An elementary solution of Gessel's walks in the quadrant
Around 2000, Ira Gessel conjectured that the number of lattice walks in the quadrant N2, starting and ending at the origin (0,0) and taking their steps in {→,↗,←,↙} had a simple hypergeometric form. In the following decade, this problem was recast in the systematic study of walks with small steps (t...
Saved in:
| Published in: | Advances in mathematics (New York. 1965) Vol. 303; pp. 1171 - 1189 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
05.11.2016
Elsevier |
| Subjects: | |
| ISSN: | 0001-8708, 1090-2082 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Around 2000, Ira Gessel conjectured that the number of lattice walks in the quadrant N2, starting and ending at the origin (0,0) and taking their steps in {→,↗,←,↙} had a simple hypergeometric form. In the following decade, this problem was recast in the systematic study of walks with small steps (that is, steps in {−1,0,1}2) confined to the quadrant. The generating functions of such walks are archetypal solutions of partial discrete differential equations.
A complete classification of quadrant walks according to the nature of their generating function (algebraic, D-finite or not) is now available, but Gessel's walks remained mysterious because they were the only model among the 23 D-finite ones that had not been given an elementary solution. Instead, Gessel's conjecture was first proved using an inventive computer algebra approach in 2008. A year later, the associated three-variate generating function was proved to be algebraic by a computer algebra tour de force. This was re-proved recently using elaborate complex analysis machinery. We give here an elementary and constructive proof. Our approach also solves other quadrant models (with multiple steps) recently proved to be algebraic via computer algebra. |
|---|---|
| AbstractList | Around 2000, Ira Gessel conjectured that the number of lattice walks in the quadrant N2, starting and ending at the origin (0,0) and taking their steps in {→,↗,←,↙} had a simple hypergeometric form. In the following decade, this problem was recast in the systematic study of walks with small steps (that is, steps in {−1,0,1}2) confined to the quadrant. The generating functions of such walks are archetypal solutions of partial discrete differential equations.
A complete classification of quadrant walks according to the nature of their generating function (algebraic, D-finite or not) is now available, but Gessel's walks remained mysterious because they were the only model among the 23 D-finite ones that had not been given an elementary solution. Instead, Gessel's conjecture was first proved using an inventive computer algebra approach in 2008. A year later, the associated three-variate generating function was proved to be algebraic by a computer algebra tour de force. This was re-proved recently using elaborate complex analysis machinery. We give here an elementary and constructive proof. Our approach also solves other quadrant models (with multiple steps) recently proved to be algebraic via computer algebra. Around 2000, Ira Gessel conjectured that the number of lattice walks in the quadrant N^2, starting and ending at the origin (0,0) and taking their steps in {E,NE,W,SW} had a simple hypergeometric form. In the following decade, this problem was recast in the systematic study of walks with small steps (that is,steps in {-1,0,1}^2) confined to the quadrant. The generating functions of such walks are archetypal solutions of partial discrete differential equations.A complete classification of quadrant walks according to the nature of their generating function(algebraic, D-finite or not) is now available, but Gessel'swalks remained mysterious because they were the only model among the 23D-finite ones that had not been given an elementarysolution. Instead, Gessel's conjecture was first proved usingan inventive computer algebra approach in 2008. A year later, the associated three-variate generating function was proved to be algebraic by a computer algebra tour de force. This was re-proved recently using elaborate complex analysis machinery. We give here an elementary and constructive proof. Our approach also solves other quadrant models (with multiple steps) recently proved to be algebraic via computer algebra. |
| Author | Bousquet-Mélou, Mireille |
| Author_xml | – sequence: 1 givenname: Mireille surname: Bousquet-Mélou fullname: Bousquet-Mélou, Mireille email: bousquet@labri.fr organization: CNRS, LaBRI, Université de Bordeaux, 351 cours de la Libération, F-33405 Talence Cedex, France |
| BackLink | https://hal.science/hal-01136361$$DView record in HAL |
| BookMark | eNp9kD1PwzAQhi0EEm3hB7B5QwwJ_miTi5iqClqkSiwwW3ZyUV1SB2y3iH-Po8LC0Ok-dM_dve-YnLveISE3nOWc8eJ-m2u7y0VKcwY5k3BGRpxVLBMMxDkZMcZ4BiWDSzIOYZvKasqrEYG5o9jhDl3U_puGvttH2zvat3SJIWB3G-iX7t4DtY7GDdLPvW68dvGKXLS6C3j9Gyfk7enxdbHK1i_L58V8ndWynMaMCxSyBZAwbUDMZrJEXTSlFtOyqFJmkGHbYC2gNYZLU5UzMFoAGNmaAo2ckLvj3o3u1Ie3u_Sm6rVVq_laDT3GuSxkwQ8yzZbH2dr3IXhsVW2jHvREr22nOFODWWqrkllqMEsxUMmsRPJ_5N-pU8zDkcEk_2DRq1BbdDU21mMdVdPbE_QPn3eDRg |
| CitedBy_id | crossref_primary_10_1007_s00440_020_00969_8 crossref_primary_10_1090_memo_1440 crossref_primary_10_1137_18M1220856 crossref_primary_10_1016_j_ejc_2024_104015 crossref_primary_10_1007_s10208_017_9354_z crossref_primary_10_1007_s00026_024_00739_6 crossref_primary_10_4153_S0008414X22000487 crossref_primary_10_1016_j_jcta_2019_105191 crossref_primary_10_1016_j_jcta_2022_105644 crossref_primary_10_1007_s11464_022_1031_0 |
| Cites_doi | 10.1016/j.disc.2012.09.003 10.1016/j.tcs.2009.04.008 10.1016/S0012-365X(00)00147-3 10.1016/j.crma.2014.11.015 10.1080/10236190802332084 10.4171/jems/317 10.1214/105051605000000052 10.1090/tran/6804 10.1016/j.spa.2013.12.003 10.1016/S0304-3975(03)00219-6 10.1016/j.jctb.2005.12.003 10.1016/j.aam.2010.11.004 10.1016/j.jcta.2013.09.005 10.4153/CJM-1964-058-7 10.1007/BF01370732 10.1016/j.jctb.2011.02.003 10.1137/0144074 10.1090/S0002-9939-2010-10398-2 10.1016/j.jcta.2008.06.011 10.4153/CJM-1962-002-9 10.1016/S0304-3975(02)00007-5 10.1007/s00026-016-0328-7 10.1017/S0963548314000145 10.1016/0378-3758(86)90009-1 10.1017/S0027763000022698 10.1137/S0895480190177650 10.1073/pnas.0901678106 10.37236/1271 10.1007/BF01845637 10.1007/s10801-010-0259-z 10.1016/S0012-365X(01)00250-3 10.1007/s10240-012-0045-7 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Inc. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC VOOES |
| DOI | 10.1016/j.aim.2016.08.038 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1090-2082 |
| EndPage | 1189 |
| ExternalDocumentID | oai:HAL:hal-01136361v3 10_1016_j_aim_2016_08_038 S0001870815302735 |
| GroupedDBID | --K --M --Z -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 6I. 6TJ 7-5 71M 8P~ 9JN AACTN AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AASFE AAXUO ABAOU ABCQX ABJNI ABLJU ABMAC ABVKL ABYKQ ACAZW ACDAQ ACGFS ACNCT ACRLP ADBBV ADEZE ADIYS AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 D0L DM4 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM LG5 M25 M41 MCRUF MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSW SSZ T5K UPT WH7 ZMT ~G- 1RT 5VS 9DU AAEDT AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN ADXHL AEIPS AETEA AEUPX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CAG CITATION COF EFKBS FGOYB G-2 HX~ HZ~ MVM OHT R2- SEW XOL XPP ZCG ZKB ~HD 1XC VOOES |
| ID | FETCH-LOGICAL-c374t-12e23f88384d825537ea6d7a24769a6dbe0efdec28fbb13b9758ba288b3fb6eb3 |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000386192700029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0001-8708 |
| IngestDate | Tue Oct 14 20:16:13 EDT 2025 Tue Nov 18 22:13:43 EST 2025 Sat Nov 29 07:34:57 EST 2025 Fri Feb 23 02:21:16 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Exact enumeration Algebraic series Lattice walks |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c374t-12e23f88384d825537ea6d7a24769a6dbe0efdec28fbb13b9758ba288b3fb6eb3 |
| ORCID | 0000-0002-2863-8300 |
| OpenAccessLink | https://hal.science/hal-01136361 |
| PageCount | 19 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01136361v3 crossref_citationtrail_10_1016_j_aim_2016_08_038 crossref_primary_10_1016_j_aim_2016_08_038 elsevier_sciencedirect_doi_10_1016_j_aim_2016_08_038 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-11-05 |
| PublicationDateYYYYMMDD | 2016-11-05 |
| PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-05 day: 05 |
| PublicationDecade | 2010 |
| PublicationTitle | Advances in mathematics (New York. 1965) |
| PublicationYear | 2016 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Bostan, Kauers (br0070) 2010; 138 Kauers, Koutschan, Zeilberger (br0310) 2009; 106 Bousquet-Mélou, Petkovšek (br0170) 2000; 225 Garbit, Raschel (br0270) 2014; 19 Ayyer (br0010) 2009; 12 Fayolle, Iasnogorodski, Malyshev (br0230) 1999; vol. 40 Bousquet-Mélou (br0130) 2011; 33 Bender, Canfield (br0040) 1994; 7 Bostan, Raschel, Salvy (br0100) 2014; 121 Bousquet-Mélou (br0120) 2005; 15 Melczer, Mishna (br0390) 2014; 23 Kauers, Yatchak (br0320) 2015 Mishna, Rechnitzer (br0410) 2009; 410 Bousquet-Mélou, Mishna (br0160) 2010; vol. 520 DeBlassie (br0210) 1987; 74 Knuth (br0340) 1975 Bousquet-Mélou, Jehanne (br0150) 2006; 96 Kauers, Zeilberger (br0330) 2008; 14 Bostan, Raschel (br0090) March 2015; 449 Raschel (br0450) 2012; 14 Mishna (br0400) 2009; 116 Tutte (br0480) 1962; 14 Kreweras (br0350) 1965; 6 Bostan, Bousquet-Mélou, Kauers, Melczer (br0060) 2016 Kurkova, Raschel (br0380) 2012; 116 Goulden, Jackson (br0290) 1983 K. Raschel, Private communication, 2015. Kurkova, Raschel (br0370) 2011; 47 Duraj (br0220) 2014; 124 Fayolle, Raschel (br0240) 2010; 16 Zeilberger (br0490) 1996; 3 Bostan, Kurkova, Raschel (br0080) 2016 Bousquet-Mélou, Petkovšek (br0180) 2003; 307 Fayolle, Raschel (br0250) 2015; 353 Petkovšek, Wilf (br0420) 2008 Bousquet-Mélou (br0110) 2002 Rond (br0460) 2016 Kurke, Pfister, Popescu, Roczen, Mostowski (br0360) 1978; vol. 634 Brown, Tutte (br0200) 1964; 16 Bousquet-Mélou (br0140) 2011; vol. 392 Banderier, Bousquet-Mélou, Denise, Flajolet, Gardy, Gouyou-Beauchamps (br0020) 2002; 246 Sun (br0470) 2012; 312 Flatto, Hahn (br0260) 1984; 44 Gessel (br0280) 1986; 14 Banderier, Flajolet (br0030) 2002; 281 Brown (br0190) 1965; 158 OEIS Foundation Inc. (br0300) Popescu (br0430) 1986; 104 Bernardi, Bousquet-Mélou (br0050) 2011; 101 Bousquet-Mélou (10.1016/j.aim.2016.08.038_br0170) 2000; 225 Tutte (10.1016/j.aim.2016.08.038_br0480) 1962; 14 Gessel (10.1016/j.aim.2016.08.038_br0280) 1986; 14 Kurkova (10.1016/j.aim.2016.08.038_br0370) 2011; 47 Banderier (10.1016/j.aim.2016.08.038_br0020) 2002; 246 Goulden (10.1016/j.aim.2016.08.038_br0290) 1983 Mishna (10.1016/j.aim.2016.08.038_br0410) 2009; 410 Brown (10.1016/j.aim.2016.08.038_br0190) 1965; 158 Duraj (10.1016/j.aim.2016.08.038_br0220) 2014; 124 Bousquet-Mélou (10.1016/j.aim.2016.08.038_br0110) 2002 Fayolle (10.1016/j.aim.2016.08.038_br0230) 1999; vol. 40 Popescu (10.1016/j.aim.2016.08.038_br0430) 1986; 104 Bousquet-Mélou (10.1016/j.aim.2016.08.038_br0130) 2011; 33 Bostan (10.1016/j.aim.2016.08.038_br0080) 2016 DeBlassie (10.1016/j.aim.2016.08.038_br0210) 1987; 74 Bousquet-Mélou (10.1016/j.aim.2016.08.038_br0150) 2006; 96 Brown (10.1016/j.aim.2016.08.038_br0200) 1964; 16 Sun (10.1016/j.aim.2016.08.038_br0470) 2012; 312 Fayolle (10.1016/j.aim.2016.08.038_br0250) 2015; 353 Kurkova (10.1016/j.aim.2016.08.038_br0380) 2012; 116 Raschel (10.1016/j.aim.2016.08.038_br0450) 2012; 14 Bousquet-Mélou (10.1016/j.aim.2016.08.038_br0160) 2010; vol. 520 Knuth (10.1016/j.aim.2016.08.038_br0340) 1975 Ayyer (10.1016/j.aim.2016.08.038_br0010) 2009; 12 Bostan (10.1016/j.aim.2016.08.038_br0060) 2016 Fayolle (10.1016/j.aim.2016.08.038_br0240) 2010; 16 Bousquet-Mélou (10.1016/j.aim.2016.08.038_br0180) 2003; 307 Kurke (10.1016/j.aim.2016.08.038_br0360) 1978; vol. 634 10.1016/j.aim.2016.08.038_br0440 Kreweras (10.1016/j.aim.2016.08.038_br0350) 1965; 6 Mishna (10.1016/j.aim.2016.08.038_br0400) 2009; 116 Garbit (10.1016/j.aim.2016.08.038_br0270) 2014; 19 Bousquet-Mélou (10.1016/j.aim.2016.08.038_br0140) 2011; vol. 392 Bernardi (10.1016/j.aim.2016.08.038_br0050) 2011; 101 Kauers (10.1016/j.aim.2016.08.038_br0320) 2015 Kauers (10.1016/j.aim.2016.08.038_br0330) 2008; 14 Bousquet-Mélou (10.1016/j.aim.2016.08.038_br0120) 2005; 15 Banderier (10.1016/j.aim.2016.08.038_br0030) 2002; 281 Rond (10.1016/j.aim.2016.08.038_br0460) 2016 Melczer (10.1016/j.aim.2016.08.038_br0390) 2014; 23 Bostan (10.1016/j.aim.2016.08.038_br0070) 2010; 138 Kauers (10.1016/j.aim.2016.08.038_br0310) 2009; 106 OEIS Foundation Inc. (10.1016/j.aim.2016.08.038_br0300) Flatto (10.1016/j.aim.2016.08.038_br0260) 1984; 44 Bender (10.1016/j.aim.2016.08.038_br0040) 1994; 7 Zeilberger (10.1016/j.aim.2016.08.038_br0490) 1996; 3 Bostan (10.1016/j.aim.2016.08.038_br0090) 2015; 449 Bostan (10.1016/j.aim.2016.08.038_br0100) 2014; 121 Petkovšek (10.1016/j.aim.2016.08.038_br0420) |
