On the oracle complexity of smooth strongly convex minimization
We construct a family of functions suitable for establishing lower bounds on the oracle complexity of first-order minimization of smooth strongly-convex functions. Based on this construction, we derive new lower bounds on the complexity of strongly-convex minimization under various inaccuracy criter...
Uloženo v:
| Vydáno v: | Journal of Complexity Ročník 68; s. 101590 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.02.2022
Elsevier |
| Témata: | |
| ISSN: | 0885-064X, 1090-2708 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We construct a family of functions suitable for establishing lower bounds on the oracle complexity of first-order minimization of smooth strongly-convex functions. Based on this construction, we derive new lower bounds on the complexity of strongly-convex minimization under various inaccuracy criteria. The new bounds match the known upper bounds up to a constant factor, and when the inaccuracy of a solution is measured by its distance to the solution set, the new lower bound exactly matches the upper bound obtained by the recent Information-Theoretic Exact Method by the same authors, thereby establishing the exact oracle complexity for this class of problems. |
|---|---|
| ISSN: | 0885-064X 1090-2708 |
| DOI: | 10.1016/j.jco.2021.101590 |