Behavior of Multiobjective Evolutionary Algorithms on Many-Objective Knapsack Problems

We examine the behavior of three classes of evolutionary multiobjective optimization (EMO) algorithms on many-objective knapsack problems. They are Pareto dominance-based, scalarizing function-based, and hypervolume-based algorithms. NSGA-II, MOEA/D, SMS-EMOA, and HypE are examined using knapsack pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation Jg. 19; H. 2; S. 264 - 283
Hauptverfasser: Ishibuchi, Hisao, Akedo, Naoya, Nojima, Yusuke
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.04.2015
Schlagworte:
ISSN:1089-778X, 1941-0026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We examine the behavior of three classes of evolutionary multiobjective optimization (EMO) algorithms on many-objective knapsack problems. They are Pareto dominance-based, scalarizing function-based, and hypervolume-based algorithms. NSGA-II, MOEA/D, SMS-EMOA, and HypE are examined using knapsack problems with 2-10 objectives. Our test problems are generated by randomly specifying coefficients (i.e., profits) in objectives. We also generate other test problems by combining two objectives to create a dependent or correlated objective. Experimental results on randomly generated many-objective knapsack problems are consistent with well-known performance deterioration of Pareto dominance-based algorithms. That is, NSGA-II is outperformed by the other algorithms. However, it is also shown that NSGA-II outperforms the other algorithms when objectives are highly correlated. MOEA/D shows totally different search behavior depending on the choice of a scalarizing function and its parameter value. Some MOEA/D variants work very well only on two-objective problems while others work well on many-objective problems with 4-10 objectives. We also obtain other interesting observations such as the performance improvement by similar parent recombination and the necessity of diversity improvement for many-objective knapsack problems.
AbstractList We examine the behavior of three classes of evolutionary multiobjective optimization (EMO) algorithms on many-objective knapsack problems. They are Pareto dominance-based, scalarizing function-based, and hypervolume-based algorithms. NSGA-II, MOEA/D, SMS-EMOA, and HypE are examined using knapsack problems with 2-10 objectives. Our test problems are generated by randomly specifying coefficients (i.e., profits) in objectives. We also generate other test problems by combining two objectives to create a dependent or correlated objective. Experimental results on randomly generated many-objective knapsack problems are consistent with well-known performance deterioration of Pareto dominance-based algorithms. That is, NSGA-II is outperformed by the other algorithms. However, it is also shown that NSGA-II outperforms the other algorithms when objectives are highly correlated. MOEA/D shows totally different search behavior depending on the choice of a scalarizing function and its parameter value. Some MOEA/D variants work very well only on two-objective problems while others work well on many-objective problems with 4-10 objectives. We also obtain other interesting observations such as the performance improvement by similar parent recombination and the necessity of diversity improvement for many-objective knapsack problems.
Author Akedo, Naoya
Ishibuchi, Hisao
Nojima, Yusuke
Author_xml – sequence: 1
  givenname: Hisao
  surname: Ishibuchi
  fullname: Ishibuchi, Hisao
  email: hisaoi@cs.osakafu-u.ac.jp
  organization: Dept. of Comput. Sci. & Intell. Syst., Osaka Prefecture Univ., Sakai, Japan
– sequence: 2
  givenname: Naoya
  surname: Akedo
  fullname: Akedo, Naoya
  email: naoya.akedo@ci.cs.osakafu-u.ac.jp
  organization: Dept. of Comput. Sci. & Intell. Syst., Osaka Prefecture Univ., Sakai, Japan
– sequence: 3
  givenname: Yusuke
  surname: Nojima
  fullname: Nojima, Yusuke
  email: nojima@cs.osakafu-u.ac.jp
  organization: Dept. of Comput. Sci. & Intell. Syst., Osaka Prefecture Univ., Sakai, Japan
BookMark eNp9kM9OAjEQxhuDiYA-gPHSF1hsuy3dHpHgnwjBAxJvm7a0Uly2pF1IeHu7gXDw4Gm-zHy_yczXA53a1waAe4wGGCPxuJgsxwOCMB2QHDNKyRXoYkFxhhAZdpJGhcg4L75uQC_GDUpOhkUXLJ_MWh6cD9BbONtXjfNqY3TjDgZODr7ap0YtwxGOqm8fXLPeRuhrOJP1MZtfnO-13EWpf-BH8Koy23gLrq2sork71z74fJ4sxq_ZdP7yNh5NM51z2mTYSM4Y1tSulFpRYYlKglhGhUJsxQURTFpqrJREk4JaJnMtc2K0ZRpplfcBP-3VwccYjC21a2R7cxOkq0qMyjaeso2nbOMpz_EkEv8hd8Ft06f_Mg8nxhljLv4hLwhP01-BgHWr
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_asoc_2015_01_062
crossref_primary_10_1109_TCYB_2021_3081357
crossref_primary_10_1109_ACCESS_2020_3005970
crossref_primary_10_1109_MCI_2015_2437463
crossref_primary_10_1007_s10489_018_1365_1
crossref_primary_10_1016_j_cor_2018_12_003
crossref_primary_10_1109_TEVC_2019_2922419
crossref_primary_10_1109_TEVC_2016_2519758
crossref_primary_10_1109_TSMC_2019_2930737
crossref_primary_10_1109_TEVC_2017_2776226
crossref_primary_10_1016_j_asoc_2017_05_003
crossref_primary_10_1109_TCYB_2017_2737554
crossref_primary_10_1016_j_eswa_2020_114467
crossref_primary_10_1109_MCI_2017_2742868
crossref_primary_10_1007_s11831_020_09415_3
crossref_primary_10_1109_ACCESS_2020_2974245
crossref_primary_10_1007_s40747_021_00553_0
crossref_primary_10_1016_j_ins_2019_01_049
crossref_primary_10_1109_TEVC_2022_3215174
crossref_primary_10_1016_j_segan_2021_100474
crossref_primary_10_1080_10298436_2022_2074417
crossref_primary_10_1109_TSMC_2019_2912194
crossref_primary_10_1109_TEVC_2019_2931191
crossref_primary_10_1016_j_isatra_2023_03_015
crossref_primary_10_1016_j_asoc_2017_01_050
crossref_primary_10_1016_j_asoc_2018_05_014
crossref_primary_10_1016_j_swevo_2017_08_001
crossref_primary_10_1016_j_swevo_2025_101980
crossref_primary_10_1016_j_ins_2017_05_012
crossref_primary_10_1007_s40747_019_0113_4
crossref_primary_10_1016_j_swevo_2023_101262
crossref_primary_10_1109_TCYB_2019_2922287
crossref_primary_10_1007_s10489_025_06772_z
crossref_primary_10_1109_TCYB_2015_2490738
crossref_primary_10_1109_ACCESS_2023_3317818
crossref_primary_10_1016_j_asoc_2018_08_039
crossref_primary_10_1007_s00500_018_3631_x
crossref_primary_10_1007_s12293_016_0222_1
crossref_primary_10_1016_j_knosys_2020_105518
crossref_primary_10_1007_s00366_020_00986_0
crossref_primary_10_1162_evco_a_00259
crossref_primary_10_1145_2792984
crossref_primary_10_1016_j_ins_2023_119860
crossref_primary_10_1109_ACCESS_2020_3034754
crossref_primary_10_1109_TSMC_2018_2861879
crossref_primary_10_1016_j_eswa_2023_121374
crossref_primary_10_1007_s00170_021_06616_3
crossref_primary_10_1109_ACCESS_2016_2629671
crossref_primary_10_1007_s13369_018_03712_7
crossref_primary_10_1109_TCYB_2018_2872803
crossref_primary_10_1109_TCYB_2020_3031642
crossref_primary_10_1016_j_ejor_2021_10_033
crossref_primary_10_1016_j_swevo_2019_04_001
crossref_primary_10_1162_evco_a_00276
crossref_primary_10_1016_j_ins_2020_03_093
crossref_primary_10_1016_j_swevo_2019_04_008
crossref_primary_10_1109_TEVC_2018_2866927
crossref_primary_10_1109_TEVC_2023_3287399
crossref_primary_10_1007_s00500_018_3642_7
crossref_primary_10_1109_TEVC_2016_2521868
crossref_primary_10_1016_j_swevo_2023_101305
crossref_primary_10_1007_s00500_016_2076_3
crossref_primary_10_1002_widm_1267
crossref_primary_10_1109_TEVC_2016_2606577
crossref_primary_10_1016_j_swevo_2019_02_010
crossref_primary_10_1109_TCYB_2019_2937115
crossref_primary_10_1016_j_eswa_2018_09_004
crossref_primary_10_1016_j_artint_2019_08_003
crossref_primary_10_1016_j_jksuci_2023_101693
crossref_primary_10_1016_j_swevo_2016_12_002
crossref_primary_10_1109_TCYB_2020_2971638
crossref_primary_10_1109_TEVC_2017_2669638
crossref_primary_10_1016_j_swevo_2024_101722
crossref_primary_10_1016_j_ins_2018_06_063
crossref_primary_10_1007_s11269_017_1888_y
crossref_primary_10_1109_TEVC_2015_2420112
crossref_primary_10_1103_PhysRevAccelBeams_22_020703
crossref_primary_10_1109_TEVC_2019_2962747
crossref_primary_10_1007_s11277_018_6017_6
crossref_primary_10_1002_cpe_8196
crossref_primary_10_1016_j_asoc_2017_07_051
crossref_primary_10_1016_j_engappai_2024_108505
crossref_primary_10_1109_TEVC_2019_2958921
crossref_primary_10_1016_j_ins_2015_11_027
crossref_primary_10_1016_j_asoc_2015_06_007
crossref_primary_10_1080_03155986_2018_1424445
crossref_primary_10_1016_j_eswa_2020_114491
crossref_primary_10_1109_TEVC_2017_2695579
crossref_primary_10_3390_app14083481
crossref_primary_10_1016_j_asoc_2017_07_052
crossref_primary_10_1016_j_swevo_2019_05_007
crossref_primary_10_1109_TEVC_2018_2848254
crossref_primary_10_1016_j_ins_2022_07_108
crossref_primary_10_1016_j_swevo_2021_100980
crossref_primary_10_1109_TEVC_2015_2480780
crossref_primary_10_1109_TCYB_2018_2849403
crossref_primary_10_3390_su11082191
crossref_primary_10_1109_ACCESS_2024_3523948
crossref_primary_10_1016_j_asoc_2017_03_041
crossref_primary_10_3233_ICA_160529
crossref_primary_10_1109_TEVC_2016_2587749
crossref_primary_10_1109_TCYB_2021_3051078
crossref_primary_10_1016_j_knosys_2021_106922
crossref_primary_10_1016_j_asoc_2017_04_002
crossref_primary_10_1109_MCI_2016_2627669
crossref_primary_10_1109_TEVC_2015_2497361
crossref_primary_10_1109_ACCESS_2017_2751071
crossref_primary_10_1109_TCYB_2019_2944141
crossref_primary_10_1016_j_ins_2019_03_040
crossref_primary_10_1109_TSMC_2022_3221466
crossref_primary_10_1007_s10479_024_06100_7
crossref_primary_10_1007_s40747_017_0061_9
crossref_primary_10_1109_TEVC_2017_2782826
crossref_primary_10_1109_TCYB_2020_2969025
crossref_primary_10_1109_TCYB_2017_2728120
crossref_primary_10_1002_tee_23796
crossref_primary_10_1007_s10732_015_9301_6
crossref_primary_10_1007_s12293_024_00431_5
crossref_primary_10_1016_j_asoc_2015_09_038
crossref_primary_10_1109_TEVC_2019_2901012
crossref_primary_10_1016_j_asoc_2017_08_036
crossref_primary_10_1016_j_ins_2019_05_014
crossref_primary_10_3390_a15110420
crossref_primary_10_1109_TEVC_2020_3011829
crossref_primary_10_1109_TSMC_2022_3207457
crossref_primary_10_1007_s12293_023_00394_z
crossref_primary_10_1162_evco_a_00217
crossref_primary_10_1016_j_jclepro_2018_10_289
crossref_primary_10_1016_j_swevo_2023_101451
crossref_primary_10_1109_TCYB_2022_3182167
crossref_primary_10_1016_j_asoc_2022_109430
crossref_primary_10_1109_TEVC_2016_2549267
crossref_primary_10_1007_s10669_021_09807_1
crossref_primary_10_1109_TEVC_2015_2504730
crossref_primary_10_1109_TEVC_2015_2443001
crossref_primary_10_1016_j_asoc_2021_107737
crossref_primary_10_1007_s00500_015_1955_3
crossref_primary_10_1016_j_ins_2020_08_118
crossref_primary_10_1109_TETCI_2018_2849380
crossref_primary_10_1007_s10732_017_9356_7
crossref_primary_10_1109_TETCI_2021_3115518
crossref_primary_10_1109_TEVC_2017_2670779
crossref_primary_10_1016_j_ress_2023_109835
crossref_primary_10_1109_TEVC_2018_2881153
crossref_primary_10_1007_s12065_022_00787_y
crossref_primary_10_1016_j_asoc_2019_02_026
crossref_primary_10_1109_TEVC_2016_2623770
crossref_primary_10_1162_evco_a_00226
crossref_primary_10_1109_TEVC_2016_2631279
crossref_primary_10_1145_2897760
crossref_primary_10_1016_j_swevo_2018_08_002
crossref_primary_10_1016_j_asoc_2020_106199
Cites_doi 10.1109/CEC.2011.5949788
10.1007/978-3-540-24854-5_131
10.1007/978-3-540-70928-2_56
10.1007/978-3-642-37140-0_33
10.1145/2001576.2001666
10.1109/4235.797969
10.1109/TEVC.2013.2262178
10.1016/j.ejor.2007.04.007
10.1109/TEVC.2012.2185702
10.1007/978-3-642-32964-7_14
10.1109/TEVC.2012.2204264
10.1109/TEVC.2013.2281535
10.1109/TEVC.2012.2225064
10.1109/GEFS.2008.4484566
10.1109/TEVC.2003.810752
10.1145/1389095.1389225
10.1162/EVCO_a_00109
10.1007/978-3-540-70928-2_5
10.1109/TEVC.2013.2281525
10.1109/TEVC.2007.892759
10.1109/TEVC.2013.2281533
10.1109/TEVC.2012.2185847
10.1109/TEVC.2009.2033586
10.1109/TEVC.2012.2204403
10.1109/4235.996017
10.1007/978-3-540-89694-4_41
10.1142/5712
10.1109/5326.704576
10.1007/978-3-540-31880-4_19
10.1145/1830761.1830837
10.1007/978-3-642-37140-0_11
10.1109/TEVC.2010.2077298
10.1109/ICSMC.2009.5346628
10.1145/1830483.1830577
10.1109/TEVC.2010.2043365
10.1007/978-3-642-25566-3_7
10.1007/3-540-36970-8_27
10.1109/TEVC.2010.2058119
10.1109/TEVC.2013.2281534
10.1109/TEVC.2010.2098412
10.1007/978-3-540-70928-2_55
10.1109/TEVC.2011.2166159
10.1109/TEVC.2012.2227145
10.1109/TEVC.2010.2064321
10.1109/TEVC.2011.2161872
10.1109/TEVC.2013.2258025
10.1162/EVCO_a_00009
10.1016/j.ejor.2006.08.008
10.1162/evco.2009.17.3.411
10.1109/CEC.2007.4424990
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TEVC.2014.2315442
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 283
ExternalDocumentID 10_1109_TEVC_2014_2315442
6782742
Genre orig-research
GrantInformation_xml – fundername: Japan Society for the Promotion of Science under Grant-in-Aid for Scientific Research B 24300090
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
ESBDL
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c374t-1ea7551c4fdbbd49f2bdbb2f549b05d79295af4efaa2c284f5a3ca32ecf5c0cb3
IEDL.DBID RIE
ISICitedReferencesCount 225
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000352277900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sat Nov 29 03:13:46 EST 2025
Tue Nov 18 22:35:25 EST 2025
Tue Aug 26 16:40:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords many-objective problems
Evolutionary many-objective optimization
evolutionary multiobjective optimization (EMO)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c374t-1ea7551c4fdbbd49f2bdbb2f549b05d79295af4efaa2c284f5a3ca32ecf5c0cb3
OpenAccessLink https://ieeexplore.ieee.org/document/6782742
PageCount 20
ParticipantIDs crossref_citationtrail_10_1109_TEVC_2014_2315442
ieee_primary_6782742
crossref_primary_10_1109_TEVC_2014_2315442
PublicationCentury 2000
PublicationDate 2015-April
2015-4-00
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-April
PublicationDecade 2010
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref54
ref10
zitzler (ref6) 2001
ref17
ref16
ref19
jiang (ref39) 2011
ref18
corne (ref11) 0
khare (ref8) 2003
ref51
ref50
deb (ref2) 2001
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref3
ref5
hughes (ref9) 0
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref38
purshouse (ref7) 0
goldberg (ref1) 1989
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
tan (ref4) 2005
gu (ref40) 2012; 8
References_xml – ident: ref21
  doi: 10.1109/CEC.2011.5949788
– volume: 8
  start-page: 3677
  year: 2012
  ident: ref40
  article-title: A multiobjective evolutionary algorithm using dynamic weight design method
  publication-title: Int J Innov Comput Inf Control
– ident: ref49
  doi: 10.1007/978-3-540-24854-5_131
– ident: ref43
  doi: 10.1007/978-3-540-70928-2_56
– ident: ref38
  doi: 10.1007/978-3-642-37140-0_33
– start-page: 222
  year: 0
  ident: ref9
  article-title: Evolutionary many-objective optimization: Many once or one many?
