Behavior of Multiobjective Evolutionary Algorithms on Many-Objective Knapsack Problems
We examine the behavior of three classes of evolutionary multiobjective optimization (EMO) algorithms on many-objective knapsack problems. They are Pareto dominance-based, scalarizing function-based, and hypervolume-based algorithms. NSGA-II, MOEA/D, SMS-EMOA, and HypE are examined using knapsack pr...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on evolutionary computation Jg. 19; H. 2; S. 264 - 283 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.04.2015
|
| Schlagworte: | |
| ISSN: | 1089-778X, 1941-0026 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We examine the behavior of three classes of evolutionary multiobjective optimization (EMO) algorithms on many-objective knapsack problems. They are Pareto dominance-based, scalarizing function-based, and hypervolume-based algorithms. NSGA-II, MOEA/D, SMS-EMOA, and HypE are examined using knapsack problems with 2-10 objectives. Our test problems are generated by randomly specifying coefficients (i.e., profits) in objectives. We also generate other test problems by combining two objectives to create a dependent or correlated objective. Experimental results on randomly generated many-objective knapsack problems are consistent with well-known performance deterioration of Pareto dominance-based algorithms. That is, NSGA-II is outperformed by the other algorithms. However, it is also shown that NSGA-II outperforms the other algorithms when objectives are highly correlated. MOEA/D shows totally different search behavior depending on the choice of a scalarizing function and its parameter value. Some MOEA/D variants work very well only on two-objective problems while others work well on many-objective problems with 4-10 objectives. We also obtain other interesting observations such as the performance improvement by similar parent recombination and the necessity of diversity improvement for many-objective knapsack problems. |
|---|---|
| AbstractList | We examine the behavior of three classes of evolutionary multiobjective optimization (EMO) algorithms on many-objective knapsack problems. They are Pareto dominance-based, scalarizing function-based, and hypervolume-based algorithms. NSGA-II, MOEA/D, SMS-EMOA, and HypE are examined using knapsack problems with 2-10 objectives. Our test problems are generated by randomly specifying coefficients (i.e., profits) in objectives. We also generate other test problems by combining two objectives to create a dependent or correlated objective. Experimental results on randomly generated many-objective knapsack problems are consistent with well-known performance deterioration of Pareto dominance-based algorithms. That is, NSGA-II is outperformed by the other algorithms. However, it is also shown that NSGA-II outperforms the other algorithms when objectives are highly correlated. MOEA/D shows totally different search behavior depending on the choice of a scalarizing function and its parameter value. Some MOEA/D variants work very well only on two-objective problems while others work well on many-objective problems with 4-10 objectives. We also obtain other interesting observations such as the performance improvement by similar parent recombination and the necessity of diversity improvement for many-objective knapsack problems. |
| Author | Akedo, Naoya Ishibuchi, Hisao Nojima, Yusuke |
