Reliability challenges in 3D IC packaging technology

At the moment, a major paradigm change, from 2D IC to 3D IC, is occurring in microelectronic industry. Joule heating is serious in 3D IC, and vertical interconnect is the critical element to be developed. Also reliability concerns will be extremely important. For example, in order to remove heat, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microelectronics and reliability Jg. 51; H. 3; S. 517 - 523
1. Verfasser: Tu, K.N.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kidlington Elsevier Ltd 01.03.2011
Elsevier
Schlagworte:
ISSN:0026-2714, 1872-941X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract At the moment, a major paradigm change, from 2D IC to 3D IC, is occurring in microelectronic industry. Joule heating is serious in 3D IC, and vertical interconnect is the critical element to be developed. Also reliability concerns will be extremely important. For example, in order to remove heat, a temperature gradient must exist in the packaging. If we assume just a difference of 1 °C across a micro-bump of 10 μm in diameter, the temperature gradient is 1000 °C/cm which cannot be ignored due to thermomigration. Equally challenging reliability issues are electromigration and stress-migration. Since the 3D IC structure is new, the details of reliability problems are mostly unknown. This paper presents a projection of the reliability challenges in 3D IC packaging technology on the basis of what we have known from flip chip technology.
AbstractList At the moment, a major paradigm change, from 2D IC to 3D IC, is occurring in microelectronic industry. Joule heating is serious in 3D IC, and vertical interconnect is the critical element to be developed. Also reliability concerns will be extremely important. For example, in order to remove heat, a temperature gradient must exist in the packaging. If we assume just a difference of 1 °C across a micro-bump of 10 μm in diameter, the temperature gradient is 1000 °C/cm which cannot be ignored due to thermomigration. Equally challenging reliability issues are electromigration and stress-migration. Since the 3D IC structure is new, the details of reliability problems are mostly unknown. This paper presents a projection of the reliability challenges in 3D IC packaging technology on the basis of what we have known from flip chip technology.
At the moment, a major paradigm change, from 2D IC to 3D IC, is occurring in microelectronic industry. Joule heating is serious in 3D IC, and vertical interconnect is the critical element to be developed. Also reliability concerns will be extremely important. For example, in order to remove heat, a temperature gradient must exist in the packaging. If we assume just a difference of 1 [deg]C across a micro-bump of 10 [micro]m in diameter, the temperature gradient is 1000 [deg]C/cm which cannot be ignored due to thermomigration. Equally challenging reliability issues are electromigration and stress-migration. Since the 3D IC structure is new, the details of reliability problems are mostly unknown. This paper presents a projection of the reliability challenges in 3D IC packaging technology on the basis of what we have known from flip chip technology.
Author Tu, K.N.
Author_xml – sequence: 1
  givenname: K.N.
  surname: Tu
  fullname: Tu, K.N.
  email: kntu@ucla.edu
  organization: Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095-1595, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23933262$$DView record in Pascal Francis
BookMark eNqFkE1rGzEQhkVJoM7HXwh7CT2to5G0H4IcWpy2CQQCIYXexHg868iVta60LvjfZ43dHnrJaWB4nvfwnImT2EcW4grkFCTUN6vp2lPqE4epkuNT2qnU8EFMoG1UaQ38PBETKVVdqgbMR3GW80pK2UiAiTDPHDzOffDDrqBXDIHjknPhY6HviodZsUH6hUsfl8XA9Br70C93F-K0w5D58njPxY9vX19m9-Xj0_eH2ZfHknRjhrJiApZYU7Mwlk0FVWdkBxJbC4u20nY-PlABa6wtEc7RVkRat61WumHS5-LTYXeT-t9bzoNb-0wcAkbut9m1tTGgwNYjeX0kMROGLmEkn90m-TWmnVPaaq1qNXL1gRuD5Zy4-4eAdPuabuX-1nT7mk5aN9Ycxdv_RPIDDr6PQ0If3tc_H3Qec_3xnFwmz5F44RPT4Ba9f2_iDVxYllM
CODEN MCRLAS
CitedBy_id crossref_primary_10_1007_s11664_017_5385_0
crossref_primary_10_1016_j_ceramint_2021_01_288
crossref_primary_10_3390_met11030460
crossref_primary_10_1007_s13391_019_00154_7
crossref_primary_10_1016_j_actamat_2016_08_030
crossref_primary_10_1109_TCPMT_2022_3192830
crossref_primary_10_1016_j_mssp_2022_107063
crossref_primary_10_1016_j_actamat_2020_09_010
crossref_primary_10_1016_j_actamat_2015_07_066
crossref_primary_10_1007_s11665_023_08534_9
crossref_primary_10_1016_j_microrel_2012_04_018
crossref_primary_10_1016_j_ndteint_2011_08_010
crossref_primary_10_1108_SSMT_03_2022_0022
crossref_primary_10_1109_TCPMT_2017_2707567
crossref_primary_10_1016_j_jmrt_2025_06_158
crossref_primary_10_1016_j_mejo_2021_105231
crossref_primary_10_1016_j_microrel_2019_113512
crossref_primary_10_1109_TED_2022_3228975
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122518
crossref_primary_10_1016_j_optlaseng_2024_108567
crossref_primary_10_1016_j_surfcoat_2024_130737
crossref_primary_10_1016_j_microrel_2014_04_014
crossref_primary_10_1007_s10854_023_11816_6
crossref_primary_10_1016_j_actamat_2018_08_049
crossref_primary_10_1016_j_microrel_2016_07_002
crossref_primary_10_1108_MI_09_2022_0173
crossref_primary_10_1109_TDMR_2011_2176126
crossref_primary_10_1088_1361_651X_ab2621
crossref_primary_10_1016_j_applthermaleng_2017_04_080
crossref_primary_10_1007_s10854_022_07952_0
crossref_primary_10_1016_j_mssp_2024_109256
crossref_primary_10_1016_j_jallcom_2016_03_193
crossref_primary_10_1016_j_matchemphys_2021_125307
crossref_primary_10_1007_s11431_016_0588_6
crossref_primary_10_1038_s41598_025_12625_z
crossref_primary_10_3390_ma17071638
crossref_primary_10_1007_s11664_019_07130_9
crossref_primary_10_1007_s11669_016_0475_x
crossref_primary_10_1016_j_jallcom_2023_170587
crossref_primary_10_1017_jmech_2016_55
crossref_primary_10_1007_s10854_022_07892_9
crossref_primary_10_1016_j_jnoncrysol_2021_121272
crossref_primary_10_1016_j_jallcom_2024_176266
crossref_primary_10_3390_mi14091766
crossref_primary_10_1016_j_mtcomm_2024_110283
crossref_primary_10_1007_s10854_020_05196_4
crossref_primary_10_1002_advs_201801370
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121440
crossref_primary_10_1108_MI_12_2013_0085
crossref_primary_10_1080_14686996_2019_1591168
crossref_primary_10_1115_1_4069224
crossref_primary_10_1007_s10854_018_9733_5
crossref_primary_10_1007_s10853_019_03448_1
crossref_primary_10_1016_j_matlet_2021_129470
crossref_primary_10_1109_TCPMT_2015_2506202
crossref_primary_10_1016_j_actamat_2016_07_004
crossref_primary_10_3390_ma8105355
crossref_primary_10_1007_s10853_013_7464_9
crossref_primary_10_1016_j_microrel_2023_115212
crossref_primary_10_1016_j_matpr_2017_08_002
crossref_primary_10_1109_JSSC_2020_2989543
crossref_primary_10_1016_j_jallcom_2024_176178
crossref_primary_10_1088_1361_6439_aa843f
crossref_primary_10_1109_TCPMT_2025_3537341
crossref_primary_10_1007_s11664_024_11043_7
crossref_primary_10_1007_s13391_025_00591_7
crossref_primary_10_1016_j_scriptamat_2012_01_046
crossref_primary_10_1038_s41598_022_08179_z
crossref_primary_10_1007_s10854_014_2192_8
crossref_primary_10_1109_TCPMT_2022_3206613
crossref_primary_10_1002_adma_201901895
crossref_primary_10_1063_1_4818327
crossref_primary_10_1007_s10854_022_09732_2
crossref_primary_10_1016_j_matchemphys_2023_127386
crossref_primary_10_1038_s41928_024_01187_z
crossref_primary_10_1016_j_jcp_2014_12_008
crossref_primary_10_1007_s10854_017_7706_8
crossref_primary_10_1007_s10854_025_14541_4
crossref_primary_10_1016_j_msea_2017_09_129
crossref_primary_10_1007_s10854_020_04839_w
crossref_primary_10_1063_1_4876756
crossref_primary_10_1016_j_microrel_2012_08_021
crossref_primary_10_3390_mi16040458
crossref_primary_10_1016_j_surfcoat_2024_130604
crossref_primary_10_1109_TC_2016_2532871
crossref_primary_10_1016_j_commatsci_2016_11_008
crossref_primary_10_3390_ma14195522
crossref_primary_10_3390_ma15144944
crossref_primary_10_1038_s41598_023_27669_2
crossref_primary_10_1016_j_mejo_2018_11_018
crossref_primary_10_1016_j_mssp_2025_109601
crossref_primary_10_1109_TCPMT_2022_3191785
crossref_primary_10_1016_j_jallcom_2018_01_253
crossref_primary_10_1109_TCAD_2024_3522878
crossref_primary_10_3390_ma14216394
crossref_primary_10_1016_j_jallcom_2019_05_146
crossref_primary_10_1002_adfm_201805116
crossref_primary_10_1016_j_matchar_2021_111060
crossref_primary_10_1109_TCPMT_2016_2544762
crossref_primary_10_1016_j_actamat_2016_07_021
crossref_primary_10_1016_j_scriptamat_2012_10_024
crossref_primary_10_1021_cg300962v
crossref_primary_10_1147_JRD_2019_2940427
crossref_primary_10_1007_s11664_012_2227_y
crossref_primary_10_1016_j_microrel_2014_01_008
crossref_primary_10_1007_s11664_013_2817_3
crossref_primary_10_1007_s11664_019_07239_x
crossref_primary_10_1016_j_msea_2019_03_026
crossref_primary_10_1007_s11431_013_5261_y
crossref_primary_10_1016_S1003_6326_24_66631_8
crossref_primary_10_3390_app9020227
crossref_primary_10_1109_TED_2023_3307505
crossref_primary_10_1016_j_msea_2012_12_057
crossref_primary_10_1007_s10845_023_02146_9
crossref_primary_10_1063_5_0139658
crossref_primary_10_1109_ACCESS_2020_2966789
crossref_primary_10_3390_ma17225529
crossref_primary_10_1038_s41598_018_23809_1
crossref_primary_10_1016_j_apsusc_2021_149945
crossref_primary_10_1016_j_jmrt_2025_03_146
crossref_primary_10_1016_j_apsusc_2022_155370
crossref_primary_10_4028_www_scientific_net_KEM_562_565_108
crossref_primary_10_1002_adma_202314164
crossref_primary_10_1016_j_microrel_2018_08_005
crossref_primary_10_1109_TCAD_2018_2877019
crossref_primary_10_1016_j_jallcom_2016_12_444
crossref_primary_10_1002_adma_202311335
crossref_primary_10_1016_j_applthermaleng_2024_122365
crossref_primary_10_1016_j_jmrt_2025_04_298
crossref_primary_10_1109_TCPMT_2018_2889308
crossref_primary_10_1016_j_tsep_2023_102219
crossref_primary_10_1109_TDMR_2015_2482488
crossref_primary_10_1063_1_4822437
crossref_primary_10_1016_j_mejo_2025_106596
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125405
crossref_primary_10_3390_s18071981
crossref_primary_10_1016_j_apsusc_2022_155003
crossref_primary_10_1007_s10854_017_7783_8
crossref_primary_10_1007_s11664_016_5154_5
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120230
crossref_primary_10_1007_s11664_017_6038_z
crossref_primary_10_1016_j_mtla_2020_100791
crossref_primary_10_1016_j_icheatmasstransfer_2012_10_007
crossref_primary_10_1038_s41467_017_01727_6
crossref_primary_10_1016_j_intermet_2017_02_012
crossref_primary_10_3390_polym15204168
crossref_primary_10_1002_admi_202101745
crossref_primary_10_1016_j_physb_2025_417690
crossref_primary_10_3390_coatings15010059
crossref_primary_10_1016_j_microrel_2011_09_013
crossref_primary_10_1109_TCPMT_2012_2200895
crossref_primary_10_1007_s10854_024_14102_1
crossref_primary_10_1063_1_4932598
crossref_primary_10_1108_SSMT_02_2020_0004
crossref_primary_10_1016_j_ces_2023_118474
crossref_primary_10_1080_10407782_2024_2333040
crossref_primary_10_1016_j_matchemphys_2020_123680
crossref_primary_10_1016_j_icheatmasstransfer_2024_108347
crossref_primary_10_1016_j_matchar_2024_114227
crossref_primary_10_1016_j_microrel_2020_113590
crossref_primary_10_1016_j_mtcomm_2024_108155
crossref_primary_10_1007_s11664_014_3528_0
crossref_primary_10_1007_s10854_015_2984_5
crossref_primary_10_1145_2700236
crossref_primary_10_1016_j_microrel_2011_11_001
crossref_primary_10_1007_s10854_017_6952_0
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124265
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124389
crossref_primary_10_1007_s10854_021_07349_5
crossref_primary_10_1016_j_mee_2017_05_055
crossref_primary_10_1109_TCPMT_2012_2199117
crossref_primary_10_1016_j_mee_2014_03_003
crossref_primary_10_1016_j_matlet_2020_128104
crossref_primary_10_1108_SSMT_05_2014_0010
crossref_primary_10_1016_j_ceramint_2020_08_248
crossref_primary_10_1016_j_matdes_2015_12_059
crossref_primary_10_1016_j_rineng_2025_105965
crossref_primary_10_1051_epjconf_20158201029
crossref_primary_10_1016_j_surfcoat_2014_02_060
crossref_primary_10_1108_SSMT_04_2019_0016
crossref_primary_10_1007_s13391_024_00535_7
crossref_primary_10_1016_j_matchar_2018_01_020
crossref_primary_10_3390_met14121420
crossref_primary_10_1016_j_jallcom_2016_11_194
crossref_primary_10_1007_s10853_014_8069_7
crossref_primary_10_1063_1_3671404
crossref_primary_10_1016_j_jallcom_2021_159546
crossref_primary_10_1007_s10854_015_3524_z
crossref_primary_10_1007_s10854_018_0506_y
crossref_primary_10_1016_j_matdes_2022_111385
crossref_primary_10_1016_j_matlet_2014_08_156
crossref_primary_10_1016_j_msea_2018_05_002
crossref_primary_10_1016_j_matdes_2019_107619
crossref_primary_10_1016_j_matchemphys_2023_128761
crossref_primary_10_1007_s11664_018_06907_8
crossref_primary_10_1063_1_4905587
crossref_primary_10_1007_s11664_022_09992_y
crossref_primary_10_1016_j_matlet_2021_130517
crossref_primary_10_1007_s10854_023_11168_1
crossref_primary_10_1016_j_eswa_2022_118788
crossref_primary_10_1155_2014_214510
crossref_primary_10_1016_j_expthermflusci_2025_111553
crossref_primary_10_1016_j_microrel_2014_10_007
crossref_primary_10_3390_ma8085121
crossref_primary_10_1016_j_microrel_2012_06_140
crossref_primary_10_1007_s10853_024_10472_3
crossref_primary_10_1016_j_msea_2019_05_074
crossref_primary_10_1109_TVLSI_2014_2379263
crossref_primary_10_1016_j_microrel_2012_06_146
crossref_primary_10_1016_j_actamat_2015_08_037
crossref_primary_10_3390_met10091137
crossref_primary_10_1007_s11664_024_11107_8
crossref_primary_10_1007_s44210_023_00016_w
crossref_primary_10_3390_cryst14010037
crossref_primary_10_1016_j_microrel_2020_113949
crossref_primary_10_1016_j_microrel_2015_12_028
crossref_primary_10_1038_s41563_023_01704_z
crossref_primary_10_1007_s10854_024_13559_4
crossref_primary_10_1016_j_ijheatfluidflow_2025_109823
crossref_primary_10_1016_j_taml_2020_01_005
crossref_primary_10_7736_JKSPE_025_062
crossref_primary_10_1007_s10854_016_4468_7
crossref_primary_10_1080_00218464_2024_2351977
crossref_primary_10_1007_s11664_021_09234_7
crossref_primary_10_1038_s41467_024_51510_7
crossref_primary_10_1016_j_icheatmasstransfer_2024_108137
crossref_primary_10_1063_1_4821427
crossref_primary_10_1007_s10854_014_2221_7
crossref_primary_10_1007_s11664_020_08527_7
crossref_primary_10_1080_10407790_2023_2189187
crossref_primary_10_1109_TC_2015_2498550
crossref_primary_10_1007_s00170_023_12923_8
crossref_primary_10_1007_s11664_015_3863_9
crossref_primary_10_1016_j_cej_2023_146858
crossref_primary_10_1016_j_matchemphys_2021_125159
crossref_primary_10_1109_JMMCT_2023_3265268
crossref_primary_10_1016_j_tsep_2023_101652
crossref_primary_10_1007_s13391_025_00562_y
crossref_primary_10_1016_j_engfracmech_2016_12_015
crossref_primary_10_1016_j_jallcom_2020_158587
crossref_primary_10_1016_j_matlet_2018_10_112
crossref_primary_10_1016_j_microrel_2021_114287
crossref_primary_10_1007_s11664_015_3718_4
crossref_primary_10_1016_j_intermet_2022_107530
crossref_primary_10_1016_j_microrel_2024_115450
crossref_primary_10_1016_j_scriptamat_2018_06_024
crossref_primary_10_1017_S1431927622000496
crossref_primary_10_1117_1_JMM_13_1_011203
crossref_primary_10_1016_j_jmrt_2025_05_197
crossref_primary_10_1016_j_mee_2012_08_022
crossref_primary_10_1016_j_microrel_2017_11_005
crossref_primary_10_1016_j_matlet_2018_11_034
crossref_primary_10_1016_j_matchemphys_2012_02_074
crossref_primary_10_1007_s42341_023_00496_y
crossref_primary_10_1016_j_intermet_2023_107821
crossref_primary_10_1016_j_matchar_2021_111448
crossref_primary_10_1108_SSMT_10_2015_0031
crossref_primary_10_1016_j_intermet_2022_107526
crossref_primary_10_1007_s10853_019_03784_2
crossref_primary_10_1016_j_mtcomm_2023_107776
crossref_primary_10_1007_s11664_013_2845_z
crossref_primary_10_1016_j_matchar_2023_113269
crossref_primary_10_1108_SSMT_01_2021_0001
crossref_primary_10_1016_j_jallcom_2018_04_040
crossref_primary_10_1016_j_apsusc_2021_151845
crossref_primary_10_1016_j_mser_2018_09_002
crossref_primary_10_1109_TCPMT_2012_2193617
crossref_primary_10_1109_TCPMT_2014_2339871
crossref_primary_10_1109_TCPMT_2023_3250467
crossref_primary_10_1016_j_vacuum_2017_08_009
crossref_primary_10_1016_j_mee_2013_08_012
crossref_primary_10_3390_s17020322
crossref_primary_10_1016_j_microrel_2014_03_012
crossref_primary_10_1109_TCAD_2019_2927485
crossref_primary_10_1109_ACCESS_2019_2961943
crossref_primary_10_1016_j_microrel_2016_01_004
crossref_primary_10_1109_TDMR_2017_2771442
crossref_primary_10_1109_TDMR_2014_2356714
crossref_primary_10_1109_TCPMT_2016_2605691
crossref_primary_10_1016_j_microrel_2012_08_008
crossref_primary_10_1016_j_vacuum_2015_01_001
crossref_primary_10_1007_s10854_018_9665_0
crossref_primary_10_1016_j_mtcomm_2024_110051
crossref_primary_10_1016_j_vlsi_2017_09_008
crossref_primary_10_1016_j_microrel_2014_09_030
crossref_primary_10_1016_j_matchar_2023_113133
crossref_primary_10_1109_TC_2015_2401016
crossref_primary_10_1016_j_matchar_2024_114289
crossref_primary_10_1109_TCPMT_2019_2942128
crossref_primary_10_1016_j_microrel_2011_07_029
crossref_primary_10_1016_j_matlet_2013_07_116
crossref_primary_10_1016_j_applthermaleng_2025_125895
crossref_primary_10_3390_mi13060867
crossref_primary_10_1007_s40195_020_01059_3
crossref_primary_10_1007_s11664_023_10865_1
crossref_primary_10_1109_TCPMT_2013_2252955
crossref_primary_10_1016_j_microrel_2018_07_053
crossref_primary_10_3390_ma15145086
crossref_primary_10_3390_mi15080986
crossref_primary_10_1016_j_matchar_2024_113624
crossref_primary_10_1088_1757_899X_88_1_012036
crossref_primary_10_25046_aj030113
crossref_primary_10_1016_j_jmatprotec_2019_116507
crossref_primary_10_1007_s10854_015_4213_7
crossref_primary_10_1021_acsaelm_5c00416
crossref_primary_10_1115_1_4036442
crossref_primary_10_1016_j_cossms_2015_08_001
crossref_primary_10_1088_0022_3727_49_40_40LT01
crossref_primary_10_1016_j_msea_2023_144863
crossref_primary_10_1063_1_4977858
crossref_primary_10_1016_j_matdes_2022_111318
crossref_primary_10_1016_j_msea_2017_07_061
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126576
crossref_primary_10_1016_j_molliq_2021_118063
crossref_primary_10_3390_electronics12224618
crossref_primary_10_1007_s11664_013_2690_0
crossref_primary_10_1016_j_microrel_2015_05_002
crossref_primary_10_1109_TVLSI_2025_3565650
crossref_primary_10_1016_j_matchar_2022_112093
crossref_primary_10_1016_j_microrel_2015_12_041
crossref_primary_10_1007_s10854_025_15177_0
crossref_primary_10_3390_mi13060953
crossref_primary_10_1016_j_apm_2024_02_034
crossref_primary_10_1115_1_4031523
crossref_primary_10_1115_1_4026615
crossref_primary_10_1016_j_carbon_2025_120256
crossref_primary_10_1016_j_matchar_2023_113459
crossref_primary_10_3390_electronics14153151
crossref_primary_10_3390_mi9120644
crossref_primary_10_1016_j_intermet_2024_108587
crossref_primary_10_1016_j_microrel_2025_115609
crossref_primary_10_1016_j_microrel_2024_115429
crossref_primary_10_1007_s10854_020_05039_2
crossref_primary_10_1007_s10854_021_07638_z
crossref_primary_10_1088_1361_651X_ad56a7
crossref_primary_10_1016_j_applthermaleng_2022_118129
crossref_primary_10_1038_srep02731
crossref_primary_10_1016_j_scriptamat_2012_12_012
crossref_primary_10_1109_TCPMT_2024_3416430
crossref_primary_10_1109_TCPMT_2024_3523295
crossref_primary_10_1016_j_scriptamat_2014_01_040
crossref_primary_10_1115_1_4029345
crossref_primary_10_1007_s10854_021_07494_x
crossref_primary_10_1088_1757_899X_537_3_032064
crossref_primary_10_1063_5_0176416
crossref_primary_10_1038_s41378_023_00529_9
crossref_primary_10_1016_j_matdes_2019_108144
crossref_primary_10_1016_j_microrel_2015_06_052
crossref_primary_10_1007_s11664_022_10065_3
crossref_primary_10_1007_s10854_025_15277_x
crossref_primary_10_1016_j_msea_2017_01_004
crossref_primary_10_1016_j_matchar_2024_113765
crossref_primary_10_3390_s20195533
crossref_primary_10_1016_j_microrel_2022_114892
Cites_doi 10.1063/1.3309750
10.1016/j.mee.2006.09.026
10.1016/j.mee.2009.07.022
10.1063/1.2822446
10.1109/IMPACT.2009.5382156
10.1063/1.3157196
10.1109/ECTC.2008.4550108
10.1063/1.2432284
10.1109/ECTC.2008.4550027
10.1109/ECTC.2009.5073988
10.1016/j.microrel.2009.02.007
10.1109/ECTC.2007.373862
10.1146/annurev.matsci.38.060407.130253
10.1109/IEDM.2008.4796734
ContentType Journal Article
Copyright 2010 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SP
8FD
L7M
DOI 10.1016/j.microrel.2010.09.031
DatabaseName CrossRef
Pascal-Francis
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1872-941X
EndPage 523
ExternalDocumentID 23933262
10_1016_j_microrel_2010_09_031
S0026271410005214
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
29M
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSM
SST
SSV
SSZ
T5K
T9H
TAE
UHS
UNMZH
WUQ
XOL
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SP
8FD
L7M
ID FETCH-LOGICAL-c374t-5ec1e0a6c7d49e4515f40f10a891d8539b5f4a21e3a69ccaba95cc33883237ec3
ISICitedReferencesCount 557
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000288578200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0026-2714
IngestDate Thu Oct 02 05:28:03 EDT 2025
Mon Jul 21 09:12:19 EDT 2025
Sat Nov 29 06:25:02 EST 2025
Tue Nov 18 22:06:23 EST 2025
Fri Feb 23 02:29:57 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Thermal diffusion
Interconnection
Electronic packaging
Integrated circuit
Flip-chip
Electrodiffusion
Microelectronics
Reliability
Joule effect
Temperature gradient
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c374t-5ec1e0a6c7d49e4515f40f10a891d8539b5f4a21e3a69ccaba95cc33883237ec3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 864412196
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_864412196
pascalfrancis_primary_23933262
crossref_primary_10_1016_j_microrel_2010_09_031
crossref_citationtrail_10_1016_j_microrel_2010_09_031
elsevier_sciencedirect_doi_10_1016_j_microrel_2010_09_031
PublicationCentury 2000
PublicationDate 2011-03-01
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Microelectronics and reliability
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Chen, Tong, Tu (b0075) 2010; 40
Chen, Tamura, Tang, Kunz, Chou, Tu, Lai (b0095) 2010; 107
Ladani (b0005) 2010; 87
Selvanayagam Cheryl S, Lau John H, Zhang Xiaowu, Seah SKW, Vaidyanathan Kripesh, Chai TC. Nonlinear thermal stress/strain analyses of copper filled TSV (through silicon via) and their flip-chip microbumps. In: Proceedings of 2008 electronic components and technology conference. p. 1073–81.
Khan Navas, Rao Vempati Srinivasa, Lim Samule, We Ho Soon, Lee Vincent, Wu Zhang Xiao et al. Development of 3D silicon module with TSV for system in packaging. In: Proceedings of 2008 electronic components and technology conference. p. 550–5.
Lee Jin Soo, Byun Kwang Yoo, Chung Qwan Ho, Suh Min Suk, Kim Seong Cheol, Kim Young-Ho. Chip to chip bonding using micro-cu bumps with sn capping layers. In: Proceedings of 2009 European microelectronics and packaging conference. p. 1–5.
Tian, Tu (b0080) 2009; 2
Huebner, Penka, Barchmann, Eigner, Gruber, Nobis (b0040) 2006; 83
Tu (b0085) 2010
Yu Aibin, Lau John H, Ho Soon Wee, Kumar Aditya, Hnin Wai Yin, Yu Da-Quan, et al. Study of 15
Tu (b0065) 2007
Chen, Tamura, Kunz, Tu, Lai (b0100) 2009; 106
Ouyang, Chen, Tu, Lai (b0090) 2007; 91
μm fine pitch micro-bump interconnection. In: Proceedings of 4th international conference on microsystems, packaging, assembly and circuits technology conference; 2009.
Beyne E, De Moor P, Ruythooren W, Labie R, Jourdain A, Tilmans H, et al. Through-silicon via and die stacking technologies for microsystems-integration. In: I EEE international electron devices meeting, IEDM; 2008.
Sakuma K, Andry PS, Dang B, Maria J, Tsang CK, Patel C, et al. 3D Chip stacking technology with low-volume lead-free interconnections. In: Proceedings of 2007 electronic components and technology conference. p. 627–32.
Zhan Chau-Jie, Chang Jing-Yao, Chang Tao-Chih, Tsai Tsung-Fu. Bonding and electromigration of 30
Xu, Dixit, Miao, Pang, Zhang, Tu (b0045) 2007; 90
Lai, Tong, Tu (b0070) 2009; 49
μm pitch solder microbumps for 3D IC Integration. In: Proceedings of 2009 electronic components and technology conference. p. 6–10.
Jang, Lee, Ryu, Cho, Oh, Kim (b0050) 2007; 970
Hsieh Ming-Che, Yu Chih-Kuang. Thermo-mechanical simulations for 4-layer stacked IC packages. In: 9th Int conf on thermal, mechanical and multiphysics simulation and experiments in micro-electronics and micro-systems, EuroSimE; 2008.
Xu (10.1016/j.microrel.2010.09.031_b0045) 2007; 90
Chen (10.1016/j.microrel.2010.09.031_b0100) 2009; 106
10.1016/j.microrel.2010.09.031_b0015
10.1016/j.microrel.2010.09.031_b0025
Jang (10.1016/j.microrel.2010.09.031_b0050) 2007; 970
10.1016/j.microrel.2010.09.031_b0035
10.1016/j.microrel.2010.09.031_b0055
Tu (10.1016/j.microrel.2010.09.031_b0085) 2010
10.1016/j.microrel.2010.09.031_b0010
Lai (10.1016/j.microrel.2010.09.031_b0070) 2009; 49
10.1016/j.microrel.2010.09.031_b0020
10.1016/j.microrel.2010.09.031_b0030
Tian (10.1016/j.microrel.2010.09.031_b0080) 2009; 2
10.1016/j.microrel.2010.09.031_b0060
Chen (10.1016/j.microrel.2010.09.031_b0095) 2010; 107
Chen (10.1016/j.microrel.2010.09.031_b0075) 2010; 40
Huebner (10.1016/j.microrel.2010.09.031_b0040) 2006; 83
Tu (10.1016/j.microrel.2010.09.031_b0065) 2007
Ouyang (10.1016/j.microrel.2010.09.031_b0090) 2007; 91
Ladani (10.1016/j.microrel.2010.09.031_b0005) 2010; 87
References_xml – year: 2010
  ident: b0085
  article-title: Electronic thin film reliability
– reference: Beyne E, De Moor P, Ruythooren W, Labie R, Jourdain A, Tilmans H, et al. Through-silicon via and die stacking technologies for microsystems-integration. In: I EEE international electron devices meeting, IEDM; 2008.
– volume: 2
  start-page: 132
  year: 2009
  end-page: 136
  ident: b0080
  article-title: Thermomigration in flip chip solder joints
  publication-title: ASE Technol J
– reference: μm fine pitch micro-bump interconnection. In: Proceedings of 4th international conference on microsystems, packaging, assembly and circuits technology conference; 2009.
– reference: Yu Aibin, Lau John H, Ho Soon Wee, Kumar Aditya, Hnin Wai Yin, Yu Da-Quan, et al. Study of 15
– reference: Zhan Chau-Jie, Chang Jing-Yao, Chang Tao-Chih, Tsai Tsung-Fu. Bonding and electromigration of 30
– volume: 90
  start-page: 033111
  year: 2007
  ident: b0045
  article-title: Through-wafer electroplated copper interconnect with ultrafine grains and high density of nanotwins
  publication-title: Appl Phys Lett
– year: 2007
  ident: b0065
  article-title: Solder joint technology
– volume: 91
  start-page: 231919
  year: 2007
  ident: b0090
  article-title: Effect of current crowding on whisker growth at the anode in lip chip solder joints
  publication-title: Appl Phys Lett
– reference: Lee Jin Soo, Byun Kwang Yoo, Chung Qwan Ho, Suh Min Suk, Kim Seong Cheol, Kim Young-Ho. Chip to chip bonding using micro-cu bumps with sn capping layers. In: Proceedings of 2009 European microelectronics and packaging conference. p. 1–5.
– volume: 87
  start-page: 208
  year: 2010
  end-page: 215
  ident: b0005
  article-title: Numerical analysis of thermo-mechanical reliability of through silicon vias (TSVs) and solder interconnects in 3-dimensional integrated circuits
  publication-title: Microelectron Eng
– volume: 49
  start-page: 221
  year: 2009
  end-page: 322
  ident: b0070
  article-title: Edited a special section on recent research advances in Pb-free solders
  publication-title: Microelectron Reliab
– reference: Khan Navas, Rao Vempati Srinivasa, Lim Samule, We Ho Soon, Lee Vincent, Wu Zhang Xiao et al. Development of 3D silicon module with TSV for system in packaging. In: Proceedings of 2008 electronic components and technology conference. p. 550–5.
– volume: 107
  start-page: 063502
  year: 2010
  ident: b0095
  article-title: High precision thermal stress study on flip chips by synchrotron polychromatic X-ray microdiffraction
  publication-title: J Appl Phys
– reference: Selvanayagam Cheryl S, Lau John H, Zhang Xiaowu, Seah SKW, Vaidyanathan Kripesh, Chai TC. Nonlinear thermal stress/strain analyses of copper filled TSV (through silicon via) and their flip-chip microbumps. In: Proceedings of 2008 electronic components and technology conference. p. 1073–81.
– reference: μm pitch solder microbumps for 3D IC Integration. In: Proceedings of 2009 electronic components and technology conference. p. 6–10.
– volume: 83
  start-page: 2155
  year: 2006
  end-page: 2162
  ident: b0040
  article-title: Microcontacts with sub-30 lm pitch for 3D chip-on-chip integration
  publication-title: Microelectron Eng
– reference: Hsieh Ming-Che, Yu Chih-Kuang. Thermo-mechanical simulations for 4-layer stacked IC packages. In: 9th Int conf on thermal, mechanical and multiphysics simulation and experiments in micro-electronics and micro-systems, EuroSimE; 2008.
– volume: 970
  year: 2007
  ident: b0050
  article-title: Fabrication and evaluation of 3D packages with through hole via
  publication-title: Mater Res Soc Sym Proc
– volume: 40
  start-page: 531
  year: 2010
  end-page: 555
  ident: b0075
  article-title: Electromigration and thermomigrtaion in Pb-free flip chip solder joints
  publication-title: Ann Rev Mater Res
– reference: Sakuma K, Andry PS, Dang B, Maria J, Tsang CK, Patel C, et al. 3D Chip stacking technology with low-volume lead-free interconnections. In: Proceedings of 2007 electronic components and technology conference. p. 627–32.
– volume: 106
  start-page: 023502
  year: 2009
  ident: b0100
  article-title: In situ measurement of electromigration-induced transient stress in Pb-free Sn–Cu solder joints by synchrotron radiation based X-ray polychromatic microdiffraction
  publication-title: J Appl Phys
– volume: 107
  start-page: 063502
  year: 2010
  ident: 10.1016/j.microrel.2010.09.031_b0095
  article-title: High precision thermal stress study on flip chips by synchrotron polychromatic X-ray microdiffraction
  publication-title: J Appl Phys
  doi: 10.1063/1.3309750
– volume: 83
  start-page: 2155
  year: 2006
  ident: 10.1016/j.microrel.2010.09.031_b0040
  article-title: Microcontacts with sub-30 lm pitch for 3D chip-on-chip integration
  publication-title: Microelectron Eng
  doi: 10.1016/j.mee.2006.09.026
– volume: 87
  start-page: 208
  issue: 2
  year: 2010
  ident: 10.1016/j.microrel.2010.09.031_b0005
  article-title: Numerical analysis of thermo-mechanical reliability of through silicon vias (TSVs) and solder interconnects in 3-dimensional integrated circuits
  publication-title: Microelectron Eng
  doi: 10.1016/j.mee.2009.07.022
– ident: 10.1016/j.microrel.2010.09.031_b0030
– year: 2007
  ident: 10.1016/j.microrel.2010.09.031_b0065
– volume: 91
  start-page: 231919
  year: 2007
  ident: 10.1016/j.microrel.2010.09.031_b0090
  article-title: Effect of current crowding on whisker growth at the anode in lip chip solder joints
  publication-title: Appl Phys Lett
  doi: 10.1063/1.2822446
– ident: 10.1016/j.microrel.2010.09.031_b0035
  doi: 10.1109/IMPACT.2009.5382156
– volume: 106
  start-page: 023502
  year: 2009
  ident: 10.1016/j.microrel.2010.09.031_b0100
  article-title: In situ measurement of electromigration-induced transient stress in Pb-free Sn–Cu solder joints by synchrotron radiation based X-ray polychromatic microdiffraction
  publication-title: J Appl Phys
  doi: 10.1063/1.3157196
– ident: 10.1016/j.microrel.2010.09.031_b0010
  doi: 10.1109/ECTC.2008.4550108
– volume: 90
  start-page: 033111
  year: 2007
  ident: 10.1016/j.microrel.2010.09.031_b0045
  article-title: Through-wafer electroplated copper interconnect with ultrafine grains and high density of nanotwins
  publication-title: Appl Phys Lett
  doi: 10.1063/1.2432284
– ident: 10.1016/j.microrel.2010.09.031_b0015
  doi: 10.1109/ECTC.2008.4550027
– ident: 10.1016/j.microrel.2010.09.031_b0025
  doi: 10.1109/ECTC.2009.5073988
– volume: 2
  start-page: 132
  issue: 2
  year: 2009
  ident: 10.1016/j.microrel.2010.09.031_b0080
  article-title: Thermomigration in flip chip solder joints
  publication-title: ASE Technol J
– ident: 10.1016/j.microrel.2010.09.031_b0020
– volume: 49
  start-page: 221
  year: 2009
  ident: 10.1016/j.microrel.2010.09.031_b0070
  article-title: Edited a special section on recent research advances in Pb-free solders
  publication-title: Microelectron Reliab
  doi: 10.1016/j.microrel.2009.02.007
– ident: 10.1016/j.microrel.2010.09.031_b0060
  doi: 10.1109/ECTC.2007.373862
– year: 2010
  ident: 10.1016/j.microrel.2010.09.031_b0085
– volume: 40
  start-page: 531
  year: 2010
  ident: 10.1016/j.microrel.2010.09.031_b0075
  article-title: Electromigration and thermomigrtaion in Pb-free flip chip solder joints
  publication-title: Ann Rev Mater Res
  doi: 10.1146/annurev.matsci.38.060407.130253
– volume: 970
  year: 2007
  ident: 10.1016/j.microrel.2010.09.031_b0050
  article-title: Fabrication and evaluation of 3D packages with through hole via
  publication-title: Mater Res Soc Sym Proc
– ident: 10.1016/j.microrel.2010.09.031_b0055
  doi: 10.1109/IEDM.2008.4796734
SSID ssj0007011
Score 2.5181572
Snippet At the moment, a major paradigm change, from 2D IC to 3D IC, is occurring in microelectronic industry. Joule heating is serious in 3D IC, and vertical...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 517
SubjectTerms Applied sciences
Design. Technologies. Operation analysis. Testing
Electromigration
Electronics
Exact sciences and technology
Integrated circuits
Microelectronics
Packaging
Projection
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Temperature gradient
Thermomigration
Three dimensional
Title Reliability challenges in 3D IC packaging technology
URI https://dx.doi.org/10.1016/j.microrel.2010.09.031
https://www.proquest.com/docview/864412196
Volume 51
WOSCitedRecordID wos000288578200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-941X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007011
  issn: 0026-2714
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbNpoeUUvqk20fQoeRS3NqWZEnHkGxoQtjksIG9Ca0sQ17Odr0p6b_vaCXZDmnZ9tCLWcRKtufzaEbSzHwIfTKlsIbQKnGEgAnlTCfCBdMwU-oKDJDU0pNN8PFYTKfyNFAdNis6AV7X4u5Ozv8r1NAGYLvU2X-Aux0UGuA3gA5XgB2ufwW8CzL2xbd_urReT5Wyinol-59B5rBIvvTURMv72-qR18mF6HXsOL6G86IbtIvIWE0S4Syn7HZCY-RUG8hfJDn3OZxxMmRZD3TSm9mYT7EMRpL5JOEH86_fCrj4cu0eFR4txM65QrJZZ3HiKfv4RB2cHR-ryWg62Zl_TxwXmDszD8QoG2gz50yKAdrcPRxNj1oLy9PMMyGGF-hlfv_-1n9yOp7OdQOqUHkOkwfmeOVjTJ6jZ2FxgHc9qC_QI1u_RE96JSNfIdqDF3fw4vMak318uIdbeHEH72t0djCa7H1LAvNFYginy4RZk9lUF4aXVFoKPmdF0ypLtZBZCQ6WnEGDzjNLdCFBB2daMmMIETA_Ew7K9wYN6pvavkW4MLosTDXjOWW0MkyDFrplldUCfJcqHSIWRaNMKAvv2EmuVIz_u1BRpMqJVKVSgUiH6Gvbb-4Lo6ztIaPkVXDvvNum4OtZ23f7HlTtLV0FP1iB5EOEI3YwQONOvXRtb24bJZzHD3a5eLf-L-_RVqcpH9Bgubi1H9Fj82N53iy2w2f4C2X6h20
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliability+challenges+in+3D+IC+packaging+technology&rft.jtitle=Microelectronics+and+reliability&rft.au=Tu%2C+K+N&rft.date=2011-03-01&rft.issn=0026-2714&rft.volume=51&rft.issue=3&rft.spage=517&rft.epage=523&rft_id=info:doi/10.1016%2Fj.microrel.2010.09.031&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-2714&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-2714&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-2714&client=summon