An elementary solution of Gessel's walks in the quadrant

Around 2000, Ira Gessel conjectured that the number of lattice walks in the quadrant N2, starting and ending at the origin (0,0) and taking their steps in {→,↗,←,↙} had a simple hypergeometric form. In the following decade, this problem was recast in the systematic study of walks with small steps (t...

Full description

Saved in:
Bibliographic Details
Published in:Advances in mathematics (New York. 1965) Vol. 303; pp. 1171 - 1189
Main Author: Bousquet-Mélou, Mireille
Format: Journal Article
Language:English
Published: Elsevier Inc 05.11.2016
Elsevier
Subjects:
ISSN:0001-8708, 1090-2082
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Around 2000, Ira Gessel conjectured that the number of lattice walks in the quadrant N2, starting and ending at the origin (0,0) and taking their steps in {→,↗,←,↙} had a simple hypergeometric form. In the following decade, this problem was recast in the systematic study of walks with small steps (that is, steps in {−1,0,1}2) confined to the quadrant. The generating functions of such walks are archetypal solutions of partial discrete differential equations. A complete classification of quadrant walks according to the nature of their generating function (algebraic, D-finite or not) is now available, but Gessel's walks remained mysterious because they were the only model among the 23 D-finite ones that had not been given an elementary solution. Instead, Gessel's conjecture was first proved using an inventive computer algebra approach in 2008. A year later, the associated three-variate generating function was proved to be algebraic by a computer algebra tour de force. This was re-proved recently using elaborate complex analysis machinery. We give here an elementary and constructive proof. Our approach also solves other quadrant models (with multiple steps) recently proved to be algebraic via computer algebra.
AbstractList Around 2000, Ira Gessel conjectured that the number of lattice walks in the quadrant N2, starting and ending at the origin (0,0) and taking their steps in {→,↗,←,↙} had a simple hypergeometric form. In the following decade, this problem was recast in the systematic study of walks with small steps (that is, steps in {−1,0,1}2) confined to the quadrant. The generating functions of such walks are archetypal solutions of partial discrete differential equations. A complete classification of quadrant walks according to the nature of their generating function (algebraic, D-finite or not) is now available, but Gessel's walks remained mysterious because they were the only model among the 23 D-finite ones that had not been given an elementary solution. Instead, Gessel's conjecture was first proved using an inventive computer algebra approach in 2008. A year later, the associated three-variate generating function was proved to be algebraic by a computer algebra tour de force. This was re-proved recently using elaborate complex analysis machinery. We give here an elementary and constructive proof. Our approach also solves other quadrant models (with multiple steps) recently proved to be algebraic via computer algebra.
Around 2000, Ira Gessel conjectured that the number of lattice walks in the quadrant N^2, starting and ending at the origin (0,0) and taking their steps in {E,NE,W,SW} had a simple hypergeometric form. In the following decade, this problem was recast in the systematic study of walks with small steps (that is,steps in {-1,0,1}^2) confined to the quadrant. The generating functions of such walks are archetypal solutions of partial discrete differential equations.A complete classification of quadrant walks according to the nature of their generating function(algebraic, D-finite or not) is now available, but Gessel'swalks remained mysterious because they were the only model among the 23D-finite ones that had not been given an elementarysolution. Instead, Gessel's conjecture was first proved usingan inventive computer algebra approach in 2008. A year later, the associated three-variate generating function was proved to be algebraic by a computer algebra tour de force. This was re-proved recently using elaborate complex analysis machinery. We give here an elementary and constructive proof. Our approach also solves other quadrant models (with multiple steps) recently proved to be algebraic via computer algebra.
Author Bousquet-Mélou, Mireille
Author_xml – sequence: 1
  givenname: Mireille
  surname: Bousquet-Mélou
  fullname: Bousquet-Mélou, Mireille
  email: bousquet@labri.fr
  organization: CNRS, LaBRI, Université de Bordeaux, 351 cours de la Libération, F-33405 Talence Cedex, France
BackLink https://hal.science/hal-01136361$$DView record in HAL
BookMark eNp9kD1PwzAQhi0EEm3hB7B5QwwJ_miTi5iqClqkSiwwW3ZyUV1SB2y3iH-Po8LC0Ok-dM_dve-YnLveISE3nOWc8eJ-m2u7y0VKcwY5k3BGRpxVLBMMxDkZMcZ4BiWDSzIOYZvKasqrEYG5o9jhDl3U_puGvttH2zvat3SJIWB3G-iX7t4DtY7GDdLPvW68dvGKXLS6C3j9Gyfk7enxdbHK1i_L58V8ndWynMaMCxSyBZAwbUDMZrJEXTSlFtOyqFJmkGHbYC2gNYZLU5UzMFoAGNmaAo2ckLvj3o3u1Ie3u_Sm6rVVq_laDT3GuSxkwQ8yzZbH2dr3IXhsVW2jHvREr22nOFODWWqrkllqMEsxUMmsRPJ_5N-pU8zDkcEk_2DRq1BbdDU21mMdVdPbE_QPn3eDRg
CitedBy_id crossref_primary_10_1007_s00440_020_00969_8
crossref_primary_10_1090_memo_1440
crossref_primary_10_1137_18M1220856
crossref_primary_10_1016_j_ejc_2024_104015
crossref_primary_10_1007_s10208_017_9354_z
crossref_primary_10_1007_s00026_024_00739_6
crossref_primary_10_4153_S0008414X22000487
crossref_primary_10_1016_j_jcta_2019_105191
crossref_primary_10_1016_j_jcta_2022_105644
crossref_primary_10_1007_s11464_022_1031_0
Cites_doi 10.1016/j.disc.2012.09.003
10.1016/j.tcs.2009.04.008
10.1016/S0012-365X(00)00147-3
10.1016/j.crma.2014.11.015
10.1080/10236190802332084
10.4171/jems/317
10.1214/105051605000000052
10.1090/tran/6804
10.1016/j.spa.2013.12.003
10.1016/S0304-3975(03)00219-6
10.1016/j.jctb.2005.12.003
10.1016/j.aam.2010.11.004
10.1016/j.jcta.2013.09.005
10.4153/CJM-1964-058-7
10.1007/BF01370732
10.1016/j.jctb.2011.02.003
10.1137/0144074
10.1090/S0002-9939-2010-10398-2
10.1016/j.jcta.2008.06.011
10.4153/CJM-1962-002-9
10.1016/S0304-3975(02)00007-5
10.1007/s00026-016-0328-7
10.1017/S0963548314000145
10.1016/0378-3758(86)90009-1
10.1017/S0027763000022698
10.1137/S0895480190177650
10.1073/pnas.0901678106
10.37236/1271
10.1007/BF01845637
10.1007/s10801-010-0259-z
10.1016/S0012-365X(01)00250-3
10.1007/s10240-012-0045-7
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.aim.2016.08.038
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1090-2082
EndPage 1189
ExternalDocumentID oai:HAL:hal-01136361v3
10_1016_j_aim_2016_08_038
S0001870815302735
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AASFE
AAXUO
ABAOU
ABCQX
ABJNI
ABLJU
ABMAC
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADIYS
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
D0L
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
SSZ
T5K
UPT
WH7
ZMT
~G-
1RT
5VS
9DU
AAEDT
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AEIPS
AETEA
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
FGOYB
G-2
HX~
HZ~
MVM
OHT
R2-
SEW
XOL
XPP
ZCG
ZKB
~HD
1XC
VOOES
ID FETCH-LOGICAL-c374t-12e23f88384d825537ea6d7a24769a6dbe0efdec28fbb13b9758ba288b3fb6eb3
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000386192700029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0001-8708
IngestDate Tue Oct 14 20:16:13 EDT 2025
Tue Nov 18 22:13:43 EST 2025
Sat Nov 29 07:34:57 EST 2025
Fri Feb 23 02:21:16 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Exact enumeration
Algebraic series
Lattice walks
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c374t-12e23f88384d825537ea6d7a24769a6dbe0efdec28fbb13b9758ba288b3fb6eb3
ORCID 0000-0002-2863-8300
OpenAccessLink https://hal.science/hal-01136361
PageCount 19
ParticipantIDs hal_primary_oai_HAL_hal_01136361v3
crossref_citationtrail_10_1016_j_aim_2016_08_038
crossref_primary_10_1016_j_aim_2016_08_038
elsevier_sciencedirect_doi_10_1016_j_aim_2016_08_038
PublicationCentury 2000
PublicationDate 2016-11-05
PublicationDateYYYYMMDD 2016-11-05
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-05
  day: 05
PublicationDecade 2010
PublicationTitle Advances in mathematics (New York. 1965)
PublicationYear 2016
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Bostan, Kauers (br0070) 2010; 138
Kauers, Koutschan, Zeilberger (br0310) 2009; 106
Bousquet-Mélou, Petkovšek (br0170) 2000; 225
Garbit, Raschel (br0270) 2014; 19
Ayyer (br0010) 2009; 12
Fayolle, Iasnogorodski, Malyshev (br0230) 1999; vol. 40
Bousquet-Mélou (br0130) 2011; 33
Bender, Canfield (br0040) 1994; 7
Bostan, Raschel, Salvy (br0100) 2014; 121
Bousquet-Mélou (br0120) 2005; 15
Melczer, Mishna (br0390) 2014; 23
Kauers, Yatchak (br0320) 2015
Mishna, Rechnitzer (br0410) 2009; 410
Bousquet-Mélou, Mishna (br0160) 2010; vol. 520
DeBlassie (br0210) 1987; 74
Knuth (br0340) 1975
Bousquet-Mélou, Jehanne (br0150) 2006; 96
Kauers, Zeilberger (br0330) 2008; 14
Bostan, Raschel (br0090) March 2015; 449
Raschel (br0450) 2012; 14
Mishna (br0400) 2009; 116
Tutte (br0480) 1962; 14
Kreweras (br0350) 1965; 6
Bostan, Bousquet-Mélou, Kauers, Melczer (br0060) 2016
Kurkova, Raschel (br0380) 2012; 116
Goulden, Jackson (br0290) 1983
K. Raschel, Private communication, 2015.
Kurkova, Raschel (br0370) 2011; 47
Duraj (br0220) 2014; 124
Fayolle, Raschel (br0240) 2010; 16
Zeilberger (br0490) 1996; 3
Bostan, Kurkova, Raschel (br0080) 2016
Bousquet-Mélou, Petkovšek (br0180) 2003; 307
Fayolle, Raschel (br0250) 2015; 353
Petkovšek, Wilf (br0420) 2008
Bousquet-Mélou (br0110) 2002
Rond (br0460) 2016
Kurke, Pfister, Popescu, Roczen, Mostowski (br0360) 1978; vol. 634
Brown, Tutte (br0200) 1964; 16
Bousquet-Mélou (br0140) 2011; vol. 392
Banderier, Bousquet-Mélou, Denise, Flajolet, Gardy, Gouyou-Beauchamps (br0020) 2002; 246
Sun (br0470) 2012; 312
Flatto, Hahn (br0260) 1984; 44
Gessel (br0280) 1986; 14
Banderier, Flajolet (br0030) 2002; 281
Brown (br0190) 1965; 158
OEIS Foundation Inc. (br0300)
Popescu (br0430) 1986; 104
Bernardi, Bousquet-Mélou (br0050) 2011; 101
Bousquet-Mélou (10.1016/j.aim.2016.08.038_br0170) 2000; 225
Tutte (10.1016/j.aim.2016.08.038_br0480) 1962; 14
Gessel (10.1016/j.aim.2016.08.038_br0280) 1986; 14
Kurkova (10.1016/j.aim.2016.08.038_br0370) 2011; 47
Banderier (10.1016/j.aim.2016.08.038_br0020) 2002; 246
Goulden (10.1016/j.aim.2016.08.038_br0290) 1983
Mishna (10.1016/j.aim.2016.08.038_br0410) 2009; 410
Brown (10.1016/j.aim.2016.08.038_br0190) 1965; 158
Duraj (10.1016/j.aim.2016.08.038_br0220) 2014; 124
Bousquet-Mélou (10.1016/j.aim.2016.08.038_br0110) 2002
Fayolle (10.1016/j.aim.2016.08.038_br0230) 1999; vol. 40
Popescu (10.1016/j.aim.2016.08.038_br0430) 1986; 104
Bousquet-Mélou (10.1016/j.aim.2016.08.038_br0130) 2011; 33
Bostan (10.1016/j.aim.2016.08.038_br0080) 2016
DeBlassie (10.1016/j.aim.2016.08.038_br0210) 1987; 74
Bousquet-Mélou (10.1016/j.aim.2016.08.038_br0150) 2006; 96
Brown (10.1016/j.aim.2016.08.038_br0200) 1964; 16
Sun (10.1016/j.aim.2016.08.038_br0470) 2012; 312
Fayolle (10.1016/j.aim.2016.08.038_br0250) 2015; 353
Kurkova (10.1016/j.aim.2016.08.038_br0380) 2012; 116
Raschel (10.1016/j.aim.2016.08.038_br0450) 2012; 14
Bousquet-Mélou (10.1016/j.aim.2016.08.038_br0160) 2010; vol. 520
Knuth (10.1016/j.aim.2016.08.038_br0340) 1975
Ayyer (10.1016/j.aim.2016.08.038_br0010) 2009; 12
Bostan (10.1016/j.aim.2016.08.038_br0060) 2016
Fayolle (10.1016/j.aim.2016.08.038_br0240) 2010; 16
Bousquet-Mélou (10.1016/j.aim.2016.08.038_br0180) 2003; 307
Kurke (10.1016/j.aim.2016.08.038_br0360) 1978; vol. 634
10.1016/j.aim.2016.08.038_br0440
Kreweras (10.1016/j.aim.2016.08.038_br0350) 1965; 6
Mishna (10.1016/j.aim.2016.08.038_br0400) 2009; 116
Garbit (10.1016/j.aim.2016.08.038_br0270) 2014; 19
Bousquet-Mélou (10.1016/j.aim.2016.08.038_br0140) 2011; vol. 392
Bernardi (10.1016/j.aim.2016.08.038_br0050) 2011; 101
Kauers (10.1016/j.aim.2016.08.038_br0320) 2015
Kauers (10.1016/j.aim.2016.08.038_br0330) 2008; 14
Bousquet-Mélou (10.1016/j.aim.2016.08.038_br0120) 2005; 15
Banderier (10.1016/j.aim.2016.08.038_br0030) 2002; 281
Rond (10.1016/j.aim.2016.08.038_br0460) 2016
Melczer (10.1016/j.aim.2016.08.038_br0390) 2014; 23
Bostan (10.1016/j.aim.2016.08.038_br0070) 2010; 138
Kauers (10.1016/j.aim.2016.08.038_br0310) 2009; 106
OEIS Foundation Inc. (10.1016/j.aim.2016.08.038_br0300)
Flatto (10.1016/j.aim.2016.08.038_br0260) 1984; 44
Bender (10.1016/j.aim.2016.08.038_br0040) 1994; 7
Zeilberger (10.1016/j.aim.2016.08.038_br0490) 1996; 3
Bostan (10.1016/j.aim.2016.08.038_br0090) 2015; 449
Bostan (10.1016/j.aim.2016.08.038_br0100) 2014; 121
Petkovšek (10.1016/j.aim.2016.08.038_br0420)
References_xml – volume: vol. 392
  start-page: 1
  year: 2011
  end-page: 49
  ident: br0140
  article-title: Counting planar maps, coloured or uncoloured
  publication-title: Surveys in Combinatorics 2011
– volume: 3
  year: 1996
  ident: br0490
  article-title: Proof of the alternating sign matrix conjecture
  publication-title: Electron. J. Combin.
– volume: 449
  year: March 2015
  ident: br0090
  article-title: Compter les excursions sur un échiquier
  publication-title: Pour la Science
– volume: 281
  start-page: 37
  year: 2002
  end-page: 80
  ident: br0030
  article-title: Basic analytic combinatorics of directed lattice paths
  publication-title: Theoret. Comput. Sci.
– volume: 312
  start-page: 3649
  year: 2012
  end-page: 3655
  ident: br0470
  article-title: Proof of two conjectures of Petkovšek and Wilf on Gessel walks
  publication-title: Discrete Math.
– volume: vol. 520
  start-page: 1
  year: 2010
  end-page: 39
  ident: br0160
  article-title: Walks with small steps in the quarter plane
  publication-title: Algorithmic Probability and Combinatorics
– reference: K. Raschel, Private communication, 2015.
– volume: 14
  start-page: 1119
  year: 2008
  end-page: 1126
  ident: br0330
  article-title: The quasi-holonomic ansatz and restricted lattice walks
  publication-title: J. Difference Equ. Appl.
– year: 1975
  ident: br0340
  article-title: The Art of Computer Programming. Vol. 1: Fundamental Algorithms
– volume: 246
  start-page: 29
  year: 2002
  end-page: 55
  ident: br0020
  article-title: Generating functions for generating trees
  publication-title: Discrete Math.
– volume: vol. 40
  year: 1999
  ident: br0230
  article-title: Random Walks in the Quarter-Plane
  publication-title: Appl. Math. (New York)
– volume: 16
  start-page: 485
  year: 2010
  end-page: 496
  ident: br0240
  article-title: On the holonomy or algebraicity of generating functions counting lattice walks in the quarter plane
  publication-title: Markov Process. Related Fields
– volume: 6
  start-page: 5
  year: 1965
  end-page: 105
  ident: br0350
  article-title: Sur une classe de problèmes liés au treillis des partitions d'entiers
  publication-title: Cahiers BURO
– volume: 158
  start-page: 82
  year: 1965
  end-page: 89
  ident: br0190
  article-title: On the existence of square roots in certain rings of power series
  publication-title: Math. Ann.
– volume: 124
  start-page: 1503
  year: 2014
  end-page: 1518
  ident: br0220
  article-title: Random walks in cones: the case of nonzero drift
  publication-title: Stochastic Process. Appl.
– volume: 106
  start-page: 11502
  year: 2009
  end-page: 11505
  ident: br0310
  article-title: Proof of Ira Gessel's lattice path conjecture
  publication-title: Proc. Natl. Acad. Sci. USA
– ident: br0300
  article-title: The on-line encyclopedia of integer sequences
– volume: 138
  start-page: 3063
  year: 2010
  end-page: 3078
  ident: br0070
  article-title: The complete generating function for Gessel walks is algebraic
  publication-title: Proc. Amer. Math. Soc.
– volume: 7
  start-page: 9
  year: 1994
  end-page: 15
  ident: br0040
  article-title: The number of degree-restricted rooted maps on the sphere
  publication-title: SIAM J. Discrete Math.
– volume: 353
  start-page: 89
  year: 2015
  end-page: 94
  ident: br0250
  article-title: About a possible analytic approach for walks in the quarter plane with arbitrary big jumps
  publication-title: C. R. Math. Acad. Sci. Paris
– volume: 116
  start-page: 69
  year: 2012
  end-page: 114
  ident: br0380
  article-title: On the functions counting walks with small steps in the quarter plane
  publication-title: Publ. Math. Inst. Hautes Études Sci.
– volume: 307
  start-page: 257
  year: 2003
  end-page: 276
  ident: br0180
  article-title: Walks confined in a quadrant are not always D-finite
  publication-title: Theoret. Comput. Sci.
– year: 2016
  ident: br0460
  article-title: Local zero estimates and effective division in rings of algebraic power series
  publication-title: J. Reine Angew. Math.
– start-page: 49
  year: 2002
  end-page: 67
  ident: br0110
  article-title: Counting walks in the quarter plane
  publication-title: Mathematics and Computer Science 2
– volume: vol. 634
  year: 1978
  ident: br0360
  article-title: Die Approximationseigenschaft lokaler Ringe
  publication-title: Lecture Notes in Math.
– start-page: 25
  year: 2015
  end-page: 36
  ident: br0320
  article-title: Walks in the quarter plane with multiple steps
  publication-title: FPSAC 2015, DMTCS Proceedings
– volume: 19
  start-page: 27
  year: 2014
  ident: br0270
  article-title: On the exit time from a cone for Brownian motion with drift
  publication-title: Electron. J. Probab.
– volume: 101
  start-page: 315
  year: 2011
  end-page: 377
  ident: br0050
  article-title: Counting colored planar maps: algebraicity results
  publication-title: J. Combin. Theory Ser. B
– volume: 12
  year: 2009
  ident: br0010
  article-title: Towards a human proof of Gessel's conjecture
  publication-title: J. Integer Seq.
– volume: 116
  start-page: 460
  year: 2009
  end-page: 477
  ident: br0400
  article-title: Classifying lattice walks restricted to the quarter plane
  publication-title: J. Combin. Theory Ser. A
– volume: 410
  start-page: 3616
  year: 2009
  end-page: 3630
  ident: br0410
  article-title: Two non-holonomic lattice walks in the quarter plane
  publication-title: Theoret. Comput. Sci.
– volume: 121
  start-page: 45
  year: 2014
  end-page: 63
  ident: br0100
  article-title: Non-D-finite excursions in the quarter plane
  publication-title: J. Combin. Theory Ser. A
– volume: 14
  start-page: 749
  year: 2012
  end-page: 777
  ident: br0450
  article-title: Counting walks in a quadrant: a unified approach via boundary value problems
  publication-title: J. Eur. Math. Soc. (JEMS)
– year: 2008
  ident: br0420
  article-title: On a conjecture of Ira Gessel
– volume: 47
  start-page: 414
  year: 2011
  end-page: 433
  ident: br0370
  article-title: Explicit expression for the generating function counting Gessel's walks
  publication-title: Adv. in Appl. Math.
– year: 2016
  ident: br0080
  article-title: A human proof of Gessel's lattice path conjecture
  publication-title: Trans. Amer. Math. Soc.
– volume: 14
  start-page: 49
  year: 1986
  end-page: 58
  ident: br0280
  article-title: A probabilistic method for lattice path enumeration
  publication-title: J. Statist. Plann. Inference
– volume: 96
  start-page: 623
  year: 2006
  end-page: 672
  ident: br0150
  article-title: Polynomial equations with one catalytic variable, algebraic series and map enumeration
  publication-title: J. Combin. Theory Ser. B
– volume: 33
  start-page: 571
  year: 2011
  end-page: 608
  ident: br0130
  article-title: Counting permutations with no long monotone subsequence via generating trees and the kernel method
  publication-title: J. Algebraic Combin.
– volume: 44
  start-page: 1041
  year: 1984
  end-page: 1053
  ident: br0260
  article-title: Two parallel queues created by arrivals with two demands. I
  publication-title: SIAM J. Appl. Math.
– volume: 104
  start-page: 85
  year: 1986
  end-page: 115
  ident: br0430
  article-title: General Néron desingularization and approximation
  publication-title: Nagoya Math. J.
– volume: 14
  start-page: 21
  year: 1962
  end-page: 38
  ident: br0480
  article-title: A census of planar triangulations
  publication-title: Canad. J. Math.
– volume: 16
  start-page: 572
  year: 1964
  end-page: 577
  ident: br0200
  article-title: On the enumeration of rooted non-separable planar maps
  publication-title: Canad. J. Math.
– year: 2016
  ident: br0060
  article-title: On 3-dimensional lattice walks confined to the octant
  publication-title: Ann. Comb.
– volume: 74
  start-page: 1
  year: 1987
  end-page: 29
  ident: br0210
  article-title: Exit times from cones in
  publication-title: Probab. Theory Related Fields
– volume: 15
  start-page: 1451
  year: 2005
  end-page: 1491
  ident: br0120
  article-title: Walks in the quarter plane: Kreweras' algebraic model
  publication-title: Ann. Appl. Probab.
– volume: 23
  start-page: 861
  year: 2014
  end-page: 888
  ident: br0390
  article-title: Singularity analysis via the iterated kernel method
  publication-title: Combin. Probab. Comput.
– volume: 225
  start-page: 51
  year: 2000
  end-page: 75
  ident: br0170
  article-title: Linear recurrences with constant coefficients: the multivariate case
  publication-title: Discrete Math.
– year: 1983
  ident: br0290
  article-title: Combinatorial Enumeration
  publication-title: Wiley-Intersci. Ser. Discrete Math.
– volume: 312
  start-page: 3649
  issue: 24
  year: 2012
  ident: 10.1016/j.aim.2016.08.038_br0470
  article-title: Proof of two conjectures of Petkovšek and Wilf on Gessel walks
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2012.09.003
– volume: 410
  start-page: 3616
  issue: 38–40
  year: 2009
  ident: 10.1016/j.aim.2016.08.038_br0410
  article-title: Two non-holonomic lattice walks in the quarter plane
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2009.04.008
– volume: 225
  start-page: 51
  issue: 1–3
  year: 2000
  ident: 10.1016/j.aim.2016.08.038_br0170
  article-title: Linear recurrences with constant coefficients: the multivariate case
  publication-title: Discrete Math.
  doi: 10.1016/S0012-365X(00)00147-3
– year: 1975
  ident: 10.1016/j.aim.2016.08.038_br0340
– volume: 353
  start-page: 89
  issue: 2
  year: 2015
  ident: 10.1016/j.aim.2016.08.038_br0250
  article-title: About a possible analytic approach for walks in the quarter plane with arbitrary big jumps
  publication-title: C. R. Math. Acad. Sci. Paris
  doi: 10.1016/j.crma.2014.11.015
– volume: 14
  start-page: 1119
  issue: 10–11
  year: 2008
  ident: 10.1016/j.aim.2016.08.038_br0330
  article-title: The quasi-holonomic ansatz and restricted lattice walks
  publication-title: J. Difference Equ. Appl.
  doi: 10.1080/10236190802332084
– ident: 10.1016/j.aim.2016.08.038_br0420
– volume: 14
  start-page: 749
  issue: 3
  year: 2012
  ident: 10.1016/j.aim.2016.08.038_br0450
  article-title: Counting walks in a quadrant: a unified approach via boundary value problems
  publication-title: J. Eur. Math. Soc. (JEMS)
  doi: 10.4171/jems/317
– ident: 10.1016/j.aim.2016.08.038_br0440
– volume: 15
  start-page: 1451
  issue: 2
  year: 2005
  ident: 10.1016/j.aim.2016.08.038_br0120
  article-title: Walks in the quarter plane: Kreweras' algebraic model
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/105051605000000052
– year: 2016
  ident: 10.1016/j.aim.2016.08.038_br0080
  article-title: A human proof of Gessel's lattice path conjecture
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/tran/6804
– volume: 449
  year: 2015
  ident: 10.1016/j.aim.2016.08.038_br0090
  article-title: Compter les excursions sur un échiquier
  publication-title: Pour la Science
– volume: 124
  start-page: 1503
  issue: 4
  year: 2014
  ident: 10.1016/j.aim.2016.08.038_br0220
  article-title: Random walks in cones: the case of nonzero drift
  publication-title: Stochastic Process. Appl.
  doi: 10.1016/j.spa.2013.12.003
– volume: 307
  start-page: 257
  issue: 2
  year: 2003
  ident: 10.1016/j.aim.2016.08.038_br0180
  article-title: Walks confined in a quadrant are not always D-finite
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/S0304-3975(03)00219-6
– volume: 12
  issue: 4
  year: 2009
  ident: 10.1016/j.aim.2016.08.038_br0010
  article-title: Towards a human proof of Gessel's conjecture
  publication-title: J. Integer Seq.
– volume: vol. 40
  year: 1999
  ident: 10.1016/j.aim.2016.08.038_br0230
  article-title: Random Walks in the Quarter-Plane
– volume: 96
  start-page: 623
  year: 2006
  ident: 10.1016/j.aim.2016.08.038_br0150
  article-title: Polynomial equations with one catalytic variable, algebraic series and map enumeration
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1016/j.jctb.2005.12.003
– volume: 19
  start-page: 27
  issue: 63
  year: 2014
  ident: 10.1016/j.aim.2016.08.038_br0270
  article-title: On the exit time from a cone for Brownian motion with drift
  publication-title: Electron. J. Probab.
– volume: 47
  start-page: 414
  issue: 3
  year: 2011
  ident: 10.1016/j.aim.2016.08.038_br0370
  article-title: Explicit expression for the generating function counting Gessel's walks
  publication-title: Adv. in Appl. Math.
  doi: 10.1016/j.aam.2010.11.004
– volume: 121
  start-page: 45
  year: 2014
  ident: 10.1016/j.aim.2016.08.038_br0100
  article-title: Non-D-finite excursions in the quarter plane
  publication-title: J. Combin. Theory Ser. A
  doi: 10.1016/j.jcta.2013.09.005
– volume: 16
  start-page: 572
  year: 1964
  ident: 10.1016/j.aim.2016.08.038_br0200
  article-title: On the enumeration of rooted non-separable planar maps
  publication-title: Canad. J. Math.
  doi: 10.4153/CJM-1964-058-7
– volume: 158
  start-page: 82
  year: 1965
  ident: 10.1016/j.aim.2016.08.038_br0190
  article-title: On the existence of square roots in certain rings of power series
  publication-title: Math. Ann.
  doi: 10.1007/BF01370732
– volume: vol. 634
  year: 1978
  ident: 10.1016/j.aim.2016.08.038_br0360
  article-title: Die Approximationseigenschaft lokaler Ringe
– volume: 101
  start-page: 315
  issue: 5
  year: 2011
  ident: 10.1016/j.aim.2016.08.038_br0050
  article-title: Counting colored planar maps: algebraicity results
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1016/j.jctb.2011.02.003
– volume: 44
  start-page: 1041
  issue: 5
  year: 1984
  ident: 10.1016/j.aim.2016.08.038_br0260
  article-title: Two parallel queues created by arrivals with two demands. I
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0144074
– volume: 16
  start-page: 485
  issue: 3
  year: 2010
  ident: 10.1016/j.aim.2016.08.038_br0240
  article-title: On the holonomy or algebraicity of generating functions counting lattice walks in the quarter plane
  publication-title: Markov Process. Related Fields
– volume: 138
  start-page: 3063
  issue: 9
  year: 2010
  ident: 10.1016/j.aim.2016.08.038_br0070
  article-title: The complete generating function for Gessel walks is algebraic
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-2010-10398-2
– volume: 116
  start-page: 460
  issue: 2
  year: 2009
  ident: 10.1016/j.aim.2016.08.038_br0400
  article-title: Classifying lattice walks restricted to the quarter plane
  publication-title: J. Combin. Theory Ser. A
  doi: 10.1016/j.jcta.2008.06.011
– volume: 14
  start-page: 21
  year: 1962
  ident: 10.1016/j.aim.2016.08.038_br0480
  article-title: A census of planar triangulations
  publication-title: Canad. J. Math.
  doi: 10.4153/CJM-1962-002-9
– volume: 281
  start-page: 37
  issue: 1–2
  year: 2002
  ident: 10.1016/j.aim.2016.08.038_br0030
  article-title: Basic analytic combinatorics of directed lattice paths
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/S0304-3975(02)00007-5
– year: 2016
  ident: 10.1016/j.aim.2016.08.038_br0060
  article-title: On 3-dimensional lattice walks confined to the octant
  publication-title: Ann. Comb.
  doi: 10.1007/s00026-016-0328-7
– volume: 23
  start-page: 861
  issue: 5
  year: 2014
  ident: 10.1016/j.aim.2016.08.038_br0390
  article-title: Singularity analysis via the iterated kernel method
  publication-title: Combin. Probab. Comput.
  doi: 10.1017/S0963548314000145
– volume: vol. 520
  start-page: 1
  year: 2010
  ident: 10.1016/j.aim.2016.08.038_br0160
  article-title: Walks with small steps in the quarter plane
– volume: 14
  start-page: 49
  issue: 1
  year: 1986
  ident: 10.1016/j.aim.2016.08.038_br0280
  article-title: A probabilistic method for lattice path enumeration
  publication-title: J. Statist. Plann. Inference
  doi: 10.1016/0378-3758(86)90009-1
– volume: vol. 392
  start-page: 1
  year: 2011
  ident: 10.1016/j.aim.2016.08.038_br0140
  article-title: Counting planar maps, coloured or uncoloured
– start-page: 49
  year: 2002
  ident: 10.1016/j.aim.2016.08.038_br0110
  article-title: Counting walks in the quarter plane
– ident: 10.1016/j.aim.2016.08.038_br0300
– volume: 104
  start-page: 85
  year: 1986
  ident: 10.1016/j.aim.2016.08.038_br0430
  article-title: General Néron desingularization and approximation
  publication-title: Nagoya Math. J.
  doi: 10.1017/S0027763000022698
– volume: 7
  start-page: 9
  issue: 1
  year: 1994
  ident: 10.1016/j.aim.2016.08.038_br0040
  article-title: The number of degree-restricted rooted maps on the sphere
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/S0895480190177650
– volume: 106
  start-page: 11502
  issue: 28
  year: 2009
  ident: 10.1016/j.aim.2016.08.038_br0310
  article-title: Proof of Ira Gessel's lattice path conjecture
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0901678106
– volume: 3
  issue: 2
  year: 1996
  ident: 10.1016/j.aim.2016.08.038_br0490
  article-title: Proof of the alternating sign matrix conjecture
  publication-title: Electron. J. Combin.
  doi: 10.37236/1271
– year: 2016
  ident: 10.1016/j.aim.2016.08.038_br0460
  article-title: Local zero estimates and effective division in rings of algebraic power series
  publication-title: J. Reine Angew. Math.
– volume: 74
  start-page: 1
  issue: 1
  year: 1987
  ident: 10.1016/j.aim.2016.08.038_br0210
  article-title: Exit times from cones in Rn of Brownian motion
  publication-title: Probab. Theory Related Fields
  doi: 10.1007/BF01845637
– start-page: 25
  year: 2015
  ident: 10.1016/j.aim.2016.08.038_br0320
  article-title: Walks in the quarter plane with multiple steps
– volume: 6
  start-page: 5
  year: 1965
  ident: 10.1016/j.aim.2016.08.038_br0350
  article-title: Sur une classe de problèmes liés au treillis des partitions d'entiers
  publication-title: Cahiers BURO
– volume: 33
  start-page: 571
  issue: 4
  year: 2011
  ident: 10.1016/j.aim.2016.08.038_br0130
  article-title: Counting permutations with no long monotone subsequence via generating trees and the kernel method
  publication-title: J. Algebraic Combin.
  doi: 10.1007/s10801-010-0259-z
– volume: 246
  start-page: 29
  issue: 1–3
  year: 2002
  ident: 10.1016/j.aim.2016.08.038_br0020
  article-title: Generating functions for generating trees
  publication-title: Discrete Math.
  doi: 10.1016/S0012-365X(01)00250-3
– year: 1983
  ident: 10.1016/j.aim.2016.08.038_br0290
  article-title: Combinatorial Enumeration
– volume: 116
  start-page: 69
  year: 2012
  ident: 10.1016/j.aim.2016.08.038_br0380
  article-title: On the functions counting walks with small steps in the quarter plane
  publication-title: Publ. Math. Inst. Hautes Études Sci.
  doi: 10.1007/s10240-012-0045-7
SSID ssj0009419
Score 2.3351047
Snippet Around 2000, Ira Gessel conjectured that the number of lattice walks in the quadrant N2, starting and ending at the origin (0,0) and taking their steps in...
Around 2000, Ira Gessel conjectured that the number of lattice walks in the quadrant N^2, starting and ending at the origin (0,0) and taking their steps in...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1171
SubjectTerms Algebraic series
Combinatorics
Exact enumeration
Lattice walks
Mathematics
Title An elementary solution of Gessel's walks in the quadrant
URI https://dx.doi.org/10.1016/j.aim.2016.08.038
https://hal.science/hal-01136361
Volume 303
WOSCitedRecordID wos000386192700029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2082
  dateEnd: 20171215
  omitProxy: false
  ssIdentifier: ssj0009419
  issn: 0001-8708
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELa2LQc4IJ6i5SELISGxShXHedjHgAoFtRWHIu0tshNHbAnZstndln_PTBxnsxWt6IFLFFmx8_ic8cx45htC3gjcyhPwfxeRER4S0HkiR08c1io0CkCXbaLwUXJyIiYT-XU06rP4V1VS1-LyUp7_V6ihDcDG1NlbwN0PCg1wDqDDEWCH4z8Bn9Zj08WEz3-P3b1QKfyEPOFV66G_UNWPxsU4_lqqApasDS99amMD2mt-9tSuzbB4z_4YeQIHroT3s2UDy8zCO7bb79VsaSPz5wYzDocOBha3mXbRhtBkIDR9MRSa3OcDsceYraPSLaFgtMi_imfrKTjbV1MkAWBxy55q2V02qbCvLFF94KCLSTvLYIgMh8iwiiYXW2QnSCIJcm0n_Xww-bImXg5ZZwLZl3A7222M35XnuE432fruvOyt1nH6gNzvzAWaWpgfkpGpH5F7x2tAHhOR1nQNOHWA01lJLeBvG9rCTac1hX7Uwf2EfPt4cPrh0OvqYXg5T8KFxwIT8FIILsICDPuIJ0bFRaKCMIklnGnjm7IweSBKrRnXEmxBrQIhNC91bDR_SrbrWW2eESqU1FGhuMqZDoNEKgVKCprTqLCyWO4S332JLO_I4rFmSZVdi8Auedd3ObdMKTddHLrPm3WqnlXhMpgqN3V7DVD0wyM1-mF6lGGbj8WJeMxWfO82D_Kc3F3P-RdkezFfmpfkTr5aTJv5q24y_QHEHHlm
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+elementary+solution+of+Gessel%27s+walks+in+the+quadrant&rft.jtitle=Advances+in+mathematics+%28New+York.+1965%29&rft.au=Bousquet-M%C3%A9lou%2C+Mireille&rft.date=2016-11-05&rft.issn=0001-8708&rft.volume=303&rft.spage=1171&rft.epage=1189&rft_id=info:doi/10.1016%2Fj.aim.2016.08.038&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aim_2016_08_038
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8708&client=summon