A numerical damage model for initially anisotropic materials

Significant progresses have been realized during the last decades on both macroscopic and micro-mechanical modeling of induced damage in brittle materials. Most damage models developed so far were devoted to initially isotropic materials. This work is devoted to modeling of induced damage in an init...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of solids and structures Ročník 100-101; s. 245 - 256
Hlavní autoři: Qi, M., Giraud, A., Colliat, J.B., Shao, J.F.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier Ltd 01.12.2016
Elsevier BV
Elsevier
Témata:
ISSN:0020-7683, 1879-2146
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Significant progresses have been realized during the last decades on both macroscopic and micro-mechanical modeling of induced damage in brittle materials. Most damage models developed so far were devoted to initially isotropic materials. This work is devoted to modeling of induced damage in an initially anisotropic material. A numerical micro-mechanical damage model is proposed, using an Eshelby inclusion solution based homogenization method. Based on the numerical integration of the exact Green’s function and using an appropriate coordinate frame rotation method, an efficient numerical algorithm is proposed to determine the Hill tensor for an arbitrarily oriented family of cracks embedded in a transversely isotropic elastic matrix. Based on this, the effective elastic properties of cracked materials are determined through a rigorous up-scaling procedure using three different homogenization schemes, and taking into account interactions between the initial material anisotropy and induced cracks. A specific damage criterion is then defined in the framework of irreversible thermodynamics to describe the progressive growth of damage. The proposed model is finally implemented in a computer code and applied to study mechanical responses of cracked materials in different loading paths. Again, effects of the initial anisotropy and homogenization schemes are investigated.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0020-7683
1879-2146
DOI:10.1016/j.ijsolstr.2016.08.021