On the oracle complexity of smooth strongly convex minimization
We construct a family of functions suitable for establishing lower bounds on the oracle complexity of first-order minimization of smooth strongly-convex functions. Based on this construction, we derive new lower bounds on the complexity of strongly-convex minimization under various inaccuracy criter...
Gespeichert in:
| Veröffentlicht in: | Journal of Complexity Jg. 68; S. 101590 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.02.2022
Elsevier |
| Schlagworte: | |
| ISSN: | 0885-064X, 1090-2708 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We construct a family of functions suitable for establishing lower bounds on the oracle complexity of first-order minimization of smooth strongly-convex functions. Based on this construction, we derive new lower bounds on the complexity of strongly-convex minimization under various inaccuracy criteria. The new bounds match the known upper bounds up to a constant factor, and when the inaccuracy of a solution is measured by its distance to the solution set, the new lower bound exactly matches the upper bound obtained by the recent Information-Theoretic Exact Method by the same authors, thereby establishing the exact oracle complexity for this class of problems. |
|---|---|
| ISSN: | 0885-064X 1090-2708 |
| DOI: | 10.1016/j.jco.2021.101590 |