An elementary solution of Gessel's walks in the quadrant
Around 2000, Ira Gessel conjectured that the number of lattice walks in the quadrant N2, starting and ending at the origin (0,0) and taking their steps in {→,↗,←,↙} had a simple hypergeometric form. In the following decade, this problem was recast in the systematic study of walks with small steps (t...
Uložené v:
| Vydané v: | Advances in mathematics (New York. 1965) Ročník 303; s. 1171 - 1189 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
05.11.2016
Elsevier |
| Predmet: | |
| ISSN: | 0001-8708, 1090-2082 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!