Space-vector pulse-width modulation algorithm for multilevel voltage source inverters based on matrix transformation and including operation in the over-modulation region

Multilevel voltage source inverters are most promising when employed in high-power and high-voltage applications. As the number of inverter levels increases, the algorithm of space-vector pulse-width modulation (SVPWM) becomes increasingly complex. Based on the intrinsic relationship between SVPWM a...

Full description

Saved in:
Bibliographic Details
Published in:IET power electronics Vol. 7; no. 12; pp. 2925 - 2933
Main Authors: Jiang, Weidong, Li, Wangmin, Wu, Zhiqing, She, Yangyang, Tao, Ziran
Format: Journal Article
Language:English
Published: The Institution of Engineering and Technology 01.12.2014
Subjects:
ISSN:1755-4535, 1755-4543
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multilevel voltage source inverters are most promising when employed in high-power and high-voltage applications. As the number of inverter levels increases, the algorithm of space-vector pulse-width modulation (SVPWM) becomes increasingly complex. Based on the intrinsic relationship between SVPWM algorithms for 2-level inverters and those for arbitrary-level inverters, here a novel SVPWM algorithm is proposed for an arbitrary-level inverter. Considering that the nearest three vectors are used to synthesise the reference vector, the on-time of the voltage vector for an arbitrary-level inverter can be acquired from that for a 2-level inverter via the use of a linear transformation. This algorithm is verified through simulation and experiments, with the latter proving that the proposed algorithm can meet the real-time requirements of multilevel inverters.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1755-4535
1755-4543
DOI:10.1049/iet-pel.2013.0823