| Author_xml | – sequence: 1 givenname: Hisao surname: Ishibuchi fullname: Ishibuchi, Hisao email: hisaoi@cs.osakafu-u.ac.jp organization: Dept. of Comput. Sci. & Intell. Syst., Osaka Prefecture Univ., Sakai, Japan – sequence: 2 givenname: Naoya surname: Akedo fullname: Akedo, Naoya email: naoya.akedo@ci.cs.osakafu-u.ac.jp organization: Dept. of Comput. Sci. & Intell. Syst., Osaka Prefecture Univ., Sakai, Japan – sequence: 3 givenname: Yusuke surname: Nojima fullname: Nojima, Yusuke email: nojima@cs.osakafu-u.ac.jp organization: Dept. of Comput. Sci. & Intell. Syst., Osaka Prefecture Univ., Sakai, Japan |
| BookMark | eNp9kM9OAjEQxhuDiYA-gPHSF1hsuy3dHpHgnwjBAxJvm7a0Uly2pF1IeHu7gXDw4Gm-zHy_yczXA53a1waAe4wGGCPxuJgsxwOCMB2QHDNKyRXoYkFxhhAZdpJGhcg4L75uQC_GDUpOhkUXLJ_MWh6cD9BbONtXjfNqY3TjDgZODr7ap0YtwxGOqm8fXLPeRuhrOJP1MZtfnO-13EWpf-BH8Koy23gLrq2sork71z74fJ4sxq_ZdP7yNh5NM51z2mTYSM4Y1tSulFpRYYlKglhGhUJsxQURTFpqrJREk4JaJnMtc2K0ZRpplfcBP-3VwccYjC21a2R7cxOkq0qMyjaeso2nbOMpz_EkEv8hd8Ft06f_Mg8nxhljLv4hLwhP01-BgHWr |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2015_01_062 crossref_primary_10_1109_TCYB_2021_3081357 crossref_primary_10_1109_ACCESS_2020_3005970 crossref_primary_10_1109_MCI_2015_2437463 crossref_primary_10_1007_s10489_018_1365_1 crossref_primary_10_1016_j_cor_2018_12_003 crossref_primary_10_1109_TEVC_2019_2922419 crossref_primary_10_1109_TEVC_2016_2519758 crossref_primary_10_1109_TSMC_2019_2930737 crossref_primary_10_1109_TEVC_2017_2776226 crossref_primary_10_1016_j_asoc_2017_05_003 crossref_primary_10_1109_TCYB_2017_2737554 crossref_primary_10_1016_j_eswa_2020_114467 crossref_primary_10_1109_MCI_2017_2742868 crossref_primary_10_1007_s11831_020_09415_3 crossref_primary_10_1109_ACCESS_2020_2974245 crossref_primary_10_1007_s40747_021_00553_0 crossref_primary_10_1016_j_ins_2019_01_049 crossref_primary_10_1109_TEVC_2022_3215174 crossref_primary_10_1016_j_segan_2021_100474 crossref_primary_10_1080_10298436_2022_2074417 crossref_primary_10_1109_TSMC_2019_2912194 crossref_primary_10_1109_TEVC_2019_2931191 crossref_primary_10_1016_j_isatra_2023_03_015 crossref_primary_10_1016_j_asoc_2017_01_050 crossref_primary_10_1016_j_asoc_2018_05_014 crossref_primary_10_1016_j_swevo_2017_08_001 crossref_primary_10_1016_j_swevo_2025_101980 crossref_primary_10_1016_j_ins_2017_05_012 crossref_primary_10_1007_s40747_019_0113_4 crossref_primary_10_1016_j_swevo_2023_101262 crossref_primary_10_1109_TCYB_2019_2922287 crossref_primary_10_1007_s10489_025_06772_z crossref_primary_10_1109_TCYB_2015_2490738 crossref_primary_10_1109_ACCESS_2023_3317818 crossref_primary_10_1016_j_asoc_2018_08_039 crossref_primary_10_1007_s00500_018_3631_x crossref_primary_10_1007_s12293_016_0222_1 crossref_primary_10_1016_j_knosys_2020_105518 crossref_primary_10_1007_s00366_020_00986_0 crossref_primary_10_1162_evco_a_00259 crossref_primary_10_1145_2792984 crossref_primary_10_1016_j_ins_2023_119860 crossref_primary_10_1109_ACCESS_2020_3034754 crossref_primary_10_1109_TSMC_2018_2861879 crossref_primary_10_1016_j_eswa_2023_121374 crossref_primary_10_1007_s00170_021_06616_3 crossref_primary_10_1109_ACCESS_2016_2629671 crossref_primary_10_1007_s13369_018_03712_7 crossref_primary_10_1109_TCYB_2018_2872803 crossref_primary_10_1109_TCYB_2020_3031642 crossref_primary_10_1016_j_ejor_2021_10_033 crossref_primary_10_1016_j_swevo_2019_04_001 crossref_primary_10_1162_evco_a_00276 