Algebraic diagonals and walks: Algorithms, bounds, complexity

The diagonal of a multivariate power series F is the univariate power series DiagF generated by the diagonal terms of F. Diagonals form an important class of power series; they occur frequently in number theory, theoretical physics and enumerative combinatorics. We study algorithmic questions relate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of symbolic computation Jg. 83; S. 68 - 92
Hauptverfasser: Bostan, Alin, Dumont, Louis, Salvy, Bruno
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.11.2017
Elsevier
Schriftenreihe:Special issue on the conference ISSAC 2015: Symbolic computation and computer algebra
Schlagworte:
ISSN:0747-7171, 1095-855X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The diagonal of a multivariate power series F is the univariate power series DiagF generated by the diagonal terms of F. Diagonals form an important class of power series; they occur frequently in number theory, theoretical physics and enumerative combinatorics. We study algorithmic questions related to diagonals in the case where F is the Taylor expansion of a bivariate rational function. It is classical that in this case DiagF is an algebraic function. We propose an algorithm that computes an annihilating polynomial for DiagF. We give a precise bound on the size of this polynomial and show that, generically, this polynomial is the minimal polynomial and that its size reaches the bound. The algorithm runs in time quasi-linear in this bound, which grows exponentially with the degree of the input rational function. We then address the related problem of enumerating directed lattice walks. The insight given by our study leads to a new method for expanding the generating power series of bridges, excursions and meanders. We show that their first N terms can be computed in quasi-linear complexity in N, without first computing a very large polynomial equation.
AbstractList The diagonal of a multivariate power series F is the univariate power series DiagF generated by the diagonal terms of F. Diagonals form an important class of power series; they occur frequently in number theory, theoretical physics and enumerative combinatorics. We study algorithmic questions related to diagonals in the case where F is the Taylor expansion of a bivariate rational function. It is classical that in this case DiagF is an algebraic function. We propose an algorithm that computes an annihilating polynomial for DiagF. We give a precise bound on the size of this polynomial and show that, generically, this polynomial is the minimal polynomial and that its size reaches the bound. The algorithm runs in time quasi-linear in this bound, which grows exponentially with the degree of the input rational function. We then address the related problem of enumerating directed lattice walks. The insight given by our study leads to a new method for expanding the generating power series of bridges, excursions and meanders. We show that their first N terms can be computed in quasi-linear complexity in N, without first computing a very large polynomial equation.
The diagonal of a multivariate power series F is the univariate power series Diag(F) generated by the diagonal terms of F. Diagonals form an important class of power series; they occur frequently in number theory, theoretical physics and enumerative combinatorics. We study algorithmic questions related to diagonals in the case where F is the Taylor expansion of a bivariate rational function. It is classical that in this case Diag(F) is an algebraic function. We propose an algorithm that computes an annihilating polynomial for Diag(F). We give a precise bound on the size of this polynomial and show that generically, this polynomial is the minimal polynomial and that its size reaches the bound. The algorithm runs in time quasi-linear in this bound, which grows exponentially with the degree of the input rational function. We then address the related problem of enumerating directed lattice walks. The insight given by our study leads to a new method for expanding the generating power series of bridges, excursions and meanders. We show that their first N terms can be computed in quasi-linear complexity in N, without first computing a very large polynomial equation.
