Joint Wireless and Edge Computing Resource Management With Dynamic Network Slice Selection

Network slicing is a promising approach for enabling low latency computation offloading in edge computing systems. In this paper, we consider an edge computing system under network slicing in which the wireless devices generate latency sensitive computational tasks. We address the problem of joint d...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM transactions on networking Vol. 30; no. 4; pp. 1865 - 1878
Main Authors: Josilo, Sladana, Dan, Gyorgy
Format: Journal Article
Language:English
Published: New York IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1063-6692, 1558-2566, 1558-2566
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Network slicing is a promising approach for enabling low latency computation offloading in edge computing systems. In this paper, we consider an edge computing system under network slicing in which the wireless devices generate latency sensitive computational tasks. We address the problem of joint dynamic assignment of computational tasks to slices, management of radio resources across slices and management of radio and computing resources within slices. We formulate the Joint Slice Selection and Edge Resource Management (JSS-ERM) problem as a mixed-integer problem with the objective to minimize the completion time of computational tasks. We show that the JSS-ERM problem is NP-hard and develop an approximation algorithm with bounded approximation ratio based on a game theoretic treatment of the problem. We use extensive simulations to provide insight into the performance of the proposed solution from the perspective of the whole system and from the perspective of individual slices. Our results show that the proposed slicing policy can achieve significant gains compared to the equal slicing policy, and that the computational complexity of the proposed task placement algorithm is approximately linear in the number of devices.
AbstractList Network slicing is a promising approach for enabling low latency computation offloading in edge computing systems. In this paper, we consider an edge computing system under network slicing in which the wireless devices generate latency sensitive computational tasks. We address the problem of joint dynamic assignment of computational tasks to slices, management of radio resources across slices and management of radio and computing resources within slices. We formulate the Joint Slice Selection and Edge Resource Management (JSS-ERM) problem as a mixed-integer problem with the objective to minimize the completion time of computational tasks. We show that the JSS-ERM problem is NP-hard and develop an approximation algorithm with bounded approximation ratio based on a game theoretic treatment of the problem. We use extensive simulations to provide insight into the performance of the proposed solution from the perspective of the whole system and from the perspective of individual slices. Our results show that the proposed slicing policy can achieve significant gains compared to the equal slicing policy, and that the computational complexity of the proposed task placement algorithm is approximately linear in the number of devices. 
Network slicing is a promising approach for enabling low latency computation offloading in edge computing systems. In this paper, we consider an edge computing system under network slicing in which the wireless devices generate latency sensitive computational tasks. We address the problem of joint dynamic assignment of computational tasks to slices, management of radio resources across slices and management of radio and computing resources within slices. We formulate the Joint Slice Selection and Edge Resource Management (JSS-ERM) problem as a mixed-integer problem with the objective to minimize the completion time of computational tasks. We show that the JSS-ERM problem is NP-hard and develop an approximation algorithm with bounded approximation ratio based on a game theoretic treatment of the problem. We use extensive simulations to provide insight into the performance of the proposed solution from the perspective of the whole system and from the perspective of individual slices. Our results show that the proposed slicing policy can achieve significant gains compared to the equal slicing policy, and that the computational complexity of the proposed task placement algorithm is approximately linear in the number of devices.