  publication-title: Proc 2005 IEEE Congr Evol Comput
– ident: ref22
  doi: 10.1145/2001576.2001666
– ident: ref28
  doi: 10.1109/4235.797969
– ident: ref18
  doi: 10.1109/TEVC.2013.2262178
– ident: ref47
  doi: 10.1016/j.ejor.2007.04.007
– start-page: 773
  year: 0
  ident: ref11
  article-title: Techniques for highly multiobjective optimization: Some non-dominated points are better than others
  publication-title: GECCO-2007 Proceedings
– year: 1989
  ident: ref1
  publication-title: Genetic Algorithms in Search Optimization and Machine Learning
– ident: ref57
  doi: 10.1109/TEVC.2012.2185702
– ident: ref27
  doi: 10.1007/978-3-642-32964-7_14
– ident: ref34
  doi: 10.1109/TEVC.2012.2204264
– ident: ref58
  doi: 10.1109/TEVC.2013.2281535
– ident: ref29
  doi: 10.1109/TEVC.2012.2225064
– year: 2001
  ident: ref2
  publication-title: Multi-Objective Optimization Using Evolutionary Algorithms
– ident: ref16
  doi: 10.1109/GEFS.2008.4484566
– ident: ref55
  doi: 10.1109/TEVC.2003.810752
– ident: ref17
  doi: 10.1145/1389095.1389225
– ident: ref41
  doi: 10.1162/EVCO_a_00109
– ident: ref10
  doi: 10.1007/978-3-540-70928-2_5
– ident: ref45
  doi: 10.1109/TEVC.2013.2281525
– ident: ref23
  doi: 10.1109/TEVC.2007.892759
– ident: ref42
  doi: 10.1109/TEVC.2013.2281533
– ident: ref35
  doi: 10.1109/TEVC.2012.2185847
– ident: ref31
  doi: 10.1109/TEVC.2009.2033586
– ident: ref56
  doi: 10.1109/TEVC.2012.2204403
– year: 2001
  ident: ref6
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm
– ident: ref5
  doi: 10.1109/4235.996017
– ident: ref14
  doi: 10.1007/978-3-540-89694-4_41
– start-page: 2066
  year: 0
  ident: ref7
  article-title: Evolutionary many-objective optimization: An exploratory analysis
  publication-title: Proc 2003 IEEE Congr Evol Comput
– ident: ref3
  doi: 10.1142/5712
– ident: ref54
  doi: 10.1109/5326.704576
– ident: ref48
  doi: 10.1007/978-3-540-31880-4_19
– ident: ref37
  doi: 10.1145/1830761.1830837
– ident: ref46
  doi: 10.1007/978-3-642-37140-0_11
– ident: ref44
  doi: 10.1109/TEVC.2010.2077298
– ident: ref26
  doi: 10.1109/ICSMC.2009.5346628
– ident: ref52
  doi: 10.1145/1830483.1830577
– ident: ref50
  doi: 10.1109/TEVC.2010.2043365
– ident: ref51
  doi: 10.1007/978-3-642-25566-3_7
– start-page: 376
  year: 2003
  ident: ref8
  article-title: Performance scaling of multi-objective evolutionary algorithms
  publication-title: Evolutionary Multi-Criterion Optimization
  doi: 10.1007/3-540-36970-8_27
– ident: ref32
  doi: 10.1109/TEVC.2010.2058119
– ident: ref59
  doi: 10.1109/TEVC.2013.2281534
– year: 2005
  ident: ref4
  publication-title: Multiobjective Evolutionary Algorithms and Applications
– ident: ref33
  doi: 10.1109/TEVC.2010.2098412
– ident: ref13
  doi: 10.1007/978-3-540-70928-2_55
– ident: ref53
  doi: 10.1109/TEVC.2011.2166159
– ident: ref19
  doi: 10.1109/TEVC.2012.2227145
– ident: ref20
  doi: 10.1109/TEVC.2010.2064321
– start-page: 1260
  year: 2011
  ident: ref39
  article-title: Multiobjective optimization by decomposition with Pareto-adaptive weight vectors
  publication-title: Proc 7th ICNC
– ident: ref36
  doi: 10.1109/TEVC.2011.2161872
– ident: ref15
  doi: 10.1109/TEVC.2013.2258025
– ident: ref25
  doi: 10.1162/EVCO_a_00009
– ident: ref24
  doi: 10.1016/j.ejor.2006.08.008
– ident: ref30
  doi: 10.1162/evco.2009.17.3.411
– ident: ref12
  doi: 10.1109/CEC.2007.4424990
SSID ssj0014519
Score 2.5824835
Snippet We examine the behavior of three classes of evolutionary multiobjective optimization (EMO) algorithms on many-objective knapsack problems. They are Pareto...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 264
SubjectTerms Approximation algorithms
Pareto optimization
Search problems
Sociology
Vectors
Title Behavior of Multiobjective Evolutionary Algorithms on Many-Objective Knapsack Problems
URI https://ieeexplore.ieee.org/document/6782742
Volume 19
WOSCitedRecordID wos000352277900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_M4UEPTp3i_CIHT2K1axPTHseYCOr0oGO3kqQvfrejmwP_e5M2KwoieAvlBUp_yfvoe-_3AI5YpNNQ-coz0QXzaIrKk6ngHsaRZsgFTXVJmX_Nh8NoPI7vGnBS98IgYll8hqd2Weby01x92F9lZ0ax2sziEixxfl71atUZA0uTUhXTx8ZjjMYug9n147P7wahvi7joqXFmGKXBDxv0bahKaVMuWv97m3VYc74j6VVgb0ADs01oLeYyEHdNN2H1G8lgG0aOArEguSZlv20uXyo1RwZzd_JE8Ul6b4958Tx7ep-SPCM3Rkt4t7XkVSYmU6FeyV01gWa6BQ8Xg_v-peemKXgq5HTmdVFw4x4pqlMpUxrrQJpFoE2AKH2WcuMnMaEpaiECZYyWZiJUIgxQaWbAlOE2NLM8wx0gvtAsDrErLV1XSaCDyOxkKi3OaYTdDviL75soRzVuJ168JWXI4ceJhSSxkCQOkg4c11smFc_GX8JtC0ct6JDY_f3xHqyYzawqt9mH5qz4wANYVvPZ87Q4LE_RF3vKx8g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58gXqwPvHtHjyJsXnsmuRYSkVprR6q9BY2m1mt1kTSWPDfu5tsg4II3pawG0K-zcxsZub7AE5ZIBNP2MJSpwtm0QSFFSfctzAMJEOf00SWlPk9v98PhsPwfg7O614YRCyLz_BCD8tcfpKJD_2rrKkMq84szsOiVs4y3Vp1zkATpVTl9KGKGYOhyWE6dtgcdB7buoyLXqhwRq11f3ihb7IqpVe5avzvedZhzUSPpFXBvQFzmG5CY6bMQMyHugmr32gGt-DRkCDmJJOk7LjN4pfK0JHO1Ow9nn-S1vgpy0fF89uEZCm5VXbCuqtndlP-PuHildxXGjSTbXi46gza15bRU7CE59PCcpD7KkASVCZxnNBQurEauFIdEWObJb6KlBiXFCXnrlBuSzLuCe65KCRTcMbeDiykWYq7QGwuWeihE2vCrpJCB5FpbSrJL2mAzh7Ys_cbCUM2rjUvxlF56LDDSEMSaUgiA8kenNVL3iumjb8mb2k46okGif3fL5_A8vXgthf1bvrdA1hRN2JV8c0hLBT5Bx7BkpgWo0l-XO6oLw3MyxE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Behavior+of+Multiobjective+Evolutionary+Algorithms+on+Many-Objective+Knapsack+Problems&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Ishibuchi%2C+Hisao&rft.au=Akedo%2C+Naoya&rft.au=Nojima%2C+Yusuke&rft.date=2015-04-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=19&rft.issue=2&rft.spage=264&rft.epage=283&rft_id=info:doi/10.1109%2FTEVC.2014.2315442&rft.externalDocID=6782742
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon