Image Processing, Computer Vision, and Deep Learning: new approaches to the analysis and physics interpretation of LHC events

This review introduces recent developments in the application of image processing, computer vision, and deep neural networks to the analysis and interpretation of particle collision events at the Large Hadron Collider (LHC). The link between LHC data analysis and computer vision techniques relies on...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series Vol. 762; no. 1; pp. 12035 - 12044
Main Authors: Schwartzman, A., Kagan, M., Mackey, L, Nachman, B., De Oliveira, L.
Format: Journal Article
Language:English
Published: Bristol IOP Publishing 01.10.2016
Subjects:
ISSN:1742-6588, 1742-6596
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This review introduces recent developments in the application of image processing, computer vision, and deep neural networks to the analysis and interpretation of particle collision events at the Large Hadron Collider (LHC). The link between LHC data analysis and computer vision techniques relies on the concept of jet-images, building on the notion of a particle physics detector as a digital camera and the particles it measures as images. We show that state-of-the-art image classification techniques based on deep neural network architectures significantly improve the identification of highly boosted electroweak particles with respect to existing methods. Furthermore, we introduce new methods to visualize and interpret the high level features learned by deep neural networks that provide discrimination beyond physics- derived variables, adding a new capability to understand physics and to design more powerful classification methods at the LHC.
AbstractList This review introduces recent developments in the application of image processing, computer vision, and deep neural networks to the analysis and interpretation of particle collision events at the Large Hadron Collider (LHC). The link between LHC data analysis and computer vision techniques relies on the concept of jet-images, building on the notion of a particle physics detector as a digital camera and the particles it measures as images. We show that state-of-the-art image classification techniques based on deep neural network architectures significantly improve the identification of highly boosted electroweak particles with respect to existing methods. Furthermore, we introduce new methods to visualize and interpret the high level features learned by deep neural networks that provide discrimination beyond physics- derived variables, adding a new capability to understand physics and to design more powerful classification methods at the LHC.
Author De Oliveira, L.
Schwartzman, A.
Nachman, B.
Kagan, M.
Mackey, L
Author_xml – sequence: 1
  givenname: A.
  surname: Schwartzman
  fullname: Schwartzman, A.
  email: sch@slac.stanford.edu
  organization: SLAC National Accelerator Laboratory, Stanford University , 2575 Sand Hill Road, Menlo Park, CA 94025, USA
– sequence: 2
  givenname: M.
  surname: Kagan
  fullname: Kagan, M.
  organization: SLAC National Accelerator Laboratory, Stanford University , 2575 Sand Hill Road, Menlo Park, CA 94025, USA
– sequence: 3
  givenname: L
  surname: Mackey
  fullname: Mackey, L
  organization: Stanford University, Stanford Department of Statistics, CA 94305, USA
– sequence: 4
  givenname: B.
  surname: Nachman
  fullname: Nachman, B.
  organization: SLAC National Accelerator Laboratory, Stanford University , 2575 Sand Hill Road, Menlo Park, CA 94025, USA
– sequence: 5
  givenname: L.
  surname: De Oliveira
  fullname: De Oliveira, L.