Author Dumont, Louis
Bostan, Alin
Salvy, Bruno
Author_xml – sequence: 1
  givenname: Alin
  surname: Bostan
  fullname: Bostan, Alin
  email: alin.bostan@inria.fr
  organization: Inria, France
– sequence: 2
  givenname: Louis
  surname: Dumont
  fullname: Dumont, Louis
  email: louis.dumont@inria.fr
  organization: Inria, France
– sequence: 3
  givenname: Bruno
  surname: Salvy
  fullname: Salvy, Bruno
  email: bruno.salvy@inria.fr
  organization: Inria, France
BackLink https://hal.science/hal-01244914$$DView record in HAL
BookMark eNp9kMFKAzEQhoNUsK0-gLe9Cu6abJJNo3goRa1Q8KLgLcwm2TbrdlM2a7Vvb0rFg4eeZpj5v4H5RmjQ-tYidElwRjApbuqsDjrLY5sRkmFcnKAhwZKnE87fB2iIBROpIIKcoVEINcZYMsqH6H7aLG3ZgdOJcbD0LTQhgdYkX9B8hNskrn3n-tU6XCel_2xNrNqvN439dv3uHJ1WEbAXv3WM3h4fXmfzdPHy9DybLlJNBetTQoU0BaeimJQlk1DKqsQaDAdZGkyl5cJiiwtaFQCU5hLyCWgJlFcMy4LSMbo63F1BozadW0O3Ux6cmk8Xaj_DJGdMErYlMUsOWd35EDpb_QEEq70rVavoSu1dKUJUdBUZ8Y_Rrofe-baPapqj5N2BtPH9rbOdCtrZVlvjOqt7Zbw7Qv8AjV2E2g
CitedBy_id crossref_primary_10_1007_s10208_018_09411_x
crossref_primary_10_1007_s10208_021_09523_x
Cites_doi 10.1090/mcom/3054
10.1007/BF01294333
10.1016/0021-8693(67)90061-0
10.1007/BF01388496
10.1016/0022-314X(87)90095-3
10.1007/s11202-009-0119-z
10.1016/0885-064X(86)90006-3
10.24033/asens.2207
10.1007/s00200-008-0062-4
10.1016/j.jco.2004.09.009
10.1215/S0012-7094-71-03829-4
10.1006/jsco.1994.1042
10.1016/0021-8693(88)90166-4
10.24033/bsmf.1777
10.1016/0097-3165(80)90074-6
10.1016/S0012-365X(00)00147-3
10.1016/0885-064X(87)90002-1
10.1007/s00200-012-0179-3
10.1006/ffta.1999.0267
10.1016/S0304-3975(02)00007-5
10.1016/j.jsc.2005.07.001
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1016/j.jsc.2016.11.006
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1095-855X
EndPage 92
ExternalDocumentID oai:HAL:hal-01244914v1
10_1016_j_jsc_2016_11_006
S0747717116301250
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6OB
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M25
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSW
SSZ
T5K
TN5
UPT
WUQ
XPP
YQT
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
1XC
ID FETCH-LOGICAL-c374t-1379d653768bb49ab9fb0cad5a9bd039e57e0e063f6aa3329a28ac9a35f409633
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000402227900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0747-7171
IngestDate Sat Oct 25 11:13:56 EDT 2025
Tue Nov 18 21:02:58 EST 2025
Sat Nov 29 07:10:28 EST 2025
Fri Feb 23 02:31:31 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords 68W30
33F10
Algorithms
05A15
Walks
Diagonals
walks
algorithms
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c374t-1379d653768bb49ab9fb0cad5a9bd039e57e0e063f6aa3329a28ac9a35f409633
ORCID 0000-0002-4313-0679
OpenAccessLink https://doi.org/10.1016/j.jsc.2016.11.006
PageCount 25
ParticipantIDs hal_primary_oai_HAL_hal_01244914v1
crossref_primary_10_1016_j_jsc_2016_11_006
crossref_citationtrail_10_1016_j_jsc_2016_11_006
elsevier_sciencedirect_doi_10_1016_j_jsc_2016_11_006
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationSeriesTitle Special issue on the conference ISSAC 2015: Symbolic computation and computer algebra
PublicationTitle Journal of symbolic computation
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Deligne (br0180) 1984; 76
Christol (br0150) 1985
Lecerf, Schost (br0300) 2003; 5
Banderier, Flajolet (br0020) 2002; 281
Lipshitz (br0310) 1988; 113
Pan (br0320) 1994; 18
Bousquet-Mélou, Petkovšek (br0110) 2000; 225
Furstenberg (br0210) 1967; 7
van der Waerden (br0410) 1949
Chudnovsky, Chudnovsky (br0160) 1986; 2
Bousquet-Mélou (br0100) 2008; 57
Adamczewski, Bell (br0010) 2013; 46
Chudnovsky, Chudnovsky (br0170) 1987; 3
Pólya (br0350) 1921; 22
Rothstein (br0360) 1976
Bostan, Flajolet, Salvy, Schost (br0060) 2006; 41
van der Hoeven, Schost (br0260) 2013; 24
Walker (br0420) 1978
Bousquet-Mélou (br0090) 2006
Pan (br0330) 2000; 6
Bostan, Lairez, Salvy (br0070) 2013
Bostan, Schost (br0080) 2005; 21
Bostan, Chyzak, Lecerf, Salvy, Schost (br0040) 2007
Fliess (br0200) 1974; 102
Ince (br0270) 1956
Lecerf (br0290) 2008; 19
Bostan, Dumont, Salvy (br0050) 2015
Stanley (br0390) 1999
Hautus, Klarner (br0250) 1971; 38
Lairez (br0280) 2016; 85
Bronstein (br0120) 1992; 2
Safonov (br0370) 1987; 41
Trager (br0400) 1976
Denef, Lipshitz (br0190) 1987; 26
Bürgisser, Clausen, Shokrollahi (br0130) 1997; vol. 315
Pochekutov (br0340) 2009; 50
Bostan, Chen, Chyzak, Li (br0030) 2010
Yap (br0430) 2000
Gessel (br0230) 1980; 28
Schönhage, A., 1982. The fundamental theorem of algebra in terms of computational complexity. Tech. rep., Tübingen.
von zur Gathen, Gerhard (br0220) 2003
Haible, B., 1997. The diagonal of a rational function, preprint.
Canny, Kaltofen, Lakshman (br0140) 1989
Bousquet-Mélou (10.1016/j.jsc.2016.11.006_br0100) 2008; 57
Lairez (10.1016/j.jsc.2016.11.006_br0280) 2016; 85
Pan (10.1016/j.jsc.2016.11.006_br0320) 1994; 18
Walker (10.1016/j.jsc.2016.11.006_br0420) 1978
Christol (10.1016/j.jsc.2016.11.006_br0150) 1985
Rothstein (10.1016/j.jsc.2016.11.006_br0360) 1976
Trager (10.1016/j.jsc.2016.11.006_br0400) 1976
Fliess (10.1016/j.jsc.2016.11.006_br0200) 1974; 102
Safonov (10.1016/j.jsc.2016.11.006_br0370) 1987; 41
Canny (10.1016/j.jsc.2016.11.006_br0140) 1989
Deligne (10.1016/j.jsc.2016.11.006_br0180) 1984; 76
Lecerf (10.1016/j.jsc.2016.11.006_br0300) 2003; 5
Pochekutov (10.1016/j.jsc.2016.11.006_br0340) 2009; 50
Chudnovsky (10.1016/j.jsc.2016.11.006_br0170) 1987; 3
Ince (10.1016/j.jsc.2016.11.006_br0270) 1956
van der Waerden (10.1016/j.jsc.2016.11.006_br0410) 1949
Yap (10.1016/j.jsc.2016.11.006_br0430) 2000
Chudnovsky (10.1016/j.jsc.2016.11.006_br0160) 1986; 2
van der Hoeven (10.1016/j.jsc.2016.11.006_br0260) 2013; 24
Denef (10.1016/j.jsc.2016.11.006_br0190) 1987; 26
Stanley (10.1016/j.jsc.2016.11.006_br0390) 1999
Bostan (10.1016/j.jsc.2016.11.006_br0040) 2007
Adamczewski (10.1016/j.jsc.2016.11.006_br0010) 2013; 46
von zur Gathen (10.1016/j.jsc.2016.11.006_br0220) 2003
10.1016/j.jsc.2016.11.006_br0380
10.1016/j.jsc.2016.11.006_br0240
Pan (10.1016/j.jsc.2016.11.006_br0330) 2000; 6
Bostan (10.1016/j.jsc.2016.11.006_br0060) 2006; 41
Bronstein (10.1016/j.jsc.2016.11.006_br0120) 1992; 2
Bousquet-Mélou (10.1016/j.jsc.2016.11.006_br0090) 2006
Bürgisser (10.1016/j.jsc.2016.11.006_br0130) 1997; vol. 315
Gessel (10.1016/j.jsc.2016.11.006_br0230) 1980; 28
Bousquet-Mélou (10.1016/j.jsc.2016.11.006_br0110) 2000; 225
Bostan (10.1016/j.jsc.2016.11.006_br0030) 2010
Bostan (10.1016/j.jsc.2016.11.006_br0050) 2015
Hautus (10.1016/j.jsc.2016.11.006_br0250) 1971; 38
Bostan (10.1016/j.jsc.2016.11.006_br0070) 2013
Furstenberg (10.1016/j.jsc.2016.11.006_br0210) 1967; 7
Lecerf (10.1016/j.jsc.2016.11.006_br0290) 2008; 19
Banderier (10.1016/j.jsc.2016.11.006_br0020) 2002; 281
Lipshitz (10.1016/j.jsc.2016.11.006_br0310) 1988; 113
Pólya (10.1016/j.jsc.2016.11.006_br0350) 1921; 22
Bostan (10.1016/j.jsc.2016.11.006_br0080) 2005; 21
References_xml – year: 1956
  ident: br0270
  article-title: Ordinary Differential Equations
– reference: Schönhage, A., 1982. The fundamental theorem of algebra in terms of computational complexity. Tech. rep., Tübingen.
– volume: 7
  start-page: 271
  year: 1967
  end-page: 277
  ident: br0210
  article-title: Algebraic functions over finite fields
  publication-title: J. Algebra
– year: 1978
  ident: br0420
  article-title: Algebraic Curves
– volume: 46
  start-page: 963
  year: 2013
  end-page: 1004
  ident: br0010
  article-title: Diagonalization and rationalization of algebraic Laurent series
  publication-title: Ann. Sci. Éc. Norm. Supér. (4)
– volume: 281
  start-page: 37
  year: 2002
  end-page: 80
  ident: br0020
  article-title: Basic analytic combinatorics of directed lattice paths
  publication-title: Theor. Comput. Sci.
– start-page: 203
  year: 2010
  end-page: 210
  ident: br0030
  article-title: Complexity of creative telescoping for bivariate rational functions
  publication-title: ISSAC'10
– volume: 50
  start-page: 1370
  year: 2009
  end-page: 1383
  ident: br0340
  article-title: Diagonals of the Laurent series of rational functions
  publication-title: Sib. Mat. Zh.
– volume: 18
  start-page: 183
  year: 1994
  end-page: 186
  ident: br0320
  article-title: Simple multivariate polynomial multiplication
  publication-title: J. Symb. Comput.
– volume: 102
  start-page: 181
  year: 1974
  end-page: 191
  ident: br0200
  article-title: Sur divers produits de séries formelles
  publication-title: Bull. Soc. Math. Fr.
– year: 2000
  ident: br0430
  article-title: Fundamental Problems of Algorithmic Algebra
– volume: 19
  start-page: 135
  year: 2008
  end-page: 160
  ident: br0290
  article-title: Fast separable factorization and applications
  publication-title: Appl. Algebra Eng. Commun. Comput.
– volume: 6
  start-page: 93
  year: 2000
  end-page: 118
  ident: br0330
  article-title: New techniques for the computation of linear recurrence coefficients
  publication-title: Finite Fields Appl.
– year: 2003
  ident: br0220
  article-title: Modern Computer Algebra
– start-page: 219
  year: 1976
  end-page: 226
  ident: br0400
  article-title: Algebraic factoring and rational function integration, SYMSAC'76
– volume: vol. 315
  year: 1997
  ident: br0130
  article-title: Algebraic Complexity Theory
  publication-title: Grundlehren der Mathematischen Wissenschaften
– volume: 28
  start-page: 321
  year: 1980
  end-page: 337
  ident: br0230
  article-title: A factorization for formal Laurent series and lattice path enumeration
  publication-title: J. Comb. Theory, Ser. A
– volume: 41
  start-page: 1
  year: 2006
  end-page: 29
  ident: br0060
  article-title: Fast computation of special resultants
  publication-title: J. Symb. Comput.
– volume: 113
  start-page: 373
  year: 1988
  end-page: 378
  ident: br0310
  article-title: The diagonal of a
  publication-title: J. Algebra
– start-page: 789
  year: 2006
  end-page: 826
  ident: br0090
  article-title: Rational and algebraic series in combinatorial enumeration
  publication-title: International Congress of Mathematicians
– year: 1949
  ident: br0410
  article-title: Modern Algebra, vol. I
– volume: 2
  start-page: 271
  year: 1986
  end-page: 294
  ident: br0160
  article-title: On expansion of algebraic functions in power and Puiseux series, I
  publication-title: J. Complex.
– volume: 3
  start-page: 1
  year: 1987
  end-page: 25
  ident: br0170
  article-title: On expansion of algebraic functions in power and Puiseux series, II
  publication-title: J. Complex.
– volume: 21
  start-page: 420
  year: 2005
  end-page: 446
  ident: br0080
  article-title: Polynomial evaluation and interpolation on special sets of points
  publication-title: J. Complex.
– volume: 225
  start-page: 51
  year: 2000
  end-page: 75
  ident: br0110
  article-title: Linear recurrences with constant coefficients: the multivariate case
  publication-title: Discrete Math.
– volume: 41
  start-page: 325
  year: 1987
  end-page: 332
  ident: br0370
  article-title: On conditions for the sum of a power series to be algebraic and rational
  publication-title: Mat. Zametki
– volume: 26
  start-page: 46
  year: 1987
  end-page: 67
  ident: br0190
  article-title: Algebraic power series and diagonals
  publication-title: J. Number Theory
– volume: 24
  start-page: 37
  year: 2013
  end-page: 52
  ident: br0260
  article-title: Multi-point evaluation in higher dimensions
  publication-title: Appl. Algebra Eng. Commun. Comput.
– start-page: 121
  year: 1989
  end-page: 128
  ident: br0140
  article-title: Solving systems of nonlinear polynomial equations faster
  publication-title: ISSAC'89
– volume: 2
  start-page: 195
  year: 1992
  end-page: 206
  ident: br0120
  article-title: Formulas for series computations
  publication-title: Appl. Algebra Eng. Commun. Comput.
– volume: 5
  start-page: 1
  year: 2003
  end-page: 10
  ident: br0300
  article-title: Fast multivariate power series multiplication in characteristic zero
  publication-title: SADIO Electron. J. Inform. Oper. Res.
– start-page: 77
  year: 2015
  end-page: 84
  ident: br0050
  article-title: Algebraic diagonals and walks
  publication-title: ISSAC'15
– start-page: 1
  year: 1985
  end-page: 12
  ident: br0150
  article-title: Diagonales de fractions rationnelles et équations de Picard–Fuchs
  publication-title: Study Group on Ultrametric Analysis, 12th year, 1984/85, No. 1 (Exp. No. 13)
– reference: Haible, B., 1997. The diagonal of a rational function, preprint.
– volume: 38
  start-page: 229
  year: 1971
  end-page: 235
  ident: br0250
  article-title: The diagonal of a double power series
  publication-title: Duke Math. J.
– volume: 22
  start-page: 38
  year: 1921
  end-page: 47
  ident: br0350
  article-title: Sur les séries entières, dont la somme est une fonction algébrique
  publication-title: Enseign. Math.
– volume: 57
  year: 2008
  ident: br0100
  article-title: Discrete excursions
  publication-title: Sémin. Lothar. Comb.
– year: 1999
  ident: br0390
  article-title: Enumerative Combinatorics, vol. 2
– volume: 76
  start-page: 129
  year: 1984
  end-page: 143
  ident: br0180
  article-title: Intégration sur un cycle évanescent
  publication-title: Invent. Math.
– start-page: 93
  year: 2013
  end-page: 100
  ident: br0070
  article-title: Creative telescoping for rational functions using the Griffiths–Dwork method
  publication-title: ISSAC'13
– start-page: 25
  year: 2007
  end-page: 32
  ident: br0040
  article-title: Differential equations for algebraic functions
  publication-title: ISSAC'07
– volume: 85
  start-page: 1719
  year: 2016
  end-page: 1752
  ident: br0280
  article-title: Computing periods of rational integrals
  publication-title: Math. Comput.
– year: 1976
  ident: br0360
  article-title: Aspects of Symbolic Integration and Simplification of Exponential and Primitive Functions
– volume: 5
  start-page: 1
  year: 2003
  ident: 10.1016/j.jsc.2016.11.006_br0300
  article-title: Fast multivariate power series multiplication in characteristic zero
  publication-title: SADIO Electron. J. Inform. Oper. Res.
– start-page: 25
  year: 2007
  ident: 10.1016/j.jsc.2016.11.006_br0040
  article-title: Differential equations for algebraic functions
– start-page: 77
  year: 2015
  ident: 10.1016/j.jsc.2016.11.006_br0050
  article-title: Algebraic diagonals and walks
– volume: 85
  start-page: 1719
  issue: 300
  year: 2016
  ident: 10.1016/j.jsc.2016.11.006_br0280
  article-title: Computing periods of rational integrals
  publication-title: Math. Comput.
  doi: 10.1090/mcom/3054
– year: 1976
  ident: 10.1016/j.jsc.2016.11.006_br0360
– volume: 2
  start-page: 195
  issue: 3
  year: 1992
  ident: 10.1016/j.jsc.2016.11.006_br0120
  article-title: Formulas for series computations
  publication-title: Appl. Algebra Eng. Commun. Comput.
  doi: 10.1007/BF01294333
– start-page: 121
  year: 1989
  ident: 10.1016/j.jsc.2016.11.006_br0140
  article-title: Solving systems of nonlinear polynomial equations faster
– ident: 10.1016/j.jsc.2016.11.006_br0380
– volume: 7
  start-page: 271
  issue: 2
  year: 1967
  ident: 10.1016/j.jsc.2016.11.006_br0210
  article-title: Algebraic functions over finite fields
  publication-title: J. Algebra
  doi: 10.1016/0021-8693(67)90061-0
– ident: 10.1016/j.jsc.2016.11.006_br0240
– volume: vol. 315
  year: 1997
  ident: 10.1016/j.jsc.2016.11.006_br0130
  article-title: Algebraic Complexity Theory
– volume: 76
  start-page: 129
  issue: 1
  year: 1984
  ident: 10.1016/j.jsc.2016.11.006_br0180
  article-title: Intégration sur un cycle évanescent
  publication-title: Invent. Math.
  doi: 10.1007/BF01388496
– volume: 57
  year: 2008
  ident: 10.1016/j.jsc.2016.11.006_br0100
  article-title: Discrete excursions
  publication-title: Sémin. Lothar. Comb.
– start-page: 789
  year: 2006
  ident: 10.1016/j.jsc.2016.11.006_br0090
  article-title: Rational and algebraic series in combinatorial enumeration
– volume: 26
  start-page: 46
  issue: 1
  year: 1987
  ident: 10.1016/j.jsc.2016.11.006_br0190
  article-title: Algebraic power series and diagonals
  publication-title: J. Number Theory
  doi: 10.1016/0022-314X(87)90095-3
– volume: 50
  start-page: 1370
  issue: 6
  year: 2009
  ident: 10.1016/j.jsc.2016.11.006_br0340
  article-title: Diagonals of the Laurent series of rational functions
  publication-title: Sib. Mat. Zh.
  doi: 10.1007/s11202-009-0119-z
– volume: 2
  start-page: 271
  issue: 4
  year: 1986
  ident: 10.1016/j.jsc.2016.11.006_br0160
  article-title: On expansion of algebraic functions in power and Puiseux series, I
  publication-title: J. Complex.
  doi: 10.1016/0885-064X(86)90006-3
– volume: 22
  start-page: 38
  year: 1921
  ident: 10.1016/j.jsc.2016.11.006_br0350
  article-title: Sur les séries entières, dont la somme est une fonction algébrique
  publication-title: Enseign. Math.
– volume: 46
  start-page: 963
  issue: 6
  year: 2013
  ident: 10.1016/j.jsc.2016.11.006_br0010
  article-title: Diagonalization and rationalization of algebraic Laurent series
  publication-title: Ann. Sci. Éc. Norm. Supér. (4)
  doi: 10.24033/asens.2207
– year: 1999
  ident: 10.1016/j.jsc.2016.11.006_br0390
– start-page: 93
  year: 2013
  ident: 10.1016/j.jsc.2016.11.006_br0070
  article-title: Creative telescoping for rational functions using the Griffiths–Dwork method
– volume: 19
  start-page: 135
  issue: 2
  year: 2008
  ident: 10.1016/j.jsc.2016.11.006_br0290
  article-title: Fast separable factorization and applications
  publication-title: Appl. Algebra Eng. Commun. Comput.
  doi: 10.1007/s00200-008-0062-4
– start-page: 219
  year: 1976
  ident: 10.1016/j.jsc.2016.11.006_br0400
– volume: 21
  start-page: 420
  issue: 4
  year: 2005
  ident: 10.1016/j.jsc.2016.11.006_br0080
  article-title: Polynomial evaluation and interpolation on special sets of points
  publication-title: J. Complex.
  doi: 10.1016/j.jco.2004.09.009
– volume: 38
  start-page: 229
  year: 1971
  ident: 10.1016/j.jsc.2016.11.006_br0250
  article-title: The diagonal of a double power series
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-71-03829-4
– volume: 18
  start-page: 183
  issue: 3
  year: 1994
  ident: 10.1016/j.jsc.2016.11.006_br0320
  article-title: Simple multivariate polynomial multiplication
  publication-title: J. Symb. Comput.
  doi: 10.1006/jsco.1994.1042
– volume: 113
  start-page: 373
  issue: 2
  year: 1988
  ident: 10.1016/j.jsc.2016.11.006_br0310
  article-title: The diagonal of a D-finite power series is D-finite
  publication-title: J. Algebra
  doi: 10.1016/0021-8693(88)90166-4
– start-page: 1
  year: 1985
  ident: 10.1016/j.jsc.2016.11.006_br0150
  article-title: Diagonales de fractions rationnelles et équations de Picard–Fuchs
– year: 1949
  ident: 10.1016/j.jsc.2016.11.006_br0410
– start-page: 203
  year: 2010
  ident: 10.1016/j.jsc.2016.11.006_br0030
  article-title: Complexity of creative telescoping for bivariate rational functions
– volume: 102
  start-page: 181
  year: 1974
  ident: 10.1016/j.jsc.2016.11.006_br0200
  article-title: Sur divers produits de séries formelles
  publication-title: Bull. Soc. Math. Fr.
  doi: 10.24033/bsmf.1777
– volume: 28
  start-page: 321
  issue: 3
  year: 1980
  ident: 10.1016/j.jsc.2016.11.006_br0230
  article-title: A factorization for formal Laurent series and lattice path enumeration
  publication-title: J. Comb. Theory, Ser. A
  doi: 10.1016/0097-3165(80)90074-6
– year: 1956
  ident: 10.1016/j.jsc.2016.11.006_br0270
– volume: 225
  start-page: 51
  issue: 1–3
  year: 2000
  ident: 10.1016/j.jsc.2016.11.006_br0110
  article-title: Linear recurrences with constant coefficients: the multivariate case
  publication-title: Discrete Math.
  doi: 10.1016/S0012-365X(00)00147-3
– volume: 3
  start-page: 1
  issue: 1
  year: 1987
  ident: 10.1016/j.jsc.2016.11.006_br0170
  article-title: On expansion of algebraic functions in power and Puiseux series, II
  publication-title: J. Complex.
  doi: 10.1016/0885-064X(87)90002-1
– year: 1978
  ident: 10.1016/j.jsc.2016.11.006_br0420
– volume: 24
  start-page: 37
  issue: 1
  year: 2013
  ident: 10.1016/j.jsc.2016.11.006_br0260
  article-title: Multi-point evaluation in higher dimensions
  publication-title: Appl. Algebra Eng. Commun. Comput.
  doi: 10.1007/s00200-012-0179-3
– volume: 6
  start-page: 93
  issue: 1
  year: 2000
  ident: 10.1016/j.jsc.2016.11.006_br0330
  article-title: New techniques for the computation of linear recurrence coefficients
  publication-title: Finite Fields Appl.
  doi: 10.1006/ffta.1999.0267
– year: 2000
  ident: 10.1016/j.jsc.2016.11.006_br0430
– volume: 281
  start-page: 37
  issue: 1–2
  year: 2002
  ident: 10.1016/j.jsc.2016.11.006_br0020
  article-title: Basic analytic combinatorics of directed lattice paths
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/S0304-3975(02)00007-5
– volume: 41
  start-page: 325
  issue: 3
  year: 1987
  ident: 10.1016/j.jsc.2016.11.006_br0370
  article-title: On conditions for the sum of a power series to be algebraic and rational
  publication-title: Mat. Zametki
– volume: 41
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.jsc.2016.11.006_br0060
  article-title: Fast computation of special resultants
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2005.07.001
– year: 2003
  ident: 10.1016/j.jsc.2016.11.006_br0220
SSID ssj0009435
Score 2.1583035
Snippet The diagonal of a multivariate power series F is the univariate power series DiagF generated by the diagonal terms of F. Diagonals form an important class of...
The diagonal of a multivariate power series F is the univariate power series Diag(F) generated by the diagonal terms of F. Diagonals form an important class of...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 68
SubjectTerms Algorithms
Computer Science
Diagonals
Symbolic Computation
Walks
Title Algebraic diagonals and walks: Algorithms, bounds, complexity
URI https://dx.doi.org/10.1016/j.jsc.2016.11.006
https://hal.science/hal-01244914
Volume 83
WOSCitedRecordID wos000402227900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1095-855X
  dateEnd: 20180228
  omitProxy: false
  ssIdentifier: ssj0009435
  issn: 0747-7171
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQcupbxEC0UW4oSaKomdh7lFUFQQqpBapL1FduJss6RJtZvdLv-emTiPbaEVPXCJIiu2nHyfxjNj5xtC3qGqluAss8AdCC0ulbRkqlyLw9oLCyqXIgmbYhPByUk4mYjvo9Fp9y_MqgjKMlyvxeV_hRraAGz8dfYecPeDQgPcA-hwBdjh-k_AR8UUN4PzBPOq06rRR8bs-JUsfi5MVn5azfP63CRZFNZVau6a0-V6ndfXdno3PNbFrwuFMsLNk8vre_go0GFyqVGR962flvDaJvavlnnvvp_KwlRKRt2DajPxAIuZ0ycejH2CSMSCaNDZNKYh27CGpmBOu66aknd_WGyTPJgdzhYoKOn4h6ipav9FHfvGqtWfJeyOqc1iGCLGISCqiRsZ9i038EQ4JlvRl6PJ10GLmZu6q938u83u5tjfjXnc5q48OO8S740jcrZDtls8aGSQf0JGunxKHnfVOWhrrJ-RgQi0JwIFItCGCB_oQIMDakhwQAcKPCc_Ph-dfTy22mIZVsICXlsOC0TqozhPqBQXUolM2YlMPSlUajOhvUDbGhzSzJeSMVdIN5SJkMzLIMT3GXtBxmVV6peEup520BpDtCt5mmYiADfP51r7DHoIvkvs7pvESaskjwVNivhWLHbJ-77LpZFRueth3n3ouPUDjX8XA2nu6vYWQOmHR9304-hbjG02erHC4Stn7z4TeUUeDcR_Tcb1fKn3ycNkVeeL-ZuWVr8Bpq-G2A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algebraic+diagonals+and+walks%3A+Algorithms%2C+bounds%2C+complexity&rft.jtitle=Journal+of+symbolic+computation&rft.au=Bostan%2C+Alin&rft.au=Dumont%2C+Louis&rft.au=Salvy%2C+Bruno&rft.date=2017-11-01&rft.issn=0747-7171&rft.volume=83&rft.spage=68&rft.epage=92&rft_id=info:doi/10.1016%2Fj.jsc.2016.11.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jsc_2016_11_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-7171&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-7171&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-7171&client=summon