Algebraic diagonals and walks: Algorithms, bounds, complexity
The diagonal of a multivariate power series F is the univariate power series DiagF generated by the diagonal terms of F. Diagonals form an important class of power series; they occur frequently in number theory, theoretical physics and enumerative combinatorics. We study algorithmic questions relate...
Gespeichert in:
| Veröffentlicht in: | Journal of symbolic computation Jg. 83; S. 68 - 92 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.11.2017
Elsevier |
| Schriftenreihe: | Special issue on the conference ISSAC 2015: Symbolic computation and computer algebra |
| Schlagworte: | |
| ISSN: | 0747-7171, 1095-855X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The diagonal of a multivariate power series F is the univariate power series DiagF generated by the diagonal terms of F. Diagonals form an important class of power series; they occur frequently in number theory, theoretical physics and enumerative combinatorics. We study algorithmic questions related to diagonals in the case where F is the Taylor expansion of a bivariate rational function. It is classical that in this case DiagF is an algebraic function. We propose an algorithm that computes an annihilating polynomial for DiagF. We give a precise bound on the size of this polynomial and show that, generically, this polynomial is the minimal polynomial and that its size reaches the bound. The algorithm runs in time quasi-linear in this bound, which grows exponentially with the degree of the input rational function. We then address the related problem of enumerating directed lattice walks. The insight given by our study leads to a new method for expanding the generating power series of bridges, excursions and meanders. We show that their first N terms can be computed in quasi-linear complexity in N, without first computing a very large polynomial equation. |
|---|---|
| AbstractList | The diagonal of a multivariate power series F is the univariate power series DiagF generated by the diagonal terms of F. Diagonals form an important class of power series; they occur frequently in number theory, theoretical physics and enumerative combinatorics. We study algorithmic questions related to diagonals in the case where F is the Taylor expansion of a bivariate rational function. It is classical that in this case DiagF is an algebraic function. We propose an algorithm that computes an annihilating polynomial for DiagF. We give a precise bound on the size of this polynomial and show that, generically, this polynomial is the minimal polynomial and that its size reaches the bound. The algorithm runs in time quasi-linear in this bound, which grows exponentially with the degree of the input rational function. We then address the related problem of enumerating directed lattice walks. The insight given by our study leads to a new method for expanding the generating power series of bridges, excursions and meanders. We show that their first N terms can be computed in quasi-linear complexity in N, without first computing a very large polynomial equation. The diagonal of a multivariate power series F is the univariate power series Diag(F) generated by the diagonal terms of F. Diagonals form an important class of power series; they occur frequently in number theory, theoretical physics and enumerative combinatorics. We study algorithmic questions related to diagonals in the case where F is the Taylor expansion of a bivariate rational function. It is classical that in this case Diag(F) is an algebraic function. We propose an algorithm that computes an annihilating polynomial for Diag(F). We give a precise bound on the size of this polynomial and show that generically, this polynomial is the minimal polynomial and that its size reaches the bound. The algorithm runs in time quasi-linear in this bound, which grows exponentially with the degree of the input rational function. We then address the related problem of enumerating directed lattice walks. The insight given by our study leads to a new method for expanding the generating power series of bridges, excursions and meanders. We show that their first N terms can be computed in quasi-linear complexity in N, without first computing a very large polynomial equation. |
| Author | Dumont, Louis Bostan, Alin Salvy, Bruno |
| Author_xml | – sequence: 1 givenname: Alin surname: Bostan fullname: Bostan, Alin email: alin.bostan@inria.fr organization: Inria, France – sequence: 2 givenname: Louis surname: Dumont fullname: Dumont, Louis email: louis.dumont@inria.fr organization: Inria, France – sequence: 3 givenname: Bruno surname: Salvy fullname: Salvy, Bruno email: bruno.salvy@inria.fr organization: Inria, France |
| BackLink | https://hal.science/hal-01244914$$DView record in HAL |
| BookMark | eNp9kMFKAzEQhoNUsK0-gLe9Cu6abJJNo3goRa1Q8KLgLcwm2TbrdlM2a7Vvb0rFg4eeZpj5v4H5RmjQ-tYidElwRjApbuqsDjrLY5sRkmFcnKAhwZKnE87fB2iIBROpIIKcoVEINcZYMsqH6H7aLG3ZgdOJcbD0LTQhgdYkX9B8hNskrn3n-tU6XCel_2xNrNqvN439dv3uHJ1WEbAXv3WM3h4fXmfzdPHy9DybLlJNBetTQoU0BaeimJQlk1DKqsQaDAdZGkyl5cJiiwtaFQCU5hLyCWgJlFcMy4LSMbo63F1BozadW0O3Ux6cmk8Xaj_DJGdMErYlMUsOWd35EDpb_QEEq70rVavoSu1dKUJUdBUZ8Y_Rrofe-baPapqj5N2BtPH9rbOdCtrZVlvjOqt7Zbw7Qv8AjV2E2g |
| CitedBy_id | crossref_primary_10_1007_s10208_018_09411_x crossref_primary_10_1007_s10208_021_09523_x |
| Cites_doi | 10.1090/mcom/3054 10.1007/BF01294333 10.1016/0021-8693(67)90061-0 10.1007/BF01388496 10.1016/0022-314X(87)90095-3 10.1007/s11202-009-0119-z 10.1016/0885-064X(86)90006-3 10.24033/asens.2207 10.1007/s00200-008-0062-4 10.1016/j.jco.2004.09.009 10.1215/S0012-7094-71-03829-4 10.1006/jsco.1994.1042 10.1016/0021-8693(88)90166-4 10.24033/bsmf.1777 10.1016/0097-3165(80)90074-6 10.1016/S0012-365X(00)00147-3 10.1016/0885-064X(87)90002-1 10.1007/s00200-012-0179-3 10.1006/ffta.1999.0267 10.1016/S0304-3975(02)00007-5 10.1016/j.jsc.2005.07.001 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC |
| DOI | 10.1016/j.jsc.2016.11.006 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1095-855X |
| EndPage | 92 |
| ExternalDocumentID | oai:HAL:hal-01244914v1 10_1016_j_jsc_2016_11_006 S0747717116301250 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6I. 6OB 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE IXB J1W KOM LG5 M25 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSV SSW SSZ T5K TN5 UPT WUQ XPP YQT ZMT ZU3 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 1XC |
| ID | FETCH-LOGICAL-c374t-1379d653768bb49ab9fb0cad5a9bd039e57e0e063f6aa3329a28ac9a35f409633 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000402227900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0747-7171 |
| IngestDate | Sat Oct 25 11:13:56 EDT 2025 Tue Nov 18 21:02:58 EST 2025 Sat Nov 29 07:10:28 EST 2025 Fri Feb 23 02:31:31 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | 68W30 33F10 Algorithms 05A15 Walks Diagonals walks algorithms |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c374t-1379d653768bb49ab9fb0cad5a9bd039e57e0e063f6aa3329a28ac9a35f409633 |
| ORCID | 0000-0002-4313-0679 |
| OpenAccessLink | https://doi.org/10.1016/j.jsc.2016.11.006 |
| PageCount | 25 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01244914v1 crossref_primary_10_1016_j_jsc_2016_11_006 crossref_citationtrail_10_1016_j_jsc_2016_11_006 elsevier_sciencedirect_doi_10_1016_j_jsc_2016_11_006 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-11-01 |
| PublicationDateYYYYMMDD | 2017-11-01 |
| PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationSeriesTitle | Special issue on the conference ISSAC 2015: Symbolic computation and computer algebra |
| PublicationTitle | Journal of symbolic computation |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Deligne (br0180) 1984; 76 Christol (br0150) 1985 Lecerf, Schost (br0300) 2003; 5 Banderier, Flajolet (br0020) 2002; 281 Lipshitz (br0310) 1988; 113 Pan (br0320) 1994; 18 Bousquet-Mélou, Petkovšek (br0110) 2000; 225 Furstenberg (br0210) 1967; 7 van der Waerden (br0410) 1949 Chudnovsky, Chudnovsky (br0160) 1986; 2 Bousquet-Mélou (br0100) 2008; 57 Adamczewski, Bell (br0010) 2013; 46 Chudnovsky, Chudnovsky (br0170) 1987; 3 Pólya (br0350) 1921; 22 Rothstein (br0360) 1976 Bostan, Flajolet, Salvy, Schost (br0060) 2006; 41 van der Hoeven, Schost (br0260) 2013; 24 Walker (br0420) 1978 Bousquet-Mélou (br0090) 2006 Pan (br0330) 2000; 6 Bostan, Lairez, Salvy (br0070) 2013 Bostan, Schost (br0080) 2005; 21 Bostan, Chyzak, Lecerf, Salvy, Schost (br0040) 2007 Fliess (br0200) 1974; 102 Ince (br0270) 1956 Lecerf (br0290) 2008; 19 Bostan, Dumont, Salvy (br0050) 2015 Stanley (br0390) 1999 Hautus, Klarner (br0250) 1971; 38 Lairez (br0280) 2016; 85 Bronstein (br0120) 1992; 2 Safonov (br0370) 1987; 41 Trager (br0400) 1976 Denef, Lipshitz (br0190) 1987; 26 Bürgisser, Clausen, Shokrollahi (br0130) 1997; vol. 315 Pochekutov (br0340) 2009; 50 Bostan, Chen, Chyzak, Li (br0030) 2010 Yap (br0430) 2000 Gessel (br0230) 1980; 28 Schönhage, A., 1982. The fundamental theorem of algebra in terms of computational complexity. Tech. rep., Tübingen. von zur Gathen, Gerhard (br0220) 2003 Haible, B., 1997. The diagonal of a rational function, preprint. Canny, Kaltofen, Lakshman (br0140) 1989 Bousquet-Mélou (10.1016/j.jsc.2016.11.006_br0100) 2008; 57 Lairez (10.1016/j.jsc.2016.11.006_br0280) 2016; 85 Pan (10.1016/j.jsc.2016.11.006_br0320) 1994; 18 Walker (10.1016/j.jsc.2016.11.006_br0420) 1978 Christol (10.1016/j.jsc.2016.11.006_br0150) 1985 Rothstein (10.1016/j.jsc.2016.11.006_br0360) 1976 Trager (10.1016/j.jsc.2016.11.006_br0400) 1976 Fliess (10.1016/j.jsc.2016.11.006_br0200) 1974; 102 Safonov (10.1016/j.jsc.2016.11.006_br0370) 1987; 41 Canny (10.1016/j.jsc.2016.11.006_br0140) 1989 Deligne (10.1016/j.jsc.2016.11.006_br0180) 1984; 76 Lecerf (10.1016/j.jsc.2016.11.006_br0300) 2003; 5 Pochekutov (10.1016/j.jsc.2016.11.006_br0340) 2009; 50 Chudnovsky (10.1016/j.jsc.2016.11.006_br0170) 1987; 3 Ince (10.1016/j.jsc.2016.11.006_br0270) 1956 van der Waerden (10.1016/j.jsc.2016.11.006_br0410) 1949 Yap (10.1016/j.jsc.2016.11.006_br0430) 2000 Chudnovsky (10.1016/j.jsc.2016.11.006_br0160) 1986; 2 van der Hoeven (10.1016/j.jsc.2016.11.006_br0260) 2013; 24 Denef (10.1016/j.jsc.2016.11.006_br0190) 1987; 26 Stanley (10.1016/j.jsc.2016.11.006_br0390) 1999 Bostan (10.1016/j.jsc.2016.11.006_br0040) 2007 Adamczewski (10.1016/j.jsc.2016.11.006_br0010) 2013; 46 von zur Gathen (10.1016/j.jsc.2016.11.006_br0220) 2003 10.1016/j.jsc.2016.11.006_br0380 10.1016/j.jsc.2016.11.006_br0240 Pan (10.1016/j.jsc.2016.11.006_br0330) 2000; 6 Bostan (10.1016/j.jsc.2016.11.006_br0060) 2006; 41 Bronstein (10.1016/j.jsc.2016.11.006_br0120) 1992; 2 Bousquet-Mélou (10.1016/j.jsc.2016.11.006_br0090) 2006 Bürgisser (10.1016/j.jsc.2016.11.006_br0130) 1997; vol. 315 Gessel (10.1016/j.jsc.2016.11.006_br0230) 1980; 28 Bousquet-Mélou (10.1016/j.jsc.2016.11.006_br0110) 2000; 225 Bostan (10.1016/j.jsc.2016.11.006_br0030) 2010 Bostan (10.1016/j.jsc.2016.11.006_br0050) 2015 Hautus (10.1016/j.jsc.2016.11.006_br0250) 1971; 38 Bostan (10.1016/j.jsc.2016.11.006_br0070) 2013 Furstenberg (10.1016/j.jsc.2016.11.006_br0210) 1967; 7 Lecerf (10.1016/j.jsc.2016.11.006_br0290) 2008; 19 Banderier (10.1016/j.jsc.2016.11.006_br0020) 2002; 281 Lipshitz (10.1016/j.jsc.2016.11.006_br0310) 1988; 113 Pólya (10.1016/j.jsc.2016.11.006_br0350) 1921; 22 Bostan (10.1016/j.jsc.2016.11.006_br0080) 2005; 21 |
| References_xml | – year: 1956 ident: br0270 article-title: Ordinary Differential Equations – reference: Schönhage, A., 1982. The fundamental theorem of algebra in terms of computational complexity. Tech. rep., Tübingen. – volume: 7 start-page: 271 year: 1967 end-page: 277 ident: br0210 article-title: Algebraic functions over finite fields publication-title: J. Algebra – year: 1978 ident: br0420 article-title: Algebraic Curves – volume: 46 start-page: 963 year: 2013 end-page: 1004 ident: br0010 article-title: Diagonalization and rationalization of algebraic Laurent series publication-title: Ann. Sci. Éc. Norm. Supér. (4) – volume: 281 start-page: 37 year: 2002 end-page: 80 ident: br0020 article-title: Basic analytic combinatorics of directed lattice paths publication-title: Theor. Comput. Sci. – start-page: 203 year: 2010 end-page: 210 ident: br0030 article-title: Complexity of creative telescoping for bivariate rational functions publication-title: ISSAC'10 – volume: 50 start-page: 1370 year: 2009 end-page: 1383 ident: br0340 article-title: Diagonals of the Laurent series of rational functions publication-title: Sib. Mat. Zh. – volume: 18 start-page: 183 year: 1994 end-page: 186 ident: br0320 article-title: Simple multivariate polynomial multiplication publication-title: J. Symb. Comput. – volume: 102 start-page: 181 year: 1974 end-page: 191 ident: br0200 article-title: Sur divers produits de séries formelles publication-title: Bull. Soc. Math. Fr. – year: 2000 ident: br0430 article-title: Fundamental Problems of Algorithmic Algebra – volume: 19 start-page: 135 year: 2008 end-page: 160 ident: br0290 article-title: Fast separable factorization and applications publication-title: Appl. Algebra Eng. Commun. Comput. – volume: 6 start-page: 93 year: 2000 end-page: 118 ident: br0330 article-title: New techniques for the computation of linear recurrence coefficients publication-title: Finite Fields Appl. – year: 2003 ident: br0220 article-title: Modern Computer Algebra – start-page: 219 year: 1976 end-page: 226 ident: br0400 article-title: Algebraic factoring and rational function integration, SYMSAC'76 – volume: vol. 315 year: 1997 ident: br0130 article-title: Algebraic Complexity Theory publication-title: Grundlehren der Mathematischen Wissenschaften – volume: 28 start-page: 321 year: 1980 end-page: 337 ident: br0230 article-title: A factorization for formal Laurent series and lattice path enumeration publication-title: J. Comb. Theory, Ser. A – volume: 41 start-page: 1 year: 2006 end-page: 29 ident: br0060 article-title: Fast computation of special resultants publication-title: J. Symb. Comput. – volume: 113 start-page: 373 year: 1988 end-page: 378 ident: br0310 article-title: The diagonal of a publication-title: J. Algebra – start-page: 789 year: 2006 end-page: 826 ident: br0090 article-title: Rational and algebraic series in combinatorial enumeration publication-title: International Congress of Mathematicians – year: 1949 ident: br0410 article-title: Modern Algebra, vol. I – volume: 2 start-page: 271 year: 1986 end-page: 294 ident: br0160 article-title: On expansion of algebraic functions in power and Puiseux series, I publication-title: J. Complex. – volume: 3 start-page: 1 year: 1987 end-page: 25 ident: br0170 article-title: On expansion of algebraic functions in power and Puiseux series, II publication-title: J. Complex. – volume: 21 start-page: 420 year: 2005 end-page: 446 ident: br0080 article-title: Polynomial evaluation and interpolation on special sets of points publication-title: J. Complex. – volume: 225 start-page: 51 year: 2000 end-page: 75 ident: br0110 article-title: Linear recurrences with constant coefficients: the multivariate case publication-title: Discrete Math. – volume: 41 start-page: 325 year: 1987 end-page: 332 ident: br0370 article-title: On conditions for the sum of a power series to be algebraic and rational publication-title: Mat. Zametki – volume: 26 start-page: 46 year: 1987 end-page: 67 ident: br0190 article-title: Algebraic power series and diagonals publication-title: J. Number Theory – volume: 24 start-page: 37 year: 2013 end-page: 52 ident: br0260 article-title: Multi-point evaluation in higher dimensions publication-title: Appl. Algebra Eng. Commun. Comput. – start-page: 121 year: 1989 end-page: 128 ident: br0140 article-title: Solving systems of nonlinear polynomial equations faster publication-title: ISSAC'89 – volume: 2 start-page: 195 year: 1992 end-page: 206 ident: br0120 article-title: Formulas for series computations publication-title: Appl. Algebra Eng. Commun. Comput. – volume: 5 start-page: 1 year: 2003 end-page: 10 ident: br0300 article-title: Fast multivariate power series multiplication in characteristic zero publication-title: SADIO Electron. J. Inform. Oper. Res. – start-page: 77 year: 2015 end-page: 84 ident: br0050 article-title: Algebraic diagonals and walks publication-title: ISSAC'15 – start-page: 1 year: 1985 end-page: 12 ident: br0150 article-title: Diagonales de fractions rationnelles et équations de Picard–Fuchs publication-title: Study Group on Ultrametric Analysis, 12th year, 1984/85, No. 1 (Exp. No. 13) – reference: Haible, B., 1997. The diagonal of a rational function, preprint. – volume: 38 start-page: 229 year: 1971 end-page: 235 ident: br0250 article-title: The diagonal of a double power series publication-title: Duke Math. J. – volume: 22 start-page: 38 year: 1921 end-page: 47 ident: br0350 article-title: Sur les séries entières, dont la somme est une fonction algébrique publication-title: Enseign. Math. – volume: 57 year: 2008 ident: br0100 article-title: Discrete excursions publication-title: Sémin. Lothar. Comb. – year: 1999 ident: br0390 article-title: Enumerative Combinatorics, vol. 2 – volume: 76 start-page: 129 year: 1984 end-page: 143 ident: br0180 article-title: Intégration sur un cycle évanescent publication-title: Invent. Math. – start-page: 93 year: 2013 end-page: 100 ident: br0070 article-title: Creative telescoping for rational functions using the Griffiths–Dwork method publication-title: ISSAC'13 – start-page: 25 year: 2007 end-page: 32 ident: br0040 article-title: Differential equations for algebraic functions publication-title: ISSAC'07 – volume: 85 start-page: 1719 year: 2016 end-page: 1752 ident: br0280 article-title: Computing periods of rational integrals publication-title: Math. Comput. – year: 1976 ident: br0360 article-title: Aspects of Symbolic Integration and Simplification of Exponential and Primitive Functions – volume: 5 start-page: 1 year: 2003 ident: 10.1016/j.jsc.2016.11.006_br0300 article-title: Fast multivariate power series multiplication in characteristic zero publication-title: SADIO Electron. J. Inform. Oper. Res. – start-page: 25 year: 2007 ident: 10.1016/j.jsc.2016.11.006_br0040 article-title: Differential equations for algebraic functions – start-page: 77 year: 2015 ident: 10.1016/j.jsc.2016.11.006_br0050 article-title: Algebraic diagonals and walks – volume: 85 start-page: 1719 issue: 300 year: 2016 ident: 10.1016/j.jsc.2016.11.006_br0280 article-title: Computing periods of rational integrals publication-title: Math. Comput. doi: 10.1090/mcom/3054 – year: 1976 ident: 10.1016/j.jsc.2016.11.006_br0360 – volume: 2 start-page: 195 issue: 3 year: 1992 ident: 10.1016/j.jsc.2016.11.006_br0120 article-title: Formulas for series computations publication-title: Appl. Algebra Eng. Commun. Comput. doi: 10.1007/BF01294333 – start-page: 121 year: 1989 ident: 10.1016/j.jsc.2016.11.006_br0140 article-title: Solving systems of nonlinear polynomial equations faster – ident: 10.1016/j.jsc.2016.11.006_br0380 – volume: 7 start-page: 271 issue: 2 year: 1967 ident: 10.1016/j.jsc.2016.11.006_br0210 article-title: Algebraic functions over finite fields publication-title: J. Algebra doi: 10.1016/0021-8693(67)90061-0 – ident: 10.1016/j.jsc.2016.11.006_br0240 – volume: vol. 315 year: 1997 ident: 10.1016/j.jsc.2016.11.006_br0130 article-title: Algebraic Complexity Theory – volume: 76 start-page: 129 issue: 1 year: 1984 ident: 10.1016/j.jsc.2016.11.006_br0180 article-title: Intégration sur un cycle évanescent publication-title: Invent. Math. doi: 10.1007/BF01388496 – volume: 57 year: 2008 ident: 10.1016/j.jsc.2016.11.006_br0100 article-title: Discrete excursions publication-title: Sémin. Lothar. Comb. – start-page: 789 year: 2006 ident: 10.1016/j.jsc.2016.11.006_br0090 article-title: Rational and algebraic series in combinatorial enumeration – volume: 26 start-page: 46 issue: 1 year: 1987 ident: 10.1016/j.jsc.2016.11.006_br0190 article-title: Algebraic power series and diagonals publication-title: J. Number Theory doi: 10.1016/0022-314X(87)90095-3 – volume: 50 start-page: 1370 issue: 6 year: 2009 ident: 10.1016/j.jsc.2016.11.006_br0340 article-title: Diagonals of the Laurent series of rational functions publication-title: Sib. Mat. Zh. doi: 10.1007/s11202-009-0119-z – volume: 2 start-page: 271 issue: 4 year: 1986 ident: 10.1016/j.jsc.2016.11.006_br0160 article-title: On expansion of algebraic functions in power and Puiseux series, I publication-title: J. Complex. doi: 10.1016/0885-064X(86)90006-3 – volume: 22 start-page: 38 year: 1921 ident: 10.1016/j.jsc.2016.11.006_br0350 article-title: Sur les séries entières, dont la somme est une fonction algébrique publication-title: Enseign. Math. – volume: 46 start-page: 963 issue: 6 year: 2013 ident: 10.1016/j.jsc.2016.11.006_br0010 article-title: Diagonalization and rationalization of algebraic Laurent series publication-title: Ann. Sci. Éc. Norm. Supér. (4) doi: 10.24033/asens.2207 – year: 1999 ident: 10.1016/j.jsc.2016.11.006_br0390 – start-page: 93 year: 2013 ident: 10.1016/j.jsc.2016.11.006_br0070 article-title: Creative telescoping for rational functions using the Griffiths–Dwork method – volume: 19 start-page: 135 issue: 2 year: 2008 ident: 10.1016/j.jsc.2016.11.006_br0290 article-title: Fast separable factorization and applications publication-title: Appl. Algebra Eng. Commun. Comput. doi: 10.1007/s00200-008-0062-4 – start-page: 219 year: 1976 ident: 10.1016/j.jsc.2016.11.006_br0400 – volume: 21 start-page: 420 issue: 4 year: 2005 ident: 10.1016/j.jsc.2016.11.006_br0080 article-title: Polynomial evaluation and interpolation on special sets of points publication-title: J. Complex. doi: 10.1016/j.jco.2004.09.009 – volume: 38 start-page: 229 year: 1971 ident: 10.1016/j.jsc.2016.11.006_br0250 article-title: The diagonal of a double power series publication-title: Duke Math. J. doi: 10.1215/S0012-7094-71-03829-4 – volume: 18 start-page: 183 issue: 3 year: 1994 ident: 10.1016/j.jsc.2016.11.006_br0320 article-title: Simple multivariate polynomial multiplication publication-title: J. Symb. Comput. doi: 10.1006/jsco.1994.1042 – volume: 113 start-page: 373 issue: 2 year: 1988 ident: 10.1016/j.jsc.2016.11.006_br0310 article-title: The diagonal of a D-finite power series is D-finite publication-title: J. Algebra doi: 10.1016/0021-8693(88)90166-4 – start-page: 1 year: 1985 ident: 10.1016/j.jsc.2016.11.006_br0150 article-title: Diagonales de fractions rationnelles et équations de Picard–Fuchs – year: 1949 ident: 10.1016/j.jsc.2016.11.006_br0410 – start-page: 203 year: 2010 ident: 10.1016/j.jsc.2016.11.006_br0030 article-title: Complexity of creative telescoping for bivariate rational functions – volume: 102 start-page: 181 year: 1974 ident: 10.1016/j.jsc.2016.11.006_br0200 article-title: Sur divers produits de séries formelles publication-title: Bull. Soc. Math. Fr. doi: 10.24033/bsmf.1777 – volume: 28 start-page: 321 issue: 3 year: 1980 ident: 10.1016/j.jsc.2016.11.006_br0230 article-title: A factorization for formal Laurent series and lattice path enumeration publication-title: J. Comb. Theory, Ser. A doi: 10.1016/0097-3165(80)90074-6 – year: 1956 ident: 10.1016/j.jsc.2016.11.006_br0270 – volume: 225 start-page: 51 issue: 1–3 year: 2000 ident: 10.1016/j.jsc.2016.11.006_br0110 article-title: Linear recurrences with constant coefficients: the multivariate case publication-title: Discrete Math. doi: 10.1016/S0012-365X(00)00147-3 – volume: 3 start-page: 1 issue: 1 year: 1987 ident: 10.1016/j.jsc.2016.11.006_br0170 article-title: On expansion of algebraic functions in power and Puiseux series, II publication-title: J. Complex. doi: 10.1016/0885-064X(87)90002-1 – year: 1978 ident: 10.1016/j.jsc.2016.11.006_br0420 – volume: 24 start-page: 37 issue: 1 year: 2013 ident: 10.1016/j.jsc.2016.11.006_br0260 article-title: Multi-point evaluation in higher dimensions publication-title: Appl. Algebra Eng. Commun. Comput. doi: 10.1007/s00200-012-0179-3 – volume: 6 start-page: 93 issue: 1 year: 2000 ident: 10.1016/j.jsc.2016.11.006_br0330 article-title: New techniques for the computation of linear recurrence coefficients publication-title: Finite Fields Appl. doi: 10.1006/ffta.1999.0267 – year: 2000 ident: 10.1016/j.jsc.2016.11.006_br0430 – volume: 281 start-page: 37 issue: 1–2 year: 2002 ident: 10.1016/j.jsc.2016.11.006_br0020 article-title: Basic analytic combinatorics of directed lattice paths publication-title: Theor. Comput. Sci. doi: 10.1016/S0304-3975(02)00007-5 – volume: 41 start-page: 325 issue: 3 year: 1987 ident: 10.1016/j.jsc.2016.11.006_br0370 article-title: On conditions for the sum of a power series to be algebraic and rational publication-title: Mat. Zametki – volume: 41 start-page: 1 issue: 1 year: 2006 ident: 10.1016/j.jsc.2016.11.006_br0060 article-title: Fast computation of special resultants publication-title: J. Symb. Comput. doi: 10.1016/j.jsc.2005.07.001 – year: 2003 ident: 10.1016/j.jsc.2016.11.006_br0220 |
| SSID | ssj0009435 |
| Score | 2.1583035 |
| Snippet | The diagonal of a multivariate power series F is the univariate power series DiagF generated by the diagonal terms of F. Diagonals form an important class of... The diagonal of a multivariate power series F is the univariate power series Diag(F) generated by the diagonal terms of F. Diagonals form an important class of... |
| SourceID | hal crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 68 |
| SubjectTerms | Algorithms Computer Science Diagonals Symbolic Computation Walks |
| Title | Algebraic diagonals and walks: Algorithms, bounds, complexity |
| URI | https://dx.doi.org/10.1016/j.jsc.2016.11.006 https://hal.science/hal-01244914 |
| Volume | 83 |
| WOSCitedRecordID | wos000402227900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1095-855X dateEnd: 20180228 omitProxy: false ssIdentifier: ssj0009435 issn: 0747-7171 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQcupbxEC0UW4oSaKomdh7lFUFQQqpBapL1FduJss6RJtZvdLv-emTiPbaEVPXCJIiu2nHyfxjNj5xtC3qGqluAss8AdCC0ulbRkqlyLw9oLCyqXIgmbYhPByUk4mYjvo9Fp9y_MqgjKMlyvxeV_hRraAGz8dfYecPeDQgPcA-hwBdjh-k_AR8UUN4PzBPOq06rRR8bs-JUsfi5MVn5azfP63CRZFNZVau6a0-V6ndfXdno3PNbFrwuFMsLNk8vre_go0GFyqVGR962flvDaJvavlnnvvp_KwlRKRt2DajPxAIuZ0ycejH2CSMSCaNDZNKYh27CGpmBOu66aknd_WGyTPJgdzhYoKOn4h6ipav9FHfvGqtWfJeyOqc1iGCLGISCqiRsZ9i038EQ4JlvRl6PJ10GLmZu6q938u83u5tjfjXnc5q48OO8S740jcrZDtls8aGSQf0JGunxKHnfVOWhrrJ-RgQi0JwIFItCGCB_oQIMDakhwQAcKPCc_Ph-dfTy22mIZVsICXlsOC0TqozhPqBQXUolM2YlMPSlUajOhvUDbGhzSzJeSMVdIN5SJkMzLIMT3GXtBxmVV6peEup520BpDtCt5mmYiADfP51r7DHoIvkvs7pvESaskjwVNivhWLHbJ-77LpZFRueth3n3ouPUDjX8XA2nu6vYWQOmHR9304-hbjG02erHC4Stn7z4TeUUeDcR_Tcb1fKn3ycNkVeeL-ZuWVr8Bpq-G2A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algebraic+diagonals+and+walks%3A+Algorithms%2C+bounds%2C+complexity&rft.jtitle=Journal+of+symbolic+computation&rft.au=Bostan%2C+Alin&rft.au=Dumont%2C+Louis&rft.au=Salvy%2C+Bruno&rft.date=2017-11-01&rft.issn=0747-7171&rft.volume=83&rft.spage=68&rft.epage=92&rft_id=info:doi/10.1016%2Fj.jsc.2016.11.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jsc_2016_11_006 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-7171&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-7171&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-7171&client=summon |