  organization: Institute for Computational and Mathematical Engineering, Stanford University, Stanford , CA 94305, USA
BookMark eNqFkEtLAzEUhYMoaNW_IAG3rU0m84jiRuqrUNCFug23mTttSpuMSaq48L-bOqLgptnkwj3f4dzTI7vWWSTkhLMzzqQc8irPBmVxXg6rMhvyIeMZE8UOOfhd7P7OUu6TXggLxkR61QH5HK9ghvTRO40hGDvr05FbteuInr6YYJztU7A1vUZs6QTB26S5oBbfKbStd6DnGGh0NM4xCWH5EUz4Jtp5GnWgxiav1mOEmNyoa-jkfkTxDW0MR2SvgWXA45__kDzf3jyN7geTh7vx6Goy0KLK4yDnRSYY1DnKqZZlPeV1nYOcCuQ1NFMhM2DQSChZXqdz81rLhoPWyJmWQoA4JKedb0r8usYQ1cKtfUobVFZUhWDyXBRJVXYq7V0IHhvVerMC_6E4U5uq1aZFtWlUpaoVV13VCbz8B2rTnRs9mOV2POtw49q_YFugL85klok
CitedBy_id crossref_primary_10_1007_s11433_019_1517_5
crossref_primary_10_1140_epjc_s10052_020_7608_4
crossref_primary_10_3390_ijgi11010023
crossref_primary_10_1088_1748_0221_13_07_P07027
crossref_primary_10_1109_JPROC_2017_2684460
crossref_primary_10_1016_j_eng_2025_08_005
crossref_primary_10_1016_j_procs_2022_01_048
crossref_primary_10_1140_epjc_s10052_021_08853_y
crossref_primary_10_1109_ACCESS_2021_3083516
crossref_primary_10_1029_2018WR022643
crossref_primary_10_1007_s41781_019_0028_1
crossref_primary_10_1140_epjs_s11734_024_01234_y
Cites_doi 10.1088/1126-6708/2008/04/063
10.1088/0954-3899/39/6/063001
10.1007/JHEP02(2015)118
10.1088/1748-0221/10/08/P08010
10.1016/S0168-9002(96)00771-1
10.1007/JHEP03(2011)015
10.1088/1748-0221/11/04/P04008
10.1140/epjc/s10052-014-2792-8
10.1140/epjc/s10052-011-1661-y
10.1140/epjc/s10052-010-1314-6
10.1088/1748-0221/11/01/P01019
10.1016/j.cpc.2008.01.036
10.1162/neco.1989.1.4.541
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/762/1/012035
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
Aerospace Database
ProQuest SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Journals Open Access
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Image Processing, Computer Vision, and Deep Learning: new approaches to the analysis and physics interpretation of LHC events
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_762_1_012035
JPCS_762_1_012035
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
AALHV
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EJD
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
02O
1WK
AAYXX
ACARI
AEINN
AERVB
AFFHD
AGQPQ
AHSEE
ARNYC
BBWZM
C1A
CITATION
FEDTE
H13
HVGLF
JCGBZ
M48
OVT
PHGZM
PHGZT
PQGLB
Q02
S3P
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c374t-415230ad4e8bc86db1dd4a8b3e1dafb382a0af8a604d5964dc8f1acce10c833a3
IEDL.DBID O3W
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000439689600035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1742-6588
IngestDate Wed Aug 13 06:28:48 EDT 2025
Sat Nov 29 06:29:46 EST 2025
Tue Nov 18 22:43:10 EST 2025
Wed Aug 21 03:41:50 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
http://iopscience.iop.org/info/page/text-and-data-mining
http://creativecommons.org/licenses/by/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c374t-415230ad4e8bc86db1dd4a8b3e1dafb382a0af8a604d5964dc8f1acce10c833a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://iopscience.iop.org/article/10.1088/1742-6596/762/1/012035
PQID 2575308935
PQPubID 4998668
PageCount 10
ParticipantIDs iop_journals_10_1088_1742_6596_762_1_012035
crossref_primary_10_1088_1742_6596_762_1_012035
proquest_journals_2575308935
crossref_citationtrail_10_1088_1742_6596_762_1_012035
PublicationCentury 2000
PublicationDate 20161001
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 20161001
  day: 01
PublicationDecade 2010
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2016
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Cacciari M (1) 2008; 0804
12
13
ATLAS Collaboration (2) 2016; 11
14
16
ATLAS Collaboration (5) 2015
Altheimer A (11) 2012; 39
Almeida L G (15) 2015
Oliveira L (17) 2015
Russakovsky O (6) 2015
CMS Collaboration (3) 2016; 11
7
8
9
CMS Collaboration (4) 2015; 10
10
References_xml – volume: 0804
  start-page: 063
  year: 2008
  ident: 1
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/04/063
– volume: 39
  start-page: 063001
  issn: 0954-3899
  year: 2012
  ident: 11
  publication-title: J. Phys. G.
  doi: 10.1088/0954-3899/39/6/063001
– year: 2015
  ident: 17
  publication-title: arXiv1511.05190 [hep-ph]
– ident: 14
  doi: 10.1007/JHEP02(2015)118
– volume: 10
  start-page: P08010
  year: 2015
  ident: 4
  publication-title: J. Instrum.
  doi: 10.1088/1748-0221/10/08/P08010
– ident: 16
  doi: 10.1016/S0168-9002(96)00771-1
– ident: 9
  doi: 10.1007/JHEP03(2011)015
– year: 2015
  ident: 5
  publication-title: ATL-PHYS-PUB-2015-022
– volume: 11
  start-page: P04008
  issn: 1748-0221
  year: 2016
  ident: 2
  publication-title: JINST
  doi: 10.1088/1748-0221/11/04/P04008
– ident: 12
  doi: 10.1140/epjc/s10052-014-2792-8
– year: 2015
  ident: 6
  publication-title: arXiv:
– ident: 10
  doi: 10.1140/epjc/s10052-011-1661-y
– ident: 8
  doi: 10.1140/epjc/s10052-010-1314-6
– volume: 11
  start-page: P01019
  year: 2016
  ident: 3
  publication-title: J. Instrum.
  doi: 10.1088/1748-0221/11/01/P01019
– ident: 13
  doi: 10.1016/j.cpc.2008.01.036
– year: 2015
  ident: 15
  publication-title: arXiv:
– ident: 7
  doi: 10.1162/neco.1989.1.4.541
SSID ssj0033337
Score 2.2509286
Snippet This review introduces recent developments in the application of image processing, computer vision, and deep neural networks to the analysis and interpretation...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12035
SubjectTerms Artificial neural networks
Computer architecture
Computer vision
Data analysis
Deep learning
Digital cameras
Digital imaging
Image classification
Image processing
Large Hadron Collider
Machine learning
Neural networks
Particle collisions
Particle physics
Physics
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA46Fbz4W5xOycGbC22atMu8iKhjggwPKsNLSZNUBrrOdXrzf_clTR0i6MEemzwo_dL3XpP3vg-hYwi5UReGSMSTmHATUSK14kRLxnREOVVd6cQmOoOBGA67t37DrfRllbVPdI5aF8rukQewtGIWQnSNzyavxKpG2dNVL6GxiJYsS4KVbriNH2tPzODqVA2REYFIK-oOYfjp8_e6SQDeIKCB7SF1km_z4LQ4KiY_PLQLO731_z7wBlrzCSc-r1bIJlow4y204go_VbmNPq5fwKNg3y8AcayNa6EH_OD6zttYjjW-NGaCPRnr0ymGZBzXdOSmxLMCQyIJEyuGE2dR7ZmUePStrBEXOb7pX2BHHFXuoPve1d1Fn3hJBqJYh8-IDfcslJobkSmR6IxqzaXImKFa5hkTkQxlLmQScg0vl2slciqVMjRUgjHJdlFjXIzNHsKK0g6LlZCxMTy3PGhaxTzJIp6Dz1G6ieIai1R5vnIrm_GcunNzIVKLYWoxTAHDlKYVhk0UfNlNKsaOPy1OAOrUf7zln7NbNd5zkznY-78PH6BVSLmSqhywhRqz6Zs5RMvqfTYqp0du-X4CVRHyew
  priority: 102
  providerName: ProQuest
Title Image Processing, Computer Vision, and Deep Learning: new approaches to the analysis and physics interpretation of LHC events
URI https://iopscience.iop.org/article/10.1088/1742-6596/762/1/012035
https://www.proquest.com/docview/2575308935
Volume 762
WOSCitedRecordID wos000439689600035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Journals Open Access
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: O3W
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: P5Z
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: BENPR
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: PIMPY