crossref_primary_10_1016_j_ins_2020_03_093 crossref_primary_10_1016_j_swevo_2019_04_008 crossref_primary_10_1109_TEVC_2018_2866927 crossref_primary_10_1109_TEVC_2023_3287399 crossref_primary_10_1007_s00500_018_3642_7 crossref_primary_10_1109_TEVC_2016_2521868 crossref_primary_10_1016_j_swevo_2023_101305 crossref_primary_10_1007_s00500_016_2076_3 crossref_primary_10_1002_widm_1267 crossref_primary_10_1109_TEVC_2016_2606577 crossref_primary_10_1016_j_swevo_2019_02_010 crossref_primary_10_1109_TCYB_2019_2937115 crossref_primary_10_1016_j_eswa_2018_09_004 crossref_primary_10_1016_j_artint_2019_08_003 crossref_primary_10_1016_j_jksuci_2023_101693 crossref_primary_10_1016_j_swevo_2016_12_002 crossref_primary_10_1109_TCYB_2020_2971638 crossref_primary_10_1109_TEVC_2017_2669638 crossref_primary_10_1016_j_swevo_2024_101722 crossref_primary_10_1016_j_ins_2018_06_063 crossref_primary_10_1007_s11269_017_1888_y crossref_primary_10_1109_TEVC_2015_2420112 crossref_primary_10_1103_PhysRevAccelBeams_22_020703 crossref_primary_10_1109_TEVC_2019_2962747 crossref_primary_10_1007_s11277_018_6017_6 crossref_primary_10_1002_cpe_8196 crossref_primary_10_1016_j_asoc_2017_07_051 crossref_primary_10_1016_j_engappai_2024_108505 crossref_primary_10_1109_TEVC_2019_2958921 crossref_primary_10_1016_j_ins_2015_11_027 crossref_primary_10_1016_j_asoc_2015_06_007 crossref_primary_10_1080_03155986_2018_1424445 crossref_primary_10_1016_j_eswa_2020_114491 crossref_primary_10_1109_TEVC_2017_2695579 crossref_primary_10_3390_app14083481 crossref_primary_10_1016_j_asoc_2017_07_052 crossref_primary_10_1016_j_swevo_2019_05_007 crossref_primary_10_1109_TEVC_2018_2848254 crossref_primary_10_1016_j_ins_2022_07_108 crossref_primary_10_1016_j_swevo_2021_100980 crossref_primary_10_1109_TEVC_2015_2480780 crossref_primary_10_1109_TCYB_2018_2849403 crossref_primary_10_3390_su11082191 crossref_primary_10_1109_ACCESS_2024_3523948 crossref_primary_10_1016_j_asoc_2017_03_041 crossref_primary_10_3233_ICA_160529 crossref_primary_10_1109_TEVC_2016_2587749 crossref_primary_10_1109_TCYB_2021_3051078 crossref_primary_10_1016_j_knosys_2021_106922 crossref_primary_10_1016_j_asoc_2017_04_002 crossref_primary_10_1109_MCI_2016_2627669 crossref_primary_10_1109_TEVC_2015_2497361 crossref_primary_10_1109_ACCESS_2017_2751071 crossref_primary_10_1109_TCYB_2019_2944141 crossref_primary_10_1016_j_ins_2019_03_040 crossref_primary_10_1109_TSMC_2022_3221466 crossref_primary_10_1007_s10479_024_06100_7 crossref_primary_10_1007_s40747_017_0061_9 crossref_primary_10_1109_TEVC_2017_2782826 crossref_primary_10_1109_TCYB_2020_2969025 crossref_primary_10_1109_TCYB_2017_2728120 crossref_primary_10_1002_tee_23796 crossref_primary_10_1007_s10732_015_9301_6 crossref_primary_10_1007_s12293_024_00431_5 crossref_primary_10_1016_j_asoc_2015_09_038 crossref_primary_10_1109_TEVC_2019_2901012 crossref_primary_10_1016_j_asoc_2017_08_036 crossref_primary_10_1016_j_ins_2019_05_014 crossref_primary_10_3390_a15110420 crossref_primary_10_1109_TEVC_2020_3011829 crossref_primary_10_1109_TSMC_2022_3207457 crossref_primary_10_1007_s12293_023_00394_z crossref_primary_10_1162_evco_a_00217 crossref_primary_10_1016_j_jclepro_2018_10_289 crossref_primary_10_1016_j_swevo_2023_101451 crossref_primary_10_1109_TCYB_2022_3182167 crossref_primary_10_1016_j_asoc_2022_109430 crossref_primary_10_1109_TEVC_2016_2549267 crossref_primary_10_1007_s10669_021_09807_1 