Author Josilo, Sladana
Dan, Gyorgy
Author_xml – sequence: 1
  givenname: Sladana
  orcidid: 0000-0002-6466-8304
  surname: Josilo
  fullname: Josilo, Sladana
  email: josilo@kth.se
  organization: Division of Network and Systems Engineering, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
– sequence: 2
  givenname: Gyorgy
  orcidid: 0000-0002-4876-0223
  surname: Dan
  fullname: Dan, Gyorgy
  email: gyuri@kth.se
  organization: Division of Network and Systems Engineering, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-322039$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan)
BookMark eNp9kMFOGzEURS1EpQLlAyo2lrqeYPtlPPYShdBSUSpBWiQ2lsfzJhgSO9iOEH_fmQax6KIrP1nn3mefQ7IfYkBCPnM24Zzp08X1fDERTIgJ8FryRu2RA17XqhK1lPvDzCRUUmrxkRzm_MgYBybkAbn_Hn0o9M4nXGHO1IaOzrsl0llcb7bFhyW9wRy3ySH9YYNd4hr_8uWBnr8Gu_aOXmN5iemJ3q78QN0ORa74GD6RD71dZTx-O4_Ir4v5Yvatuvr59XJ2dlU5aKalAjtlreJWYQtOIWdOgLBNz1wDqu6UlrJDkMP1lHOAforgdN-6Vqm206KHI1LtevMLbrat2SS_tunVROvNuf99ZmJamqfyYEAIBnrgv-z4TYrPW8zFPA7_C8MTjWgYcBCgR4rvKJdizgn7917OzKjcjMrNqNy8KR8yzT8Z54sdXZRk_eq_yZNd0iPi-ybdgJBawh-iJ5Cn
CODEN IEANEP
CitedBy_id crossref_primary_10_1109_TMC_2023_3335198
crossref_primary_10_1109_JIOT_2023_3292520
crossref_primary_10_1109_TNSM_2023_3332509
crossref_primary_10_1109_TWC_2024_3446877
crossref_primary_10_3390_s22249579
crossref_primary_10_1109_TNSM_2024_3383213
crossref_primary_10_1109_TCC_2022_3224399
crossref_primary_10_1109_TSC_2024_3436705
crossref_primary_10_1109_ACCESS_2022_3176106
crossref_primary_10_1109_JIOT_2023_3304976
crossref_primary_10_1016_j_comnet_2024_110300
crossref_primary_10_1109_MWC_001_2100303
crossref_primary_10_1109_TVT_2022_3212008
crossref_primary_10_1109_TMC_2023_3285882
crossref_primary_10_1109_ACCESS_2023_3306534
crossref_primary_10_1109_TMC_2024_3449818
crossref_primary_10_3390_s22093495
crossref_primary_10_1109_TCCN_2024_3524641
crossref_primary_10_1145_3589639
crossref_primary_10_1109_TMC_2023_3334914
crossref_primary_10_26599_TST_2024_9010020
crossref_primary_10_1109_TCE_2025_3527857
crossref_primary_10_1109_TNET_2024_3376794
crossref_primary_10_1016_j_compeleceng_2024_109862
crossref_primary_10_1109_ACCESS_2025_3583139
crossref_primary_10_1109_TCOMM_2024_3412741
crossref_primary_10_1109_TNSE_2023_3324336
crossref_primary_10_1109_JIOT_2024_3470847
crossref_primary_10_1109_TII_2024_3475423
crossref_primary_10_1109_TCC_2025_3538158
crossref_primary_10_1109_ACCESS_2023_3344817
Cites_doi 10.1109/MM.2014.12
10.1109/INFOCOM.2019.8737481
10.1080/13683500.2020.1798896
10.1109/TPDS.2014.2316834
10.1145/2333660.2333724
10.1109/MCOM.2017.1600119
10.1109/TC.2004.35
10.1109/IPDPSW.2015.70
10.1109/ICC.2017.7996490
10.1109/TCC.2019.2950395
10.1109/INFOCOM.2019.8737480
10.1007/s00224-011-9315-x
10.1109/MCOM.2017.1601119
10.1109/TCC.2019.2923768
10.1109/SOSE.2013.68
10.1109/TMC.2018.2815015
10.1109/TNSM.2019.2944023
10.1109/JSAC.2017.2760162
10.1109/TNET.2018.2880874
10.1109/MCOM.2017.1600935
10.1017/9781316981238
10.1109/INFOCOM.2019.8737488
10.1109/TMC.2018.2847337
10.1145/1814433.1814441
10.1109/TMC.2021.3060118
10.1109/MCOM.001.1900653
10.1109/INFOCOM.2017.8057148
10.1109/INFCOMW.2018.8407021
10.1109/JIOT.2018.2875917
10.1109/TNET.2019.2939950
10.1109/TNET.2015.2487344
10.1109/TWC.2018.2859918
10.1109/TWC.2012.041912.110912
10.1109/IVS.2005.1505150
10.1145/3117811.3117831
10.1109/TWC.2018.2864559
10.1006/game.1996.0044
10.1109/INFOCOM.2019.8737543
10.1109/TMC.2018.2829874
10.1109/TNET.2017.2720668
10.1145/1966445.1966473
10.1109/TNET.2020.2980175
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
DOI 10.1109/TNET.2022.3156178
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access (Activated by CARLI)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2566
EndPage 1878
ExternalDocumentID oai_DiVA_org_kth_322039
10_1109_TNET_2022_3156178
9732696
Genre orig-research
GrantInformation_xml – fundername: Vinnova Competence Center for Trustworthy Edge Computing Systems and Applications at KTH
  funderid: 10.13039/501100001858
– fundername: Swedish Research Council
  grantid: 2020-03860
  funderid: 10.13039/501100004359
GroupedDBID -DZ
-~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
85S
8US
97E
9M8
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABPPZ
ABQJQ
ABVLG
ACGFS
ACGOD
ACIWK
ACM
ADBCU
ADL
AEBYY
AEFXT
AEJOY
AENSD
AETEA
AETIX
AFWIH
AFWXC
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AIKLT
AKJIK
AKQYR
AKRVB
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
D0L
EBS
EJD
ESBDL
FEDTE
GUFHI
HF~
HGAVV
HZ~
H~9
I07
ICLAB
IEDLZ
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
LHSKQ
M43
MVM
O9-
OCL
P1C
P2P
PQQKQ
RIA
RIE
RNS
ROL
TN5
UPT
UQL
VH1
XOL
YR2
ZCA
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
ID FETCH-LOGICAL-c374t-3a40b81a8eb3c8e10c232a7f0c7385d8966de360c241133f4e3c9fbcb88bd92f3
IEDL.DBID RIE
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000767848700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6692
1558-2566
IngestDate Tue Nov 04 16:49:57 EST 2025
Mon Jun 30 04:20:15 EDT 2025
Sat Nov 29 03:05:25 EST 2025
Tue Nov 18 22:11:38 EST 2025
Wed Aug 27 02:22:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c374t-3a40b81a8eb3c8e10c232a7f0c7385d8966de360c241133f4e3c9fbcb88bd92f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4876-0223
0000-0002-6466-8304
OpenAccessLink https://ieeexplore.ieee.org/document/9732696
PQID 2703132399
PQPubID 32020
PageCount 14
ParticipantIDs proquest_journals_2703132399
crossref_primary_10_1109_TNET_2022_3156178
swepub_primary_oai_DiVA_org_kth_322039
crossref_citationtrail_10_1109_TNET_2022_3156178
ieee_primary_9732696
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE/ACM transactions on networking
PublicationTitleAbbrev TNET
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
Kekki (ref2) 2018
ref19
ref18
Zaidi (ref26) 2018
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
Redana (ref6) 2020
ref49
(ref25) 2011
ref8
ref7
ref9
ref4
ref3
Garey (ref21) 1990
ref5
ref40
Saunders (ref24) 2007
ref35
Lauridsen (ref27) 2014; 18
ref37
ref36
ref30
ref33
ref32
ref1
ref39
ref38
ref23
ref20
ref22
Takefuji (ref31) 2017
(ref34) 2021
ref28
ref29
References_xml – ident: ref29
  doi: 10.1109/MM.2014.12
– ident: ref50
  doi: 10.1109/INFOCOM.2019.8737481
– ident: ref51
  doi: 10.1080/13683500.2020.1798896
– ident: ref13
  doi: 10.1109/TPDS.2014.2316834
– volume-title: 5G Physical Layer: Principles, Models and Technology Components
  year: 2018
  ident: ref26
– ident: ref41
  doi: 10.1145/2333660.2333724
– ident: ref8
  doi: 10.1109/MCOM.2017.1600119
– ident: ref33
  doi: 10.1109/TC.2004.35
– ident: ref30
  doi: 10.1109/IPDPSW.2015.70
– ident: ref46
  doi: 10.1109/ICC.2017.7996490
– volume-title: GPU Parallel Computing for Machine Learning in Python: How to Build a Parallel Computer
  year: 2017
  ident: ref31
– ident: ref36
  doi: 10.1109/TCC.2019.2950395
– ident: ref45
  doi: 10.1109/INFOCOM.2019.8737480
– ident: ref22
  doi: 10.1007/s00224-011-9315-x
– ident: ref11
  doi: 10.1109/MCOM.2017.1601119
– ident: ref20
  doi: 10.1109/TCC.2019.2923768
– ident: ref42
  doi: 10.1109/SOSE.2013.68
– ident: ref15
  doi: 10.1109/TMC.2018.2815015
– ident: ref4
  doi: 10.1109/TNSM.2019.2944023
– ident: ref5
  doi: 10.1109/JSAC.2017.2760162
– volume-title: Amazon EC2 Instance Types
  year: 2021
  ident: ref34
– ident: ref14
  doi: 10.1109/TNET.2018.2880874
– ident: ref1
  doi: 10.1109/MCOM.2017.1600935
– ident: ref28
  doi: 10.1017/9781316981238
– ident: ref49
  doi: 10.1109/INFOCOM.2019.8737488
– ident: ref12
  doi: 10.1109/TMC.2018.2847337
– ident: ref17
  doi: 10.1145/1814433.1814441
– ident: ref40
  doi: 10.1109/TMC.2021.3060118
– year: 2020
  ident: ref6
  article-title: 5G PPP architecture working group: View on 5G architecture
– volume: 18
  start-page: 172
  issue: 1
  year: 2014
  ident: ref27
  article-title: An empirical lte smartphone power model with a view to energy efficiency evolution
  publication-title: Intel Technol. J.
– ident: ref9
  doi: 10.1109/MCOM.001.1900653
– ident: ref44
  doi: 10.1109/INFOCOM.2017.8057148
– ident: ref10
  doi: 10.1109/INFCOMW.2018.8407021
– ident: ref38
  doi: 10.1109/JIOT.2018.2875917
– ident: ref3
  doi: 10.1109/TNET.2019.2939950
– ident: ref43
  doi: 10.1109/TNET.2015.2487344
– volume-title: Computers and Intractability; A Guide to the Theory of NP-Completeness
  year: 1990
  ident: ref21
– ident: ref48
  doi: 10.1109/TWC.2018.2859918
– ident: ref19
  doi: 10.1109/TWC.2012.041912.110912
– ident: ref32
  doi: 10.1109/IVS.2005.1505150
– ident: ref7
  doi: 10.1145/3117811.3117831
– ident: ref37
  doi: 10.1109/TWC.2018.2864559
– volume-title: Antennas and Propagation for Wireless Communication Systems
  year: 2007
  ident: ref24
– ident: ref23
  doi: 10.1006/game.1996.0044
– volume-title: MEC in 5G networks
  year: 2018
  ident: ref2
– ident: ref35
  doi: 10.1109/INFOCOM.2019.8737543
– ident: ref18
  doi: 10.1109/TMC.2018.2829874
– ident: ref47
  doi: 10.1109/TNET.2017.2720668
– ident: ref16
  doi: 10.1145/1966445.1966473
– volume-title: LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation
  year: 2011
  ident: ref25
– ident: ref39
  doi: 10.1109/TNET.2020.2980175
SSID ssj0013026
Score 2.5752623
Snippet Network slicing is a promising approach for enabling low latency computation offloading in edge computing systems. In this paper, we consider an edge computing...
SourceID swepub
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1865
SubjectTerms Algorithms
Approximation
Approximation algorithms
Completion time
Computation offloading
Computational modeling
Computational modelling
Computer games
Decentralized algorithm
decentralized algorithms
Edge computing
game theory
Heuristic algorithms
Heuristics algorithm
Job analysis
Mathematical analysis
Mixed integer
Mobile edge computing
Natural resources management
Network latency
Network slicing
resource allocation
Resource management
Resources allocation
Task analysis
Wireless communication
Wireless communications
Title Joint Wireless and Edge Computing Resource Management With Dynamic Network Slice Selection
URI https://ieeexplore.ieee.org/document/9732696
https://www.proquest.com/docview/2703132399
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-322039
Volume 30
WOSCitedRecordID wos000767848700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2566
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013026
  issn: 1063-6692
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PSxwxFH7o0oMebOsPutaWHIqH4mhmkp0kR6krpYel4LZILyG_pi4us0Vn_ft9SWZXhVLobRhehpCXeXlf8vJ9AJ_MaGRMULZQzKqCCx4K47kvLHcjWSlEDD6LTYjJRF5fq-8bcLK-CxNCSMVn4TQ-prN8v3DLuFV2FpllalVvwqYQdb6r9XRiQJO0GiIcVtS1qvoTzJKqs-lkPEUkWFUIUEfxStyLNSiJqrzML59zhqZ15vL1__XwDez0-SQ5zxPgLWyEdhe2n7EM7sGvb4tZ25FY5zrHuEZM68nY_w4kKzqgDVlt4pOnahi0727IRRasJ5NcLU6u5hhYyFUSz0GP7sOPy_H0y9eil1QoHBO8K5jh1MrSSMTQToaSOsyojGioi6w2XiL48YHV-JqXiF4bHphTjXVWSutV1bADGLSLNrwDEnlzVEVZsKLhNW2kNQbjhTW0bDDrFEOgq0HWrucbj7IXc51wB1U6-kVHv-jeL0P4vG7yJ5Nt_Mt4L47_2rAf-iEcrTyp-9_xXlciUVRiMjaE4-zddbvIr30x-3mu0ZH6trvRGOIoU4d___x72IqdyCWARzDo7pbhA7xyD93s_u5jmpKPVPHeTg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fTxQxEJ4gmqgPioLxAKUPxgfjQnfb3W0fiRxBwI0JpyG-NP21cPGyZ2Dx73fa7h2QGBPfNpvppul0p_O10-8DeKfLUmsvTSaZkRmvuc-04y4z3JaikIgYXBKbqJtGnJ_LryvwcXkXxnsfi8_8bniMZ_lubm_CVtleYJapZPUAHpacFzTd1ro9M6BRXA0xDsuqShbDGWZO5d6kGU8QCxYFQtQyXIq7twpFWZX7GeZd1tC40hw-_78-rsGzIaMk-2kKvIAV372Ep3d4Btfhx_F82vUkVLrOMLIR3TkydheeJE0HtCGLbXxyWw-D9v0lOUiS9aRJ9eLkbIahhZxF-Rz06QZ8OxxPPh1lg6hCZlnN-4xpTo3ItUAUbYXPqcWcStcttYHXxgmEP86zCl_zHPFryz2zsjXWCGGcLFr2Cla7eedfAwnMObKgzJu65RVthdEaI4bRNG8x76xHQBeDrOzAOB6EL2YqIg8qVfCLCn5Rg19G8GHZ5Fei2_iX8XoY_6XhMPQj2F54Ug0_5LUq6khSienYCN4n7y7bBYbtg-n3fYWOVD_7S4VBjjK5-ffP78Djo8mXU3X6uTnZgiehQ6kgcBtW-6sb_wYe2d_99PrqbZyefwALXOGV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Wireless+and+Edge+Computing+Resource+Management+With+Dynamic+Network+Slice+Selection&rft.jtitle=IEEE%2FACM+transactions+on+networking&rft.au=Josilo%2C+Sladana&rft.au=Dan%2C+Gyorgy&rft.date=2022-08-01&rft.issn=1063-6692&rft.eissn=1558-2566&rft.volume=30&rft.issue=4&rft.spage=1865&rft.epage=1878&rft_id=info:doi/10.1109%2FTNET.2022.3156178&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNET_2022_3156178
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6692&client=summon