| References_xml | – volume: vol. 392 start-page: 1 year: 2011 end-page: 49 ident: br0140 article-title: Counting planar maps, coloured or uncoloured publication-title: Surveys in Combinatorics 2011 – volume: 3 year: 1996 ident: br0490 article-title: Proof of the alternating sign matrix conjecture publication-title: Electron. J. Combin. – volume: 449 year: March 2015 ident: br0090 article-title: Compter les excursions sur un échiquier publication-title: Pour la Science – volume: 281 start-page: 37 year: 2002 end-page: 80 ident: br0030 article-title: Basic analytic combinatorics of directed lattice paths publication-title: Theoret. Comput. Sci. – volume: 312 start-page: 3649 year: 2012 end-page: 3655 ident: br0470 article-title: Proof of two conjectures of Petkovšek and Wilf on Gessel walks publication-title: Discrete Math. – volume: vol. 520 start-page: 1 year: 2010 end-page: 39 ident: br0160 article-title: Walks with small steps in the quarter plane publication-title: Algorithmic Probability and Combinatorics – reference: K. Raschel, Private communication, 2015. – volume: 14 start-page: 1119 year: 2008 end-page: 1126 ident: br0330 article-title: The quasi-holonomic ansatz and restricted lattice walks publication-title: J. Difference Equ. Appl. – year: 1975 ident: br0340 article-title: The Art of Computer Programming. Vol. 1: Fundamental Algorithms – volume: 246 start-page: 29 year: 2002 end-page: 55 ident: br0020 article-title: Generating functions for generating trees publication-title: Discrete Math. – volume: vol. 40 year: 1999 ident: br0230 article-title: Random Walks in the Quarter-Plane publication-title: Appl. Math. (New York) – volume: 16 start-page: 485 year: 2010 end-page: 496 ident: br0240 article-title: On the holonomy or algebraicity of generating functions counting lattice walks in the quarter plane publication-title: Markov Process. Related Fields – volume: 6 start-page: 5 year: 1965 end-page: 105 ident: br0350 article-title: Sur une classe de problèmes liés au treillis des partitions d'entiers publication-title: Cahiers BURO – volume: 158 start-page: 82 year: 1965 end-page: 89 ident: br0190 article-title: On the existence of square roots in certain rings of power series publication-title: Math. Ann. – volume: 124 start-page: 1503 year: 2014 end-page: 1518 ident: br0220 article-title: Random walks in cones: the case of nonzero drift publication-title: Stochastic Process. Appl. – volume: 106 start-page: 11502 year: 2009 end-page: 11505 ident: br0310 article-title: Proof of Ira Gessel's lattice path conjecture publication-title: Proc. Natl. Acad. Sci. USA – ident: br0300 article-title: The on-line encyclopedia of integer sequences – volume: 138 start-page: 3063 year: 2010 end-page: 3078 ident: br0070 article-title: The complete generating function for Gessel walks is algebraic publication-title: Proc. Amer. Math. Soc. – volume: 7 start-page: 9 year: 1994 end-page: 15 ident: br0040 article-title: The number of degree-restricted rooted maps on the sphere publication-title: SIAM J. Discrete Math. – volume: 353 start-page: 89 year: 2015 end-page: 94 ident: br0250 article-title: About a possible analytic approach for walks in the quarter plane with arbitrary big jumps publication-title: C. R. Math. Acad. Sci. Paris – volume: 116 start-page: 69 year: 2012 end-page: 114 ident: br0380 article-title: On the functions counting walks with small steps in the quarter plane publication-title: Publ. Math. Inst. Hautes Études Sci. – volume: 307 start-page: 257 year: 2003 end-page: 276 ident: br0180 article-title: Walks confined in a quadrant are not always D-finite publication-title: Theoret. Comput. Sci. – year: 2016 ident: br0460 article-title: Local zero estimates and effective division in rings of algebraic power series publication-title: J. Reine Angew. Math. – start-page: 49 year: 2002 end-page: 67 ident: br0110 article-title: Counting walks in the quarter plane publication-title: Mathematics and Computer Science 2 – volume: vol. 634 year: 1978 ident: br0360 article-title: Die Approximationseigenschaft lokaler Ringe publication-title: Lecture Notes in Math. – start-page: 25 year: 2015 end-page: 36 ident: br0320 article-title: Walks in the quarter plane with multiple steps publication-title: FPSAC 2015, DMTCS Proceedings – volume: 19 start-page: 27 year: 2014 ident: br0270 article-title: On the exit time from a cone for Brownian motion with drift publication-title: Electron. J. Probab. – volume: 101 start-page: 315 year: 2011 end-page: 377 ident: br0050 article-title: Counting colored planar maps: algebraicity results publication-title: J. Combin. Theory Ser. B – volume: 12 year: 2009 ident: br0010 article-title: Towards a human proof of Gessel's conjecture publication-title: J. Integer Seq. – volume: 116 start-page: 460 year: 2009 end-page: 477 ident: br0400 article-title: Classifying lattice walks restricted to the quarter plane publication-title: J. Combin. Theory Ser. A – volume: 410 start-page: 3616 year: 2009 end-page: 3630 ident: br0410 article-title: Two non-holonomic lattice walks in the quarter plane publication-title: Theoret. Comput. Sci. – volume: 121 start-page: 45 year: 2014 end-page: 63 ident: br0100 article-title: Non-D-finite excursions in the quarter plane publication-title: J. Combin. Theory Ser. A – volume: 14 start-page: 749 year: 2012 end-page: 777 ident: br0450 article-title: Counting walks in a quadrant: a unified approach via boundary value problems publication-title: J. Eur. Math. Soc. (JEMS) – year: 2008 ident: br0420 article-title: On a conjecture of Ira Gessel – volume: 47 start-page: 414 year: 2011 end-page: 433 ident: br0370 article-title: Explicit expression for the generating function counting Gessel's walks publication-title: Adv. in Appl. Math. – year: 2016 ident: br0080 article-title: A human proof of Gessel's lattice path conjecture publication-title: Trans. Amer. Math. Soc. – volume: 14 start-page: 49 year: 1986 end-page: 58 ident: br0280 article-title: A probabilistic method for lattice path enumeration publication-title: J. Statist. Plann. Inference – volume: 96 start-page: 623 year: 2006 end-page: 672 ident: br0150 article-title: Polynomial equations with one catalytic variable, algebraic series and map enumeration publication-title: J. Combin. Theory Ser. B – volume: 33 start-page: 571 year: 2011 end-page: 608 ident: br0130 article-title: Counting permutations with no long monotone subsequence via generating trees and the kernel method publication-title: J. Algebraic Combin. – volume: 44 start-page: 1041 year: 1984 end-page: 1053 ident: br0260 article-title: Two parallel queues created by arrivals with two demands. I publication-title: SIAM J. Appl. Math. – volume: 104 start-page: 85 year: 1986 end-page: 115 ident: br0430 article-title: General Néron desingularization and approximation publication-title: Nagoya Math. J. – volume: 14 start-page: 21 year: 1962 end-page: 38 ident: br0480 article-title: A census of planar triangulations publication-title: Canad. J. Math. – volume: 16 start-page: 572 year: 1964 end-page: 577 ident: br0200 article-title: On the enumeration of rooted non-separable planar maps publication-title: Canad. J. Math. – year: 2016 ident: br0060 article-title: On 3-dimensional lattice walks confined to the octant publication-title: Ann. Comb. – volume: 74 start-page: 1 year: 1987 end-page: 29 ident: br0210 article-title: Exit times from cones in publication-title: Probab. Theory Related Fields – volume: 15 start-page: 1451 year: 2005 end-page: 1491 ident: br0120 article-title: Walks in the quarter plane: Kreweras' algebraic model publication-title: Ann. Appl. Probab. – volume: 23 start-page: 861 year: 2014 end-page: 888 ident: br0390 article-title: Singularity analysis via the iterated kernel method publication-title: Combin. Probab. Comput. – volume: 225 start-page: 51 year: 2000 end-page: 75 ident: br0170 article-title: Linear recurrences with constant coefficients: the multivariate case publication-title: Discrete Math. – year: 1983 ident: br0290 article-title: Combinatorial Enumeration publication-title: Wiley-Intersci. Ser. Discrete Math. – volume: 312 start-page: 3649 issue: 24 year: 2012 ident: 10.1016/j.aim.2016.08.038_br0470 article-title: Proof of two conjectures of Petkovšek and Wilf on Gessel walks publication-title: Discrete Math. doi: 10.1016/j.disc.2012.09.003 – volume: 410 start-page: 3616 issue: 38–40 year: 2009 ident: 10.1016/j.aim.2016.08.038_br0410 article-title: Two non-holonomic lattice walks in the quarter plane publication-title: Theoret. Comput. Sci. doi: 10.1016/j.tcs.2009.04.008 – volume: 225 start-page: 51 issue: 1–3 year: 2000 ident: 10.1016/j.aim.2016.08.038_br0170 article-title: Linear recurrences with constant coefficients: the multivariate case publication-title: Discrete Math. doi: 10.1016/S0012-365X(00)00147-3 – year: 1975 ident: 10.1016/j.aim.2016.08.038_br0340 – volume: 353 start-page: 89 issue: 2 year: 2015 ident: 10.1016/j.aim.2016.08.038_br0250 article-title: About a possible analytic approach for walks in the quarter plane with arbitrary big jumps publication-title: C. R. Math. Acad. Sci. Paris doi: 10.1016/j.crma.2014.11.015 – volume: 14 start-page: 1119 issue: 10–11 year: 2008 ident: 10.1016/j.aim.2016.08.038_br0330 article-title: The quasi-holonomic ansatz and restricted lattice walks publication-title: J. Difference Equ. Appl. doi: 10.1080/10236190802332084 – ident: 10.1016/j.aim.2016.08.038_br0420 – volume: 14 start-page: 749 issue: 3 year: 2012 ident: 10.1016/j.aim.2016.08.038_br0450 article-title: Counting walks in a quadrant: a unified approach via boundary value problems publication-title: J. Eur. Math. Soc. (JEMS) doi: 10.4171/jems/317 – ident: 10.1016/j.aim.2016.08.038_br0440 – volume: 15 start-page: 1451 issue: 2 year: 2005 ident: 10.1016/j.aim.2016.08.038_br0120 article-title: Walks in the quarter plane: Kreweras' algebraic model publication-title: Ann. Appl. Probab. doi: 10.1214/105051605000000052 – year: 2016 ident: 10.1016/j.aim.2016.08.038_br0080 article-title: A human proof of Gessel's lattice path conjecture publication-title: Trans. Amer. Math. Soc. doi: 10.1090/tran/6804 – volume: 449 year: 2015 ident: 10.1016/j.aim.2016.08.038_br0090 article-title: Compter les excursions sur un échiquier publication-title: Pour la Science – volume: 124 start-page: 1503 issue: 4 year: 2014 ident: 10.1016/j.aim.2016.08.038_br0220 article-title: Random walks in cones: the case of nonzero drift publication-title: Stochastic Process. Appl. doi: 10.1016/j.spa.2013.12.003 – volume: 307 start-page: 257 issue: 2 year: 2003 ident: 10.1016/j.aim.2016.08.038_br0180 article-title: Walks confined in a quadrant are not always D-finite publication-title: Theoret. Comput. Sci. doi: 10.1016/S0304-3975(03)00219-6 – volume: 12 issue: 4 year: 2009 ident: 10.1016/j.aim.2016.08.038_br0010 article-title: Towards a human proof of Gessel's conjecture publication-title: J. Integer Seq. – volume: vol. 40 year: 1999 ident: 10.1016/j.aim.2016.08.038_br0230 article-title: Random Walks in the Quarter-Plane – volume: 96 start-page: 623 year: 2006 ident: 10.1016/j.aim.2016.08.038_br0150 article-title: Polynomial equations with one catalytic variable, algebraic series and map enumeration publication-title: J. Combin. Theory Ser. B doi: 10.1016/j.jctb.2005.12.003 – volume: 19 start-page: 27 issue: 63 year: 2014 ident: 10.1016/j.aim.2016.08.038_br0270 article-title: On the exit time from a cone for Brownian motion with drift publication-title: Electron. J. Probab. – volume: 47 start-page: 414 issue: 3 year: 2011 ident: 10.1016/j.aim.2016.08.038_br0370 article-title: Explicit expression for the generating function counting Gessel's walks publication-title: Adv. in Appl. Math. doi: 10.1016/j.aam.2010.11.004 – volume: 121 start-page: 45 year: 2014 ident: 10.1016/j.aim.2016.08.038_br0100 article-title: Non-D-finite excursions in the quarter plane publication-title: J. Combin. Theory Ser. A doi: 10.1016/j.jcta.2013.09.005 – volume: 16 start-page: 572 year: 1964 ident: 10.1016/j.aim.2016.08.038_br0200 article-title: On the enumeration of rooted non-separable planar maps publication-title: Canad. J. Math. doi: 10.4153/CJM-1964-058-7 – volume: 158 start-page: 82 year: 1965 ident: 10.1016/j.aim.2016.08.038_br0190 article-title: On the existence of square roots in certain rings of power series publication-title: Math. Ann. doi: 10.1007/BF01370732 – volume: vol. 634 year: 1978 ident: 10.1016/j.aim.2016.08.038_br0360 article-title: Die Approximationseigenschaft lokaler Ringe – volume: 101 start-page: 315 issue: 5 year: 2011 ident: 10.1016/j.aim.2016.08.038_br0050 article-title: Counting colored planar maps: algebraicity results publication-title: J. Combin. Theory Ser. B doi: 10.1016/j.jctb.2011.02.003 – volume: 44 start-page: 1041 issue: 5 year: 1984 ident: 10.1016/j.aim.2016.08.038_br0260 article-title: Two parallel queues created by arrivals with two demands. I publication-title: SIAM J. Appl. Math. doi: 10.1137/0144074 – volume: 16 start-page: 485 issue: 3 year: 2010 ident: 10.1016/j.aim.2016.08.038_br0240 article-title: On the holonomy or algebraicity of generating functions counting lattice walks in the quarter plane publication-title: Markov Process. Related Fields – volume: 138 start-page: 3063 issue: 9 year: 2010 ident: 10.1016/j.aim.2016.08.038_br0070 article-title: The complete generating function for Gessel walks is algebraic publication-title: Proc. Amer. Math. Soc. doi: 10.1090/S0002-9939-2010-10398-2 – volume: 116 start-page: 460 issue: 2 year: 2009 ident: 10.1016/j.aim.2016.08.038_br0400 article-title: Classifying lattice walks restricted to the quarter plane publication-title: J. Combin. Theory Ser. A doi: 10.1016/j.jcta.2008.06.011 – volume: 14 start-page: 21 year: 1962 ident: 10.1016/j.aim.2016.08.038_br0480 article-title: A census of planar triangulations publication-title: Canad. J. Math. doi: 10.4153/CJM-1962-002-9 – volume: 281 start-page: 37 issue: 1–2 year: 2002 ident: 10.1016/j.aim.2016.08.038_br0030 article-title: Basic analytic combinatorics of directed lattice paths publication-title: Theoret. Comput. Sci. doi: 10.1016/S0304-3975(02)00007-5 – year: 2016 ident: 10.1016/j.aim.2016.08.038_br0060 article-title: On 3-dimensional lattice walks confined to the octant publication-title: Ann. Comb. doi: 10.1007/s00026-016-0328-7 – volume: 23 start-page: 861 issue: 5 year: 2014 ident: 10.1016/j.aim.2016.08.038_br0390 article-title: Singularity analysis via the iterated kernel method publication-title: Combin. Probab. Comput. doi: 10.1017/S0963548314000145 – volume: vol. 520 start-page: 1 year: 2010 ident: 10.1016/j.aim.2016.08.038_br0160 article-title: Walks with small steps in the quarter plane – volume: 14 start-page: 49 issue: 1 year: 1986 ident: 10.1016/j.aim.2016.08.038_br0280 article-title: A probabilistic method for lattice path enumeration publication-title: J. Statist. Plann. Inference doi: 10.1016/0378-3758(86)90009-1 – volume: vol. 392 start-page: 1 year: 2011 ident: 10.1016/j.aim.2016.08.038_br0140 article-title: Counting planar maps, coloured or uncoloured – start-page: 49 year: 2002 ident: 10.1016/j.aim.2016.08.038_br0110 article-title: Counting walks in the quarter plane – ident: 10.1016/j.aim.2016.08.038_br0300 – volume: 104 start-page: 85 year: 1986 ident: 10.1016/j.aim.2016.08.038_br0430 article-title: General Néron desingularization and approximation publication-title: Nagoya Math. J. doi: 10.1017/S0027763000022698 – volume: 7 start-page: 9 issue: 1 year: 1994 ident: 10.1016/j.aim.2016.08.038_br0040 article-title: The number of degree-restricted rooted maps on the sphere publication-title: SIAM J. Discrete Math. doi: 10.1137/S0895480190177650 – volume: 106 start-page: 11502 issue: 28 year: 2009 ident: 10.1016/j.aim.2016.08.038_br0310 article-title: Proof of Ira Gessel's lattice path conjecture publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0901678106 – volume: 3 issue: 2 year: 1996 ident: 10.1016/j.aim.2016.08.038_br0490 article-title: Proof of the alternating sign matrix conjecture publication-title: Electron. J. Combin. doi: 10.37236/1271 – year: 2016 ident: 10.1016/j.aim.2016.08.038_br0460 article-title: Local zero estimates and effective division in rings of algebraic power series publication-title: J. Reine Angew. Math. – volume: 74 start-page: 1 issue: 1 year: 1987 ident: 10.1016/j.aim.2016.08.038_br0210 article-title: Exit times from cones in Rn of Brownian motion publication-title: Probab. Theory Related Fields doi: 10.1007/BF01845637 – start-page: 25 year: 2015 ident: 10.1016/j.aim.2016.08.038_br0320 article-title: Walks in the quarter plane with multiple steps – volume: 6 start-page: 5 year: 1965 ident: 10.1016/j.aim.2016.08.038_br0350 article-title: Sur une classe de problèmes liés au treillis des partitions d'entiers publication-title: Cahiers BURO – volume: 33 start-page: 571 issue: 4 year: 2011 ident: 10.1016/j.aim.2016.08.038_br0130 article-title: Counting permutations with no long monotone subsequence via generating trees and the kernel method publication-title: J. Algebraic Combin. doi: 10.1007/s10801-010-0259-z – volume: 246 start-page: 29 issue: 1–3 year: 2002 ident: 10.1016/j.aim.2016.08.038_br0020 article-title: Generating functions for generating trees publication-title: Discrete Math. doi: 10.1016/S0012-365X(01)00250-3 – year: 1983 ident: 10.1016/j.aim.2016.08.038_br0290 article-title: Combinatorial Enumeration – volume: 116 start-page: 69 year: 2012 ident: 10.1016/j.aim.2016.08.038_br0380 article-title: On the functions counting walks with small steps in the quarter plane publication-title: Publ. Math. Inst. Hautes Études Sci. doi: 10.1007/s10240-012-0045-7 |
| SSID | ssj0009419 |
| Score | 2.3351047 |
| Snippet | Around 2000, Ira Gessel conjectured that the number of lattice walks in the quadrant N2, starting and ending at the origin (0,0) and taking their steps in... Around 2000, Ira Gessel conjectured that the number of lattice walks in the quadrant N^2, starting and ending at the origin (0,0) and taking their steps in... |
| SourceID | hal crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 1171 |
| SubjectTerms | Algebraic series Combinatorics Exact enumeration Lattice walks Mathematics |
| Title | An elementary solution of Gessel's walks in the quadrant |
| URI | https://dx.doi.org/10.1016/j.aim.2016.08.038 https://hal.science/hal-01136361 |
| Volume | 303 |
| WOSCitedRecordID | wos000386192700029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1090-2082 dateEnd: 20171215 omitProxy: false ssIdentifier: ssj0009419 issn: 0001-8708 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELa2LQc4IJ6i5SELISGxShXHedjHgAoFtRWHIu0tshNHbAnZstndln_PTBxnsxWt6IFLFFmx8_ic8cx45htC3gjcyhPwfxeRER4S0HkiR08c1io0CkCXbaLwUXJyIiYT-XU06rP4V1VS1-LyUp7_V6ihDcDG1NlbwN0PCg1wDqDDEWCH4z8Bn9Zj08WEz3-P3b1QKfyEPOFV66G_UNWPxsU4_lqqApasDS99amMD2mt-9tSuzbB4z_4YeQIHroT3s2UDy8zCO7bb79VsaSPz5wYzDocOBha3mXbRhtBkIDR9MRSa3OcDsceYraPSLaFgtMi_imfrKTjbV1MkAWBxy55q2V02qbCvLFF94KCLSTvLYIgMh8iwiiYXW2QnSCIJcm0n_Xww-bImXg5ZZwLZl3A7222M35XnuE432fruvOyt1nH6gNzvzAWaWpgfkpGpH5F7x2tAHhOR1nQNOHWA01lJLeBvG9rCTac1hX7Uwf2EfPt4cPrh0OvqYXg5T8KFxwIT8FIILsICDPuIJ0bFRaKCMIklnGnjm7IweSBKrRnXEmxBrQIhNC91bDR_SrbrWW2eESqU1FGhuMqZDoNEKgVKCprTqLCyWO4S332JLO_I4rFmSZVdi8Auedd3ObdMKTddHLrPm3WqnlXhMpgqN3V7DVD0wyM1-mF6lGGbj8WJeMxWfO82D_Kc3F3P-RdkezFfmpfkTr5aTJv5q24y_QHEHHlm |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+elementary+solution+of+Gessel%27s+walks+in+the+quadrant&rft.jtitle=Advances+in+mathematics+%28New+York.+1965%29&rft.au=Bousquet-M%C3%A9lou%2C+Mireille&rft.date=2016-11-05&rft.issn=0001-8708&rft.volume=303&rft.spage=1171&rft.epage=1189&rft_id=info:doi/10.1016%2Fj.aim.2016.08.038&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aim_2016_08_038 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8708&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8708&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8708&client=summon |