RaaMLab: A MATLAB toolbox that generates amino acid groups and reduced amino acid modes

•RaaMLab offers four kinds of databases of amino acids’ on physicochemical properties and amino acid groupings.•RaaMLab offers 49 classification methods to reduce the amino acids.•RaaMLab offers five kinds of biophysciochemical features of the reduced amino acids. Amino acid (AA) classification and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BioSystems Ročník 180; s. 38 - 45
Hlavní autoři: Xi, Baohang, Tao, Jin, Liu, Xiaoqing, Xu, Xinnan, He, Pingan, Dai, Qi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Ireland Elsevier B.V 01.06.2019
Témata:
ISSN:0303-2647, 1872-8324, 1872-8324
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:•RaaMLab offers four kinds of databases of amino acids’ on physicochemical properties and amino acid groupings.•RaaMLab offers 49 classification methods to reduce the amino acids.•RaaMLab offers five kinds of biophysciochemical features of the reduced amino acids. Amino acid (AA) classification and its different biophysical and chemical characteristics have been widely applied to analyze and predict the structural, functional, expression and interaction profiles of proteins and peptides. We present RaaMLab, a free and open-source MATLAB toolbox, to facilitate studies on proteins and peptides, to generate AA groups and to extract the structural and physicochemical features of reduced AAs (RedAA). This toolbox offers 4 kinds of databases, including the physicochemical properties of AAs and their groupings, 49 AA classification methods and 5 types of biophysicochemical features of RedAAs. These factors can be easily computed based on user-defined alphabet size and AA properties of AA groupings. RaaMLab is an open source freely available at https://github.com/bioinfo0706/RaaMLab. This website also contains a tutorial, extensive documentation and examples.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0303-2647
1872-8324
1872-8324
DOI:10.1016/j.biosystems.2019.03.002