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA66KnjxLT5WycGb1jZN0s1684mCrkV8X0qapLKgu4tdvfnfnSapIiIi2EMpbSakk2Tmo535BqENcLlxGx4FMUt4wExMAqkVC7SkVMeEEdWWtthEq9MRt7ft1EcT2lyY_sCb_m24dETBToU-IE6EgKHjIOHtJISNHJKwSv-kfBSNUQHOHJb0Ob2pjTGFo-VyIisZIeok4R_7-eKfRmEM34y09TxH0_8w5hk05WEn3nUCs2jE9ObQhA3_VOU8ejt5AruCfdYAeLMtXJd7wNc2-3wLy57GB8YMsKdkfdjBAMlxTUpuSjzsY4CT0NDxnFgJ9-WkxN0vwY24X-DT431s6aPKBXR1dHi5fxz4wgyBoi02DCqnTyOpmRG5EonOidZMipwaomWRUxHLSBZCJhHT8M5MK1EQqZQhkRKUSrqIGr1-zywhrAhpUa6E5MawomJD04qzJI9ZAZZH6WXE6-nIlGctr4pnPGb277kQWaXarFJtBqrNSOZUu4zCD7mB4-34VWITZi_zW7j8tXWzXhWfImD-OI0AAfKVP3W2iiYBhyUuRrCJGsPnF7OGxtXrsFs-r6OxvcNOerFuFzacU34P99KTs_TuHTWj8zw
linkProvider IOP Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB21W1C58I0oFPABTtRK_JGsg4QQaql21e1qDwWVU3BsB61UNkuzgDjwl_iNjJ2YFUKipx7IMfZESvw8z3Zm3gA8RcrlBTZRLvOMSscZ1dZIarUQljPJTKFDsYnhdKpOT4vZBvyMuTA-rDL6xOCobWP8GXmC0MpEiuyavVp-pr5qlP-7GktodLA4ct-_4ZatfTk-wPF9xvnhm5P9Ee2rClAjhnJFPWOJVFvpVGVUbitmrdSqEo5ZXVdCcZ3qWuk8lTYrcmmNqpk2xrHUKCG0wOduwpb0YB_A1mx8PHsffb_Aa9ilYHKK3K5iTjJuM_t7RZ6g_0lY4rNWQ5G5NR1uzpvlX5wQiO7wxv_2iW7C9X5JTV53c-AWbLjFbbgaQltNewd-jD-hzyR9RgQy9R6JpSzIu5BZv0f0wpID55akl5v9-ILgdoNEwXXXklVDcKmMHTsNl2DRnQq1ZP5H4CZpajIZ7ZMgjdXehbeX8u73YLBoFu4-EMPYUGRG6cw5WXulN2symVdc1uhVjd2BLI59aXpFdl8Y5KwMkQFKlR4zpcdMiZgpWdlhZgeS33bLTpPkQovnCK2yd0_thb13I77WJmtwPfh38xPYHp0cT8rJeHr0EK7hAjPvgh93YbA6_-IewRXzdTVvzx_3k4fAh8sG4y8BWlOa
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fT9swED6VMqa98HsaUMAPvI2QOLZTl7epUIGoSh824M1ybAdV2tqKdHvb_75znIDQhBASeYoUf5ZzPt-dkrvvAI7Q5aY9fBSlPBMRdymNtDU8spoxm1JOTU9XzSa6o5G8u-uNW3D-WAszm9em_wRvA1FwEGGdECdjjKHTKBO9LMaDHNPYl38yEc9tsQTLnq3EK_c1u20MMsOrG-oiPU7KplD4xbme-aglXMd_hrryPoO1d1r3OqzW4Sf5FkAb0HLTTVip0kBNuQV_L3-hfSF19QB6tWPStH0gN1UV-jHRU0vOnJuTmpr1_pRgaE4acnJXksWMYFiJAwPfSYUIX1BKMnmW5EhmBRle9ElFI1Vuw4_B-ff-RVQ3aIgM6_JF5J0_S7TlTuZGZjan1nItc-ao1UXOZKoTXUidJdzie3NrZEG1MY4mRjKm2WdoT2dT9wWIobTLhJFaOMcLz4pmjeBZnvICLZCxOyCaLVGmZi_3TTR-quovupTKi1d58SoUr6IqiHcH4kfcPPB3vIr4ijuo6qNcvjq602jGEwTNoGAJRoJi902THcLH8dlADS9HV3vwCUOzLKQNdqC9ePjt9uGD-bOYlA8HlX7_A9V69Fg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Processing%2C+Computer+Vision%2C+and+Deep+Learning%3A+new+approaches+to+the+analysis+and+physics+interpretation+of+LHC+events&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Schwartzman%2C+A.&rft.au=Kagan%2C+M.&rft.au=Mackey%2C+L&rft.au=Nachman%2C+B.&rft.date=2016-10-01&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=762&rft.spage=12035&rft_id=info:doi/10.1088%2F1742-6596%2F762%2F1%2F012035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_6596_762_1_012035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon