Behavior of Multiobjective Evolutionary Algorithms on Many-Objective Knapsack Problems
We examine the behavior of three classes of evolutionary multiobjective optimization (EMO) algorithms on many-objective knapsack problems. They are Pareto dominance-based, scalarizing function-based, and hypervolume-based algorithms. NSGA-II, MOEA/D, SMS-EMOA, and HypE are examined using knapsack pr...
Uloženo v:
| Vydáno v: | IEEE transactions on evolutionary computation Ročník 19; číslo 2; s. 264 - 283 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.04.2015
|
| Témata: | |
| ISSN: | 1089-778X, 1941-0026 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We examine the behavior of three classes of evolutionary multiobjective optimization (EMO) algorithms on many-objective knapsack problems. They are Pareto dominance-based, scalarizing function-based, and hypervolume-based algorithms. NSGA-II, MOEA/D, SMS-EMOA, and HypE are examined using knapsack problems with 2-10 objectives. Our test problems are generated by randomly specifying coefficients (i.e., profits) in objectives. We also generate other test problems by combining two objectives to create a dependent or correlated objective. Experimental results on randomly generated many-objective knapsack problems are consistent with well-known performance deterioration of Pareto dominance-based algorithms. That is, NSGA-II is outperformed by the other algorithms. However, it is also shown that NSGA-II outperforms the other algorithms when objectives are highly correlated. MOEA/D shows totally different search behavior depending on the choice of a scalarizing function and its parameter value. Some MOEA/D variants work very well only on two-objective problems while others work well on many-objective problems with 4-10 objectives. We also obtain other interesting observations such as the performance improvement by similar parent recombination and the necessity of diversity improvement for many-objective knapsack problems. |
|---|---|
| ISSN: | 1089-778X 1941-0026 |
| DOI: | 10.1109/TEVC.2014.2315442 |