crossref_primary_10_1109_TEVC_2015_2504730 crossref_primary_10_1109_TEVC_2015_2443001 crossref_primary_10_1016_j_asoc_2021_107737 crossref_primary_10_1007_s00500_015_1955_3 crossref_primary_10_1016_j_ins_2020_08_118 crossref_primary_10_1109_TETCI_2018_2849380 crossref_primary_10_1007_s10732_017_9356_7 crossref_primary_10_1109_TETCI_2021_3115518 crossref_primary_10_1109_TEVC_2017_2670779 crossref_primary_10_1016_j_ress_2023_109835 crossref_primary_10_1109_TEVC_2018_2881153 crossref_primary_10_1007_s12065_022_00787_y crossref_primary_10_1016_j_asoc_2019_02_026 crossref_primary_10_1109_TEVC_2016_2623770 crossref_primary_10_1162_evco_a_00226 crossref_primary_10_1109_TEVC_2016_2631279 crossref_primary_10_1145_2897760 crossref_primary_10_1016_j_swevo_2018_08_002 crossref_primary_10_1016_j_asoc_2020_106199 |
| Cites_doi | 10.1109/CEC.2011.5949788 10.1007/978-3-540-24854-5_131 10.1007/978-3-540-70928-2_56 10.1007/978-3-642-37140-0_33 10.1145/2001576.2001666 10.1109/4235.797969 10.1109/TEVC.2013.2262178 10.1016/j.ejor.2007.04.007 10.1109/TEVC.2012.2185702 10.1007/978-3-642-32964-7_14 10.1109/TEVC.2012.2204264 10.1109/TEVC.2013.2281535 10.1109/TEVC.2012.2225064 10.1109/GEFS.2008.4484566 10.1109/TEVC.2003.810752 10.1145/1389095.1389225 10.1162/EVCO_a_00109 10.1007/978-3-540-70928-2_5 10.1109/TEVC.2013.2281525 10.1109/TEVC.2007.892759 10.1109/TEVC.2013.2281533 10.1109/TEVC.2012.2185847 10.1109/TEVC.2009.2033586 10.1109/TEVC.2012.2204403 10.1109/4235.996017 10.1007/978-3-540-89694-4_41 10.1142/5712 10.1109/5326.704576 10.1007/978-3-540-31880-4_19 10.1145/1830761.1830837 10.1007/978-3-642-37140-0_11 10.1109/TEVC.2010.2077298 10.1109/ICSMC.2009.5346628 10.1145/1830483.1830577 10.1109/TEVC.2010.2043365 10.1007/978-3-642-25566-3_7 10.1007/3-540-36970-8_27 10.1109/TEVC.2010.2058119 10.1109/TEVC.2013.2281534 10.1109/TEVC.2010.2098412 10.1007/978-3-540-70928-2_55 10.1109/TEVC.2011.2166159 10.1109/TEVC.2012.2227145 10.1109/TEVC.2010.2064321 10.1109/TEVC.2011.2161872 10.1109/TEVC.2013.2258025 10.1162/EVCO_a_00009 10.1016/j.ejor.2006.08.008 10.1162/evco.2009.17.3.411 10.1109/CEC.2007.4424990 |
| ContentType | Journal Article |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION |
| DOI | 10.1109/TEVC.2014.2315442 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0026 |
| EndPage | 283 |
| ExternalDocumentID | 10_1109_TEVC_2014_2315442 6782742 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Japan Society for the Promotion of Science under Grant-in-Aid for Scientific Research B 24300090 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD ESBDL HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION |
| ID | FETCH-LOGICAL-c374t-1ea7551c4fdbbd49f2bdbb2f549b05d79295af4efaa2c284f5a3ca32ecf5c0cb3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 225 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000352277900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Sat Nov 29 03:13:46 EST 2025 Tue Nov 18 22:35:25 EST 2025 Tue Aug 26 16:40:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | many-objective problems Evolutionary many-objective optimization evolutionary multiobjective optimization (EMO) |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c374t-1ea7551c4fdbbd49f2bdbb2f549b05d79295af4efaa2c284f5a3ca32ecf5c0cb3 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/6782742 |
| PageCount | 20 |
| ParticipantIDs | crossref_citationtrail_10_1109_TEVC_2014_2315442 ieee_primary_6782742 crossref_primary_10_1109_TEVC_2014_2315442 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-April 2015-4-00 |
| PublicationDateYYYYMMDD | 2015-04-01 |
| PublicationDate_xml | – month: 04 year: 2015 text: 2015-April |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2015 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref54 ref10 zitzler (ref6) 2001 ref17 ref16 ref19 jiang (ref39) 2011 ref18 corne (ref11) 0 khare (ref8) 2003 ref51 ref50 deb (ref2) 2001 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref3 ref5 hughes (ref9) 0 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref38 purshouse (ref7) 0 goldberg (ref1) 1989 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 tan (ref4) 2005 gu (ref40) 2012; 8 |
| References_xml | – ident: ref21 doi: 10.1109/CEC.2011.5949788 – volume: 8 start-page: 3677 year: 2012 ident: ref40 article-title: A multiobjective evolutionary algorithm using dynamic weight design method publication-title: Int J Innov Comput Inf Control – ident: ref49 doi: 10.1007/978-3-540-24854-5_131 – ident: ref43 doi: 10.1007/978-3-540-70928-2_56 – ident: ref38 doi: 10.1007/978-3-642-37140-0_33 – start-page: 222 year: 0 ident: ref9 article-title: Evolutionary many-objective optimization: Many once or one many? publication-title: Proc 2005 IEEE Congr Evol Comput – ident: ref22 doi: 10.1145/2001576.2001666 – ident: ref28 doi: 10.1109/4235.797969 – ident: ref18 doi: 10.1109/TEVC.2013.2262178 – ident: ref47 doi: 10.1016/j.ejor.2007.04.007 – start-page: 773 year: 0 ident: ref11 article-title: Techniques for highly multiobjective optimization: Some non-dominated points are better than others publication-title: GECCO-2007 Proceedings – year: 1989 ident: ref1 publication-title: Genetic Algorithms in Search Optimization and Machine Learning – ident: ref57 doi: 10.1109/TEVC.2012.2185702 – ident: ref27 doi: 10.1007/978-3-642-32964-7_14 – ident: ref34 doi: 10.1109/TEVC.2012.2204264 – ident: ref58 doi: 10.1109/TEVC.2013.2281535 – ident: ref29 doi: 10.1109/TEVC.2012.2225064 – year: 2001 ident: ref2 publication-title: Multi-Objective Optimization Using Evolutionary Algorithms – ident: ref16 doi: 10.1109/GEFS.2008.4484566 – ident: ref55 doi: 10.1109/TEVC.2003.810752 – ident: ref17 doi: 10.1145/1389095.1389225 – ident: ref41 doi: 10.1162/EVCO_a_00109 – ident: ref10 doi: 10.1007/978-3-540-70928-2_5 – ident: ref45 doi: 10.1109/TEVC.2013.2281525 – ident: ref23 doi: 10.1109/TEVC.2007.892759 – ident: ref42 doi: 10.1109/TEVC.2013.2281533 – ident: ref35 doi: 10.1109/TEVC.2012.2185847 – ident: ref31 doi: 10.1109/TEVC.2009.2033586 – ident: ref56 doi: 10.1109/TEVC.2012.2204403 – year: 2001 ident: ref6 article-title: SPEA2: Improving the strength Pareto evolutionary algorithm – ident: ref5 doi: 10.1109/4235.996017 – ident: ref14 doi: 10.1007/978-3-540-89694-4_41 – start-page: 2066 year: 0 ident: ref7 article-title: Evolutionary many-objective optimization: An exploratory analysis publication-title: Proc 2003 IEEE Congr Evol Comput – ident: ref3 doi: 10.1142/5712 – ident: ref54 doi: 10.1109/5326.704576 – ident: ref48 doi: 10.1007/978-3-540-31880-4_19 – ident: ref37 doi: 10.1145/1830761.1830837 – ident: ref46 doi: 10.1007/978-3-642-37140-0_11 – ident: ref44 doi: 10.1109/TEVC.2010.2077298 – ident: ref26 doi: 10.1109/ICSMC.2009.5346628 – ident: ref52 doi: 10.1145/1830483.1830577 – ident: ref50 doi: 10.1109/TEVC.2010.2043365 – ident: ref51 doi: 10.1007/978-3-642-25566-3_7 – start-page: 376 year: 2003 ident: ref8 article-title: Performance scaling of multi-objective evolutionary algorithms publication-title: Evolutionary Multi-Criterion Optimization doi: 10.1007/3-540-36970-8_27 – ident: ref32 doi: 10.1109/TEVC.2010.2058119 – ident: ref59 doi: 10.1109/TEVC.2013.2281534 – year: 2005 ident: ref4 publication-title: Multiobjective Evolutionary Algorithms and Applications – ident: ref33 doi: 10.1109/TEVC.2010.2098412 – ident: ref13 doi: 10.1007/978-3-540-70928-2_55 – ident: ref53 doi: 10.1109/TEVC.2011.2166159 – ident: ref19 doi: 10.1109/TEVC.2012.2227145 – ident: ref20 doi: 10.1109/TEVC.2010.2064321 – start-page: 1260 year: 2011 ident: ref39 article-title: Multiobjective optimization by decomposition with Pareto-adaptive weight vectors publication-title: Proc 7th ICNC – ident: ref36 doi: 10.1109/TEVC.2011.2161872 – ident: ref15 doi: 10.1109/TEVC.2013.2258025 – ident: ref25 doi: 10.1162/EVCO_a_00009 – ident: ref24 doi: 10.1016/j.ejor.2006.08.008 – ident: ref30 doi: 10.1162/evco.2009.17.3.411 – ident: ref12 doi: 10.1109/CEC.2007.4424990 |
| SSID | ssj0014519 |
| Score | 2.5824835 |
| Snippet | We examine the behavior of three classes of evolutionary multiobjective optimization (EMO) algorithms on many-objective knapsack problems. They are Pareto... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 264 |
| SubjectTerms | Approximation algorithms Pareto optimization Search problems Sociology Vectors |
| Title | Behavior of Multiobjective Evolutionary Algorithms on Many-Objective Knapsack Problems |
| URI | https://ieeexplore.ieee.org/document/6782742 |
| Volume | 19 |
| WOSCitedRecordID | wos000352277900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_M4UEPTp3i_CIHT2K1axPTHseYCOr0oGO3kqQvfrejmwP_e5M2KwoieAvlBUp_yfvoe-_3AI5YpNNQ-coz0QXzaIrKk6ngHsaRZsgFTXVJmX_Nh8NoPI7vGnBS98IgYll8hqd2Weby01x92F9lZ0ax2sziEixxfl71atUZA0uTUhXTx8ZjjMYug9n147P7wahvi7joqXFmGKXBDxv0bahKaVMuWv97m3VYc74j6VVgb0ADs01oLeYyEHdNN2H1G8lgG0aOArEguSZlv20uXyo1RwZzd_JE8Ul6b4958Tx7ep-SPCM3Rkt4t7XkVSYmU6FeyV01gWa6BQ8Xg_v-peemKXgq5HTmdVFw4x4pqlMpUxrrQJpFoE2AKH2WcuMnMaEpaiECZYyWZiJUIgxQaWbAlOE2NLM8wx0gvtAsDrErLV1XSaCDyOxkKi3OaYTdDviL75soRzVuJ168JWXI4ceJhSSxkCQOkg4c11smFc_GX8JtC0ct6JDY_f3xHqyYzawqt9mH5qz4wANYVvPZ87Q4LE_RF3vKx8g |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58gXqwPvHtHjyJsXnsmuRYSkVprR6q9BY2m1mt1kTSWPDfu5tsg4II3pawG0K-zcxsZub7AE5ZIBNP2MJSpwtm0QSFFSfctzAMJEOf00SWlPk9v98PhsPwfg7O614YRCyLz_BCD8tcfpKJD_2rrKkMq84szsOiVs4y3Vp1zkATpVTl9KGKGYOhyWE6dtgcdB7buoyLXqhwRq11f3ihb7IqpVe5avzvedZhzUSPpFXBvQFzmG5CY6bMQMyHugmr32gGt-DRkCDmJJOk7LjN4pfK0JHO1Ow9nn-S1vgpy0fF89uEZCm5VXbCuqtndlP-PuHildxXGjSTbXi46gza15bRU7CE59PCcpD7KkASVCZxnNBQurEauFIdEWObJb6KlBiXFCXnrlBuSzLuCe65KCRTcMbeDiykWYq7QGwuWeihE2vCrpJCB5FpbSrJL2mAzh7Ys_cbCUM2rjUvxlF56LDDSEMSaUgiA8kenNVL3iumjb8mb2k46okGif3fL5_A8vXgthf1bvrdA1hRN2JV8c0hLBT5Bx7BkpgWo0l-XO6oLw3MyxE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Behavior+of+Multiobjective+Evolutionary+Algorithms+on+Many-Objective+Knapsack+Problems&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Ishibuchi%2C+Hisao&rft.au=Akedo%2C+Naoya&rft.au=Nojima%2C+Yusuke&rft.date=2015-04-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=19&rft.issue=2&rft.spage=264&rft.epage=283&rft_id=info:doi/10.1109%2FTEVC.2014.2315442&rft.externalDocID=6782742 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |