbVx3AHTz2IQ2vLhfGrtQnmN665pGkEIk_a7a-rWcS50_S4LMXuhGjkpQu1yNPGv-FlR-521a81a_iycwQi-S3gqoJvcHb8-mL7phvIscXLz_n-EZfGGIPjLi34X2Fw5CSn6JmQ5voVu-LkGHjuM3EYDU--hm37egX2vfraHrvdEKe-gT30AYQ-g71-_eehgBx0coIMBOthBB1vo4D50MFhooYM9dO6i968Ojl8eRn4fjkiNOF1HTJak1ILymAkVUx3LOJacpaaQRqVKM8MNIZrpBL58SQTPZCqIMbyMGdEQI91DO_WyNvcRTpQCE0IlEIfSghdZUZQaZgEiZpKUnO2jODRirrxIvd0rZZ4HNuIsh3bPbbvnrt330fP2kVOn0HLZj2nwTO5DTBc65gCjyx57Cl5szVtJ9sPxJLf3YspYPKJ8mzz4N9sP0bXug3iEdtarjXmMrqrtujpbPfGI_AHe1K2_
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-domain+encoder%E2%80%93decoder+neural+networks+for+latent+data+assimilation+in+dynamical+systems&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Cheng%2C+Sibo&rft.au=Zhuang%2C+Yilin&rft.au=Kahouadji%2C+Lyes&rft.au=Liu%2C+Che&rft.date=2024-10-01&rft.pub=Elsevier+B.V&rft.issn=0045-7825&rft.volume=430&rft_id=info:doi/10.1016%2Fj.cma.2024.117201&rft.externalDocID=S0045782524004572
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon