A hybrid ensemble pruning approach based on consensus clustering and multi-objective evolutionary algorithm for sentiment classification
Sentiment analysis is a critical task of extracting subjective information from online text documents. Ensemble learning can be employed to obtain more robust classification schemes. However, most approaches in the field incorporated feature engineering to build efficient sentiment classifiers. The...
Saved in:
| Published in: | Information processing & management Vol. 53; no. 4; pp. 814 - 833 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Elsevier Ltd
01.07.2017
Elsevier Science Ltd |
| Subjects: | |
| ISSN: | 0306-4573, 1873-5371 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Sentiment analysis is a critical task of extracting subjective information from online text documents. Ensemble learning can be employed to obtain more robust classification schemes. However, most approaches in the field incorporated feature engineering to build efficient sentiment classifiers.
The purpose of our research is to establish an effective sentiment classification scheme by pursuing the paradigm of ensemble pruning. Ensemble pruning is a crucial method to build classifier ensembles with high predictive accuracy and efficiency. Previous studies employed exponential search, randomized search, sequential search, ranking based pruning and clustering based pruning. However, there are tradeoffs in selecting the ensemble pruning methods. In this regard, hybrid ensemble pruning schemes can be more promising.
In this study, we propose a hybrid ensemble pruning scheme based on clustering and randomized search for text sentiment classification. Furthermore, a consensus clustering scheme is presented to deal with the instability of clustering results. The classifiers of the ensemble are initially clustered into groups according to their predictive characteristics. Then, two classifiers from each cluster are selected as candidate classifiers based on their pairwise diversity. The search space of candidate classifiers is explored by the elitist Pareto-based multi-objective evolutionary algorithm.
For the evaluation task, the proposed scheme is tested on twelve balanced and unbalanced benchmark text classification tasks. In addition, the proposed approach is experimentally compared with three ensemble methods (AdaBoost, Bagging and Random Subspace) and three ensemble pruning algorithms (ensemble selection from libraries of models, Bagging ensemble selection and LibD3C algorithm). Results demonstrate that the consensus clustering and the elitist pareto-based multi-objective evolutionary algorithm can be effectively used in ensemble pruning. The experimental analysis with conventional ensemble methods and pruning algorithms indicates the validity and effectiveness of the proposed scheme. |
|---|---|
| AbstractList | Sentiment analysis is a critical task of extracting subjective information from online text documents. Ensemble learning can be employed to obtain more robust classification schemes. However, most approaches in the field incorporated feature engineering to build efficient sentiment classifiers.
The purpose of our research is to establish an effective sentiment classification scheme by pursuing the paradigm of ensemble pruning. Ensemble pruning is a crucial method to build classifier ensembles with high predictive accuracy and efficiency. Previous studies employed exponential search, randomized search, sequential search, ranking based pruning and clustering based pruning. However, there are tradeoffs in selecting the ensemble pruning methods. In this regard, hybrid ensemble pruning schemes can be more promising.
In this study, we propose a hybrid ensemble pruning scheme based on clustering and randomized search for text sentiment classification. Furthermore, a consensus clustering scheme is presented to deal with the instability of clustering results. The classifiers of the ensemble are initially clustered into groups according to their predictive characteristics. Then, two classifiers from each cluster are selected as candidate classifiers based on their pairwise diversity. The search space of candidate classifiers is explored by the elitist Pareto-based multi-objective evolutionary algorithm.
For the evaluation task, the proposed scheme is tested on twelve balanced and unbalanced benchmark text classification tasks. In addition, the proposed approach is experimentally compared with three ensemble methods (AdaBoost, Bagging and Random Subspace) and three ensemble pruning algorithms (ensemble selection from libraries of models, Bagging ensemble selection and LibD3C algorithm). Results demonstrate that the consensus clustering and the elitist pareto-based multi-objective evolutionary algorithm can be effectively used in ensemble pruning. The experimental analysis with conventional ensemble methods and pruning algorithms indicates the validity and effectiveness of the proposed scheme. Sentiment analysis is a critical task of extracting subjective information from online text documents. Ensemble learning can be employed to obtain more robust classification schemes. However, most approaches in the field incorporated feature engineering to build efficient sentiment classifiers. The purpose of our research is to establish an effective sentiment classification scheme by pursuing the paradigm of ensemble pruning. Ensemble pruning is a crucial method to build classifier ensembles with high predictive accuracy and efficiency. Previous studies employed exponential search, randomized search, sequential search, ranking based pruning and clustering based pruning. However, there are tradeoffs in selecting the ensemble pruning methods. In this regard, hybrid ensemble pruning schemes can be more promising. In this study, we propose a hybrid ensemble pruning scheme based on clustering and randomized search for text sentiment classification. Furthermore, a consensus clustering scheme is presented to deal with the instability of clustering results. The classifiers of the ensemble are initially clustered into groups according to their predictive characteristics. Then, two classifiers from each cluster are selected as candidate classifiers based on their pairwise diversity. The search space of candidate classifiers is explored by the elitist Pareto-based multi-objective evolutionary algorithm. For the evaluation task, the proposed scheme is tested on twelve balanced and un- balanced benchmark text classification tasks. In addition, the proposed approach is experimentally compared with three ensemble methods (AdaBoost, Bagging and Random Subspace) and three ensemble pruning algorithms (ensemble selection from libraries of models. Bagging ensemble selection and LibD3C algorithm). Results demonstrate that the consensus clustering and the elitist pareto-based multi-objective evolutionary algorithm can be effectively used in ensemble pruning. The experimental analysis with conventional ensemble methods and pruning algorithms indicates the validity and effectiveness of the proposed scheme. |
| Author | Bulut, Hasan Onan, Aytuğ Korukoğlu, Serdar |
| Author_xml | – sequence: 1 givenname: Aytuğ surname: Onan fullname: Onan, Aytuğ email: aytug.onan@cbu.edu.tr organization: Celal Bayar University, Department of Computer Engineering, 45140, Muradiye, Manisa, Turkey – sequence: 2 givenname: Serdar surname: Korukoğlu fullname: Korukoğlu, Serdar email: Serdar.korukoglu@ege.edu.tr organization: Ege University, Department of Computer Engineering, 35100, Bornova, Izmir, Turkey – sequence: 3 givenname: Hasan surname: Bulut fullname: Bulut, Hasan email: hasan.bulut@ege.edu.tr organization: Ege University, Department of Computer Engineering, 35100, Bornova, Izmir, Turkey |
| BookMark | eNp9kMFq3DAURUVJIJM0H5CdoGu771m25aGrEJq2EOimXQtZfs7I2JIryQP5g352NJmuushGQnDuFfdcswvnHTF2h1AiYPt5Ku26lBWgLKEqAboPbIedFEUjJF6wHQhoi7qR4opdxzgBQN1gtWN_7_nhpQ924OQiLf1MfA2bs-6Z63UNXpsD73WkgXvHjc-Mi1vkZt5iovCGuYEv25xs4fuJTLJH4nT085asdzq8cD0_-2DTYeGjDzwXJLvkI3foGO1ojT6RH9nlqOdIt__uG_b78euvh-_F089vPx7unwojpEjFOErT1qJr-la20CJ0cuwQwGA96LonhL6lGisU2A96bDVWnaam3ucXou7FDft07s3j_mwUk5r8Flz-UuEeq33TQNVkCs-UCT7GQKNag13yGoWgTsLVpLJwdRKuoFJZeM7I_zLGprdtKWg7v5v8ck5SHn60FFQ0lpyhwYZsVA3evpN-BRNYoKA |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2021_115828 crossref_primary_10_1080_19942060_2022_2073565 crossref_primary_10_1108_AGJSR_04_2022_0029 crossref_primary_10_1080_1331677X_2022_2086600 crossref_primary_10_1109_ACCESS_2019_2949059 crossref_primary_10_1108_DTA_07_2021_0177 crossref_primary_10_1177_21582440221096445 crossref_primary_10_1016_j_neucom_2024_127729 crossref_primary_10_1080_21681163_2022_2103451 crossref_primary_10_1155_2022_6555501 crossref_primary_10_1155_2022_1519198 crossref_primary_10_1109_ACCESS_2020_2986582 crossref_primary_10_1049_tje2_12184 crossref_primary_10_1007_s13042_020_01271_8 crossref_primary_10_1049_ccs2_12029 crossref_primary_10_1109_TCCN_2023_3327594 crossref_primary_10_1002_cpe_7109 crossref_primary_10_1111_coin_12692 crossref_primary_10_1155_2022_1949061 crossref_primary_10_1017_dap_2024_25 crossref_primary_10_1177_1088467X251320265 crossref_primary_10_1155_2021_7648856 crossref_primary_10_1177_15330338221124372 crossref_primary_10_1080_03610918_2022_2094962 crossref_primary_10_1109_EMR_2022_3208818 crossref_primary_10_1016_j_cie_2018_12_021 crossref_primary_10_1016_j_eswa_2021_115819 crossref_primary_10_1002_cpe_6486 crossref_primary_10_1007_s13042_018_00912_3 crossref_primary_10_1016_j_asoc_2019_02_043 crossref_primary_10_1016_j_cosrev_2021_100413 crossref_primary_10_1177_02841851221119108 crossref_primary_10_1111_coin_12563 crossref_primary_10_1002_cpe_7219 crossref_primary_10_1002_cpe_6800 crossref_primary_10_1109_TCSS_2023_3268548 crossref_primary_10_1002_ail2_86 crossref_primary_10_1016_j_ipm_2019_03_009 crossref_primary_10_1016_j_ins_2020_08_051 crossref_primary_10_1109_TCE_2023_3345390 crossref_primary_10_1016_j_bspc_2022_103995 crossref_primary_10_1109_TAI_2023_3296685 crossref_primary_10_1177_09544062241277739 crossref_primary_10_1007_s12351_024_00864_3 crossref_primary_10_1109_ACCESS_2019_2945911 crossref_primary_10_1016_j_csl_2019_01_005 crossref_primary_10_1080_0954898X_2025_2453032 crossref_primary_10_1016_j_bspc_2021_102709 crossref_primary_10_1109_ACCESS_2021_3130905 crossref_primary_10_1155_2021_9988318 crossref_primary_10_1155_2018_3875082 crossref_primary_10_1007_s10115_023_01998_0 crossref_primary_10_1155_2021_6669468 crossref_primary_10_1155_2022_4830411 crossref_primary_10_1177_01655515211020580 crossref_primary_10_1155_2022_3649406 crossref_primary_10_1007_s11704_024_40669_3 crossref_primary_10_1002_cpe_6943 crossref_primary_10_1155_2021_9241338 crossref_primary_10_3390_app14052210 crossref_primary_10_1007_s12539_021_00464_1 crossref_primary_10_1016_j_eswa_2022_117092 crossref_primary_10_1109_TII_2023_3321332 crossref_primary_10_1109_ACCESS_2020_3014362 crossref_primary_10_1002_ima_23025 crossref_primary_10_1109_TNNLS_2023_3242049 crossref_primary_10_1109_TAES_2024_3456748 crossref_primary_10_1016_j_engappai_2024_108231 crossref_primary_10_1080_0144929X_2023_2289057 crossref_primary_10_1016_j_epsr_2019_105961 crossref_primary_10_1109_TEVC_2022_3209544 crossref_primary_10_1007_s00500_021_06691_4 crossref_primary_10_1080_21681163_2023_2243347 crossref_primary_10_1145_3494566 crossref_primary_10_1002_cae_22179 crossref_primary_10_1109_TCSVT_2024_3436029 crossref_primary_10_1049_cit2_12317 crossref_primary_10_1155_2021_6648726 crossref_primary_10_1111_exsy_12895 crossref_primary_10_1007_s00521_024_10203_4 crossref_primary_10_1080_10255842_2022_2129969 crossref_primary_10_1093_bib_bbab440 crossref_primary_10_1002_cae_22737 crossref_primary_10_1093_comjnl_bxac144 crossref_primary_10_1038_s41598_024_76502_x crossref_primary_10_1109_TAFFC_2022_3216782 crossref_primary_10_1109_TNNLS_2023_3308828 crossref_primary_10_1049_itr2_12493 crossref_primary_10_1089_big_2019_0130 crossref_primary_10_1002_smr_2660 crossref_primary_10_1007_s41365_023_01304_1 crossref_primary_10_1155_2021_1607946 crossref_primary_10_3389_fphys_2023_1105891 crossref_primary_10_1109_ACCESS_2024_3416321 crossref_primary_10_3233_JIFS_221615 crossref_primary_10_1002_cpe_6594 crossref_primary_10_1002_cpe_7683 crossref_primary_10_1109_TNNLS_2022_3185961 crossref_primary_10_1049_cps2_12079 crossref_primary_10_1016_j_jhydrol_2024_130742 crossref_primary_10_1080_03610918_2023_2196384 crossref_primary_10_1080_0144929X_2022_2105258 crossref_primary_10_1109_TDSC_2024_3352604 crossref_primary_10_3390_ijerph19159695 crossref_primary_10_1109_TAI_2025_3538549 crossref_primary_10_1016_j_neucom_2021_11_045 crossref_primary_10_1109_ACCESS_2020_2975584 crossref_primary_10_1109_TAI_2022_3224416 crossref_primary_10_1155_2021_9923491 crossref_primary_10_1080_1206212X_2022_2069643 crossref_primary_10_1016_j_ejor_2025_07_014 crossref_primary_10_1177_20552076231207589 crossref_primary_10_1002_ett_4695 crossref_primary_10_1002_mde_4072 crossref_primary_10_1007_s10044_022_01089_w crossref_primary_10_1080_08839514_2022_2123094 crossref_primary_10_1016_j_eswa_2020_113232 crossref_primary_10_1145_3604614 crossref_primary_10_1080_0952813X_2023_2165715 crossref_primary_10_32604_cmc_2022_019882 crossref_primary_10_1080_10255842_2023_2181660 crossref_primary_10_1140_epjs_s11734_021_00206_w crossref_primary_10_1109_TCSS_2022_3209827 crossref_primary_10_1080_07391102_2021_1987328 crossref_primary_10_3390_fi14050126 crossref_primary_10_1007_s13369_021_06313_z crossref_primary_10_1109_TNNLS_2023_3270559 crossref_primary_10_1002_cpe_6896 crossref_primary_10_1080_21681163_2023_2189487 crossref_primary_10_1080_09349847_2023_2236066 crossref_primary_10_1155_2021_9136206 crossref_primary_10_1155_2020_1329692 crossref_primary_10_32604_cmes_2022_018699 crossref_primary_10_1002_cpe_7613 crossref_primary_10_1016_j_jksuci_2022_02_025 crossref_primary_10_1002_cpe_7291 crossref_primary_10_1016_j_eswa_2018_04_002 crossref_primary_10_1155_2018_2497471 crossref_primary_10_1080_03610926_2023_2268767 crossref_primary_10_1155_2021_6663977 crossref_primary_10_1049_cit2_12128 crossref_primary_10_1080_10255842_2023_2263125 crossref_primary_10_1016_j_eswa_2017_09_005 crossref_primary_10_1155_2022_9547317 crossref_primary_10_1155_2022_8467349 crossref_primary_10_1109_TAFFC_2023_3288407 crossref_primary_10_1080_01969722_2022_2159150 crossref_primary_10_1155_2022_5649994 crossref_primary_10_1177_15501329221084882 crossref_primary_10_1007_s13369_021_06193_3 crossref_primary_10_1002_cpe_5909 crossref_primary_10_3390_electronics10151813 crossref_primary_10_3390_su132111765 crossref_primary_10_1016_j_eswa_2025_128762 crossref_primary_10_1155_2022_9038992 crossref_primary_10_3390_su15031810 crossref_primary_10_1080_02533839_2023_2204880 crossref_primary_10_1111_exsy_13608 crossref_primary_10_1155_2022_4610747 crossref_primary_10_1177_01655515211012329 crossref_primary_10_1155_2021_1161923 crossref_primary_10_1111_exsy_12996 crossref_primary_10_1155_2021_3137666 crossref_primary_10_3390_su13158600 crossref_primary_10_4218_etrij_2022_0281 crossref_primary_10_1155_2021_5549300 crossref_primary_10_1080_21681163_2023_2177821 crossref_primary_10_1109_TBDATA_2023_3324482 crossref_primary_10_1109_MCI_2019_2901083 crossref_primary_10_1016_j_ins_2024_120992 crossref_primary_10_1049_gtd2_12256 crossref_primary_10_1049_cit2_12348 crossref_primary_10_1080_10255842_2022_2072683 crossref_primary_10_1016_j_ipm_2025_104238 crossref_primary_10_1007_s12652_020_01882_7 crossref_primary_10_1049_cit2_12100 crossref_primary_10_1109_TETCI_2022_3210582 crossref_primary_10_1016_j_tele_2018_12_005 crossref_primary_10_1080_10589759_2024_2382332 crossref_primary_10_1155_2022_4417998 crossref_primary_10_1155_2021_4300059 crossref_primary_10_1007_s12539_023_00571_1 crossref_primary_10_1145_3467477 crossref_primary_10_1177_20552076231198643 crossref_primary_10_1080_23270012_2023_2258372 crossref_primary_10_1016_j_patcog_2021_108493 crossref_primary_10_1109_TEM_2023_3271597 crossref_primary_10_1016_j_ipm_2022_102929 crossref_primary_10_1016_j_eswa_2022_117015 crossref_primary_10_1145_3569899 crossref_primary_10_1080_19331681_2022_2097974 crossref_primary_10_1016_j_ipm_2019_102066 crossref_primary_10_1109_TAI_2022_3225124 crossref_primary_10_1007_s00521_023_08411_5 crossref_primary_10_1109_ACCESS_2021_3053357 crossref_primary_10_1111_exsy_12812 crossref_primary_10_1016_j_eswa_2021_116051 crossref_primary_10_1080_21681163_2023_2245927 crossref_primary_10_1007_s10579_023_09669_w crossref_primary_10_1080_01969722_2023_2166259 crossref_primary_10_1109_TETCI_2024_3359091 crossref_primary_10_1016_j_eswa_2020_113176 crossref_primary_10_1016_j_eswa_2023_119845 crossref_primary_10_3390_e22091020 crossref_primary_10_1515_geo_2022_0487 crossref_primary_10_1109_TNNLS_2023_3258464 crossref_primary_10_1155_2019_8906034 crossref_primary_10_1109_TNNLS_2023_3349142 crossref_primary_10_1080_23737484_2023_2278112 crossref_primary_10_1155_2022_4874516 crossref_primary_10_1111_exsy_13114 crossref_primary_10_1017_S1351324923000438 crossref_primary_10_1155_2021_9947621 crossref_primary_10_1371_journal_pone_0252293 crossref_primary_10_1016_j_asoc_2023_110412 crossref_primary_10_1155_2021_4471044 crossref_primary_10_1016_j_ipm_2022_102943 crossref_primary_10_1109_ACCESS_2021_3093358 crossref_primary_10_1155_2021_9036550 crossref_primary_10_1049_cit2_12374 crossref_primary_10_1016_j_neucom_2025_130878 crossref_primary_10_4218_etrij_2023_0162 crossref_primary_10_1080_10255842_2023_2270101 crossref_primary_10_1109_TNNLS_2023_3295168 crossref_primary_10_1007_s10845_021_01866_0 crossref_primary_10_1177_20552076221109530 crossref_primary_10_3390_electronics11071051 crossref_primary_10_1002_cem_3515 crossref_primary_10_1155_2022_2612123 crossref_primary_10_1080_08874417_2022_2155267 crossref_primary_10_1080_09540091_2023_2184310 crossref_primary_10_1016_j_iswa_2022_200117 crossref_primary_10_1016_j_ipm_2020_102357 crossref_primary_10_1002_dac_5671 |
| Cites_doi | 10.1109/TPAMI.2005.113 10.1016/j.dss.2013.09.004 10.1016/j.neucom.2014.02.030 10.1016/j.ipm.2014.09.004 10.1016/S0004-3702(02)00190-X 10.1016/j.ipm.2014.11.001 10.1007/s10462-009-9124-7 10.1016/j.eswa.2014.07.049 10.1016/j.ipm.2015.01.005 10.1016/j.asoc.2015.09.009 10.1016/j.neucom.2015.12.036 10.1007/BF00058655 10.1016/j.neucom.2013.08.004 10.1016/j.patrec.2016.01.029 10.1016/j.ipm.2015.04.004 10.1145/2379776.2379786 10.1016/j.knosys.2016.05.040 10.1016/j.automatica.2013.02.004 10.1142/S0218001411008683 10.1016/j.dss.2014.10.004 10.1016/j.dss.2014.07.003 10.1177/0165551515613226 10.1016/j.joi.2009.01.003 10.1016/j.ins.2010.11.023 10.1145/1656274.1656278 10.1109/TPAMI.1984.4767478 10.1016/j.eswa.2016.03.041 10.1080/01621459.1983.10478008 10.1111/j.2517-6161.1977.tb01600.x 10.1023/A:1008202821328 10.1016/j.eswa.2016.03.045 10.1016/j.patrec.2013.05.006 10.1016/j.ipm.2014.09.002 10.1016/j.artmed.2013.12.006 10.1016/j.ipm.2015.04.003 10.1016/j.neucom.2013.06.026 10.1177/0165551514547842 10.1016/j.neucom.2015.01.036 10.1016/j.asoc.2013.06.023 10.1016/j.joi.2016.03.006 10.1023/A:1010924920739 10.1016/j.patrec.2006.06.018 10.1016/j.asoc.2016.02.022 10.1016/j.asoc.2014.10.045 10.1023/A:1022859003006 10.1016/j.neucom.2011.03.001 10.1016/j.ins.2016.02.056 10.1016/j.eswa.2015.10.038 10.1007/3-540-48219-9_8 10.1016/j.dss.2013.08.002 10.1016/j.patrec.2009.09.011 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Ltd Copyright Pergamon Press Inc. Jul 2017 |
| Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Pergamon Press Inc. Jul 2017 |
| DBID | AAYXX CITATION E3H F2A |
| DOI | 10.1016/j.ipm.2017.02.008 |
| DatabaseName | CrossRef Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) |
| DatabaseTitle | CrossRef Library and Information Science Abstracts (LISA) |
| DatabaseTitleList | Library and Information Science Abstracts (LISA) |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Library & Information Science |
| EISSN | 1873-5371 |
| EndPage | 833 |
| ExternalDocumentID | 10_1016_j_ipm_2017_02_008 S0306457316301480 |
| GroupedDBID | --K --M -~X .DC .~1 0B8 0R~ 1B1 1RT 1~. 1~5 29I 4.4 41~ 457 4G. 5GY 5VS 7-5 71M 77K 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN AAYOK ABBOA ABFNM ABFRF ABJNI ABMAC ABMMH ABPPZ ABXDB ABYKQ ACDAQ ACGFS ACHQT ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMY HVGLF HZ~ H~9 IHE J1W KOM LG9 LPU LY1 M3Y M41 MO0 MS~ MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSO SSS SSV SSZ T5K TN5 U5U UHB UHS UNMZH WUQ XFK ZMT ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADMHG ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD E3H F2A |
| ID | FETCH-LOGICAL-c373t-ff7c64385b676061087f8100c14da4be10b6e412131bdaf6a128ae549bda11ab3 |
| ISICitedReferencesCount | 265 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000401400000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-4573 |
| IngestDate | Fri Nov 14 22:21:53 EST 2025 Sat Nov 29 01:48:37 EST 2025 Tue Nov 18 22:35:16 EST 2025 Fri Feb 23 02:18:40 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Ensemble pruning Multi-objective evolutionary algorithm Consensus clustering Sentiment classification |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c373t-ff7c64385b676061087f8100c14da4be10b6e412131bdaf6a128ae549bda11ab3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1912955025 |
| PQPubID | 46166 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_1912955025 crossref_primary_10_1016_j_ipm_2017_02_008 crossref_citationtrail_10_1016_j_ipm_2017_02_008 elsevier_sciencedirect_doi_10_1016_j_ipm_2017_02_008 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-07-01 |
| PublicationDateYYYYMMDD | 2017-07-01 |
| PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Information processing & management |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Partalas, Tsoumakas, Katakis, Vlahavas (bib0092) 2006 Sun, Pfahringer (bib0072) 2011 Engelbrecht (bib0019) 2007 Fusilier, Montes-y-Gomez, Rosso, Cabrera (bib0023) 2015; 51 Sun, Wang, Cheng, Fu (bib0070) 2015; 51 Gashler, Giraud-Carrier, Martinez (bib0025) 2008 Mendialdua, Arruti, Jauregi, Lazkano, Sierra (bib0050) 2015; 157 Onan, Korukoğlu (bib0054) 2015; 43 Selim, Ismail (bib0064) 1984; 6 Khan, Bashir, Qamar (bib0039) 2014; 57 Tan, Steinbach, Kumar (bib0076) 2005 Zhang, Cao (bib0088) 2014; 139 Ghohs, Acharya (bib0027) 2011; 1 Coelho, Von Zuben (bib0010) 2006 Theodoridis, Koutroumbas (bib0077) 1999 Arthur, Vassilvitskii (bib0003) 2007 Gütlein (bib0029) 2006 Strehl, Ghosh (bib0069) 2003; 3 Ruta, Gabrys (bib0062) 2001 Glaab (bib0028) 2011 Han, Kamber (bib0032) 2006 Rokach (bib0060) 2010; 33 Galar, Fernandez, Barrenechea, Bustince, Herrera (bib0024) 2016; 354 Dai (bib0012) 2013; 122 Kotsiantis, Pintelas (bib0041) 2005; 1 Pinto (bib0057) 2013 Breiman (bib0005) 1996; 24 Xia, Xu, Yu, Qi, Cambria (bib0084) 2016; 52 Saif, He, Fernandez, Alani (bib0063) 2016; 52 Swiderski, Osowski, Kruk, Barhoumi (bib0073) 2016; 46 Kohonen (bib0040) 2001 Elghazel, Aussem, Gharroudi, Saadaoui (bib0018) 2016; 57 Margineantu, Dietterich (bib0046) 1997 Whitehead, Yaeger (bib0083) 2009 Ghaemi, Sulaiman, Ibrahim, Mustapha (bib0026) 2009; 50 Jin, Han (bib0037) 2010 Mirkin (bib0051) 2001; 45 Talbi (bib0074) 2009 Mendes-Moreira, Soares, Jorge, De Sousa (bib0049) 2012; 45 Kuncheva (bib0042) 2014 Mousavi, Eftekhari (bib0052) 2015; 37 Sheen, Aishwarya, Anitha, Raghavan, Bhaskar (bib0066) 2012; 7209 Cavalcanti, Oliveira, Moura, Carvalho (bib0007) 2016; 74 Dietterich (bib0017) 2000 Obitko (bib0053) 2015 Roli, Giacinto, Vernazza (bib0061) 2001; 2096 Cheng, Wang, Hou, Tan, Cao (bib0009) 2013; 49 Dempster, Laird, Rubin (bib0016) 1977; 39 Da Silva, Hruschka, Hruschka (bib0011) 2014; 66 Caruana, Niculescu-Mizil, Crew, Ksikes (bib0006) 2004 Fred, Jain (bib0094) 2005; 27 Jain (bib0035) 2010; 31 Vega-Pons, Ruiz-Shulcloper (bib0079) 2011; 25 Bhatia, Khalid (bib0004) 2008; 5 Aksela (bib0001) 2003 Fersini, Messina, Pozzi (bib0020) 2014; 68 Tsoumakas, Partalas, Vlahavas (bib0078) 2008 Kuncheva, Whitaker (bib0093) 2003; 51 Hall (bib0030) 1999 Ma, Dai, Liu (bib0045) 2015; 42 Hernandez-Lobato, Martinez-Munoz, Suarez (bib0033) 2011; 74 Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (bib0031) 2009; 11 Rich, Knight (bib0059) 1991 Zhang, Ma, Yi, Niu, Xu (bib0089) 2015 Appel, Chiclana, Carter, Fujita (bib0002) 2016; 108 Fowlkes, Mallows (bib0022) 1983; 78 (bib0082) 2016 Sheen, Sirisha (bib0065) 2013; 34 Jimenez, Sanchez, Juarez (bib0036) 2014; 60 del Pilar Salas-Zarate, Lopez-Lopez, Valencia-Garcia, Aussenac-Gilles, Almela, Alor-Hernandez (bib0015) 2014; 40 Martinez-Munoz, Suarez (bib0048) 2007; 28 Xiao, Xiao, Wang (bib0086) 2016; 43 Dai, Zhang, Liu (bib0014) 2015; 28 Kennedy, Eberhart (bib0038) 1995 Liu, Liu, Liu, Sun, Peng, Wang (bib0044) 2016; 185 Partalas, Tsoumakas, Vlahavas (bib0056) 2012 Fersini, Messina, Pozzi (bib0021) 2016; 52 Strehl, Ghosh (bib0068) 2002; 3 Holland (bib0034) 1975 Wang, Zhang, Sun, Yang, Larson (bib0081) 2015; 51 Dai, Liu (bib0013) 2013; 13 Xia, Zong, Li (bib0085) 2011; 181 Onan, Korukoğlu, Bulut (bib0055) 2016; 57 Chen, Wang, Nagarajan, Wang, Sheth (bib0008) 2012 Zhou, Wu, Tang (bib0091) 2002; 137 Prabowo, Thelwall (bib0058) 2009; 3 Yoon, Kim, Kim, Song (bib0087) 2016; 10 Tamon, Xiang (bib0075) 2000; 1810 Storn, Price (bib0067) 1997; 11 Zhou, Tang (bib0090) 2003; 2639 Martinez-Munoz, Suarez (bib0047) 2006 Lin, Chen, Qiu, Wu, Krishnan, Zhou (bib0043) 2014; 123 Wang, Sun, Ma, Xu, Gu (bib0080) 2014; 57 Arthur (10.1016/j.ipm.2017.02.008_bib0003) 2007 Fusilier (10.1016/j.ipm.2017.02.008_bib0023) 2015; 51 Sun (10.1016/j.ipm.2017.02.008_bib0070) 2015; 51 Tan (10.1016/j.ipm.2017.02.008_bib0076) 2005 Jin (10.1016/j.ipm.2017.02.008_bib0037) 2010 Strehl (10.1016/j.ipm.2017.02.008_bib0068) 2002; 3 Kotsiantis (10.1016/j.ipm.2017.02.008_bib0041) 2005; 1 Galar (10.1016/j.ipm.2017.02.008_bib0024) 2016; 354 Roli (10.1016/j.ipm.2017.02.008_bib0061) 2001; 2096 Dai (10.1016/j.ipm.2017.02.008_bib0014) 2015; 28 Kuncheva (10.1016/j.ipm.2017.02.008_bib0042) 2014 Ghaemi (10.1016/j.ipm.2017.02.008_bib0026) 2009; 50 Rich (10.1016/j.ipm.2017.02.008_bib0059) 1991 Vega-Pons (10.1016/j.ipm.2017.02.008_bib0079) 2011; 25 Zhou (10.1016/j.ipm.2017.02.008_bib0091) 2002; 137 Liu (10.1016/j.ipm.2017.02.008_bib0044) 2016; 185 Partalas (10.1016/j.ipm.2017.02.008_bib0056) 2012 Elghazel (10.1016/j.ipm.2017.02.008_bib0018) 2016; 57 Xiao (10.1016/j.ipm.2017.02.008_bib0086) 2016; 43 Kohonen (10.1016/j.ipm.2017.02.008_bib0040) 2001 Ma (10.1016/j.ipm.2017.02.008_bib0045) 2015; 42 Hall (10.1016/j.ipm.2017.02.008_bib0031) 2009; 11 Obitko (10.1016/j.ipm.2017.02.008_bib0053) 2015 Rokach (10.1016/j.ipm.2017.02.008_bib0060) 2010; 33 Chen (10.1016/j.ipm.2017.02.008_bib0008) 2012 Zhang (10.1016/j.ipm.2017.02.008_bib0089) 2015 Da Silva (10.1016/j.ipm.2017.02.008_bib0011) 2014; 66 Engelbrecht (10.1016/j.ipm.2017.02.008_bib0019) 2007 Dai (10.1016/j.ipm.2017.02.008_bib0013) 2013; 13 Caruana (10.1016/j.ipm.2017.02.008_bib0006) 2004 Jain (10.1016/j.ipm.2017.02.008_bib0035) 2010; 31 Holland (10.1016/j.ipm.2017.02.008_bib0034) 1975 Ghohs (10.1016/j.ipm.2017.02.008_bib0027) 2011; 1 Swiderski (10.1016/j.ipm.2017.02.008_bib0073) 2016; 46 Xia (10.1016/j.ipm.2017.02.008_bib0085) 2011; 181 Onan (10.1016/j.ipm.2017.02.008_bib0054) 2015; 43 Theodoridis (10.1016/j.ipm.2017.02.008_bib0077) 1999 Fred (10.1016/j.ipm.2017.02.008_bib0094) 2005; 27 Kennedy (10.1016/j.ipm.2017.02.008_bib0038) 1995 Sheen (10.1016/j.ipm.2017.02.008_bib0065) 2013; 34 Martinez-Munoz (10.1016/j.ipm.2017.02.008_bib0047) 2006 Mirkin (10.1016/j.ipm.2017.02.008_bib0051) 2001; 45 Mendes-Moreira (10.1016/j.ipm.2017.02.008_bib0049) 2012; 45 Lin (10.1016/j.ipm.2017.02.008_bib0043) 2014; 123 Glaab (10.1016/j.ipm.2017.02.008_bib0028) 2011 Coelho (10.1016/j.ipm.2017.02.008_bib0010) 2006 Khan (10.1016/j.ipm.2017.02.008_bib0039) 2014; 57 Dietterich (10.1016/j.ipm.2017.02.008_bib0017) 2000 Han (10.1016/j.ipm.2017.02.008_bib0032) 2006 Fersini (10.1016/j.ipm.2017.02.008_bib0020) 2014; 68 Hernandez-Lobato (10.1016/j.ipm.2017.02.008_bib0033) 2011; 74 Strehl (10.1016/j.ipm.2017.02.008_bib0069) 2003; 3 Yoon (10.1016/j.ipm.2017.02.008_bib0087) 2016; 10 Jimenez (10.1016/j.ipm.2017.02.008_bib0036) 2014; 60 Ruta (10.1016/j.ipm.2017.02.008_bib0062) 2001 Sun (10.1016/j.ipm.2017.02.008_bib0072) 2011 Wang (10.1016/j.ipm.2017.02.008_bib0081) 2015; 51 Martinez-Munoz (10.1016/j.ipm.2017.02.008_bib0048) 2007; 28 Tsoumakas (10.1016/j.ipm.2017.02.008_bib0078) 2008 Mendialdua (10.1016/j.ipm.2017.02.008_bib0050) 2015; 157 Tamon (10.1016/j.ipm.2017.02.008_bib0075) 2000; 1810 Whitehead (10.1016/j.ipm.2017.02.008_bib0083) 2009 Talbi (10.1016/j.ipm.2017.02.008_bib0074) 2009 (10.1016/j.ipm.2017.02.008_bib0082) 2016 Zhang (10.1016/j.ipm.2017.02.008_bib0088) 2014; 139 Storn (10.1016/j.ipm.2017.02.008_bib0067) 1997; 11 Fersini (10.1016/j.ipm.2017.02.008_bib0021) 2016; 52 Pinto (10.1016/j.ipm.2017.02.008_bib0057) 2013 Prabowo (10.1016/j.ipm.2017.02.008_bib0058) 2009; 3 Partalas (10.1016/j.ipm.2017.02.008_bib0092) 2006 Onan (10.1016/j.ipm.2017.02.008_bib0055) 2016; 57 Sheen (10.1016/j.ipm.2017.02.008_bib0066) 2012; 7209 Breiman (10.1016/j.ipm.2017.02.008_bib0005) 1996; 24 Kuncheva (10.1016/j.ipm.2017.02.008_bib0093) 2003; 51 Aksela (10.1016/j.ipm.2017.02.008_bib0001) 2003 del Pilar Salas-Zarate (10.1016/j.ipm.2017.02.008_bib0015) 2014; 40 Dempster (10.1016/j.ipm.2017.02.008_bib0016) 1977; 39 Fowlkes (10.1016/j.ipm.2017.02.008_bib0022) 1983; 78 Zhou (10.1016/j.ipm.2017.02.008_bib0090) 2003; 2639 Bhatia (10.1016/j.ipm.2017.02.008_bib0004) 2008; 5 Hall (10.1016/j.ipm.2017.02.008_bib0030) 1999 Xia (10.1016/j.ipm.2017.02.008_bib0084) 2016; 52 Appel (10.1016/j.ipm.2017.02.008_bib0002) 2016; 108 Cavalcanti (10.1016/j.ipm.2017.02.008_bib0007) 2016; 74 Mousavi (10.1016/j.ipm.2017.02.008_bib0052) 2015; 37 Dai (10.1016/j.ipm.2017.02.008_bib0012) 2013; 122 Gütlein (10.1016/j.ipm.2017.02.008_bib0029) 2006 Margineantu (10.1016/j.ipm.2017.02.008_bib0046) 1997 Gashler (10.1016/j.ipm.2017.02.008_bib0025) 2008 Cheng (10.1016/j.ipm.2017.02.008_bib0009) 2013; 49 Selim (10.1016/j.ipm.2017.02.008_bib0064) 1984; 6 Saif (10.1016/j.ipm.2017.02.008_bib0063) 2016; 52 Wang (10.1016/j.ipm.2017.02.008_bib0080) 2014; 57 |
| References_xml | – year: 1999 ident: bib0077 article-title: Pattern recognition – start-page: 50 year: 2012 end-page: 57 ident: bib0008 article-title: Extracting diverse sentiment expressions with target-dependent polarity from Twitter publication-title: Proceedings of the sixth international AAAI conference on weblogs and social media – start-page: 1 year: 2000 end-page: 15 ident: bib0017 article-title: Ensemble methods in machine learning publication-title: Proceedings of the 1st international workshop in multiple classifier systems – year: 2006 ident: bib0029 article-title: Large scale attribute selection using wrappers – volume: 3 start-page: 143 year: 2009 end-page: 157 ident: bib0058 article-title: Sentiment analysis: A combined approach publication-title: Journal of Informetrics – volume: 49 start-page: 1458 year: 2013 end-page: 1464 ident: bib0009 article-title: Sampled-data based average consensus of second-order integral multi-agent systems: Switching topologies and communication noises publication-title: Automatica – start-page: 18 year: 2004 end-page: 38 ident: bib0006 article-title: Ensemble selection from libraries of models publication-title: Proceedings of ICML 04 – volume: 45 start-page: 10 year: 2012 end-page: 39 ident: bib0049 article-title: Ensemble approaches for regression: A survey publication-title: ACM Computing Surveys – year: 1991 ident: bib0059 article-title: Artificial intelligence – volume: 354 start-page: 178 year: 2016 end-page: 196 ident: bib0024 article-title: Ordering-based pruning for improving the performance of ensembles of classifiers in the framework of imbalanced datasets publication-title: Information Sciences – volume: 60 start-page: 197 year: 2014 end-page: 219 ident: bib0036 article-title: Multi-objective evolutionary algorithms for fuzzy classification in survival prediction publication-title: Artificial Intelligence in Medicine – start-page: 1942 year: 1995 end-page: 1948 ident: bib0038 article-title: Particle swarm optimization publication-title: Proceedings of the international conference on neural networks – volume: 52 start-page: 36 year: 2016 end-page: 45 ident: bib0084 article-title: Polarity shift detection, elimination and ensemble: A three-stage model for document-level sentiment analysis publication-title: Information Processing and Management – volume: 51 start-page: 444 year: 2015 end-page: 457 ident: bib0070 article-title: Mining affective text to improve social media item recommendation publication-title: Information Processing and Management – year: 2009 ident: bib0074 article-title: Metaheuristics from design to implementation – volume: 40 start-page: 749 year: 2014 end-page: 760 ident: bib0015 article-title: A study on LIWC categories for opinion mining in Spanish reviews publication-title: Journal of Information Science – volume: 10 start-page: 634 year: 2016 end-page: 644 ident: bib0087 article-title: Opinion polarity detection in Twitter data combining shrinkage regression and topic modelling publication-title: Journal of Informetrics – volume: 11 start-page: 10 year: 2009 end-page: 18 ident: bib0031 article-title: The weka data mining software: An update publication-title: SIGKDD Explorations – volume: 123 start-page: 424 year: 2014 end-page: 435 ident: bib0043 article-title: LibD3C: Ensemble classifiers with a clustering and dynamic selection strategy publication-title: Neurocomputing – volume: 57 start-page: 77 year: 2014 end-page: 93 ident: bib0080 article-title: Sentiment classification: The contribution of ensemble learning publication-title: Decision Support Systems – start-page: 84 year: 2003 end-page: 93 ident: bib0001 article-title: Comparison of classifier selection methods for improving committee performance publication-title: Multiple classifier systems – volume: 57 start-page: 1 year: 2016 end-page: 11 ident: bib0018 article-title: Ensemble multi-label text categorization based on rotation forest and latent semantic indexing publication-title: Expert Systems with Applications – volume: 68 start-page: 26 year: 2014 end-page: 38 ident: bib0020 article-title: Sentiment analysis: Bayesian ensemble learning publication-title: Decision Support Systems – year: 2012 ident: bib0056 article-title: A study on greedy algorithms for ensemble pruning – start-page: 399 year: 2001 end-page: 408 ident: bib0062 article-title: Application of the evolutionary algorithms for classifier selection in multiple classifier systems with majority voting publication-title: Proceedings of the second international workshop on multiple classifier systems – volume: 2096 start-page: 78 year: 2001 end-page: 87 ident: bib0061 article-title: Methods for designing multiple classifier systems publication-title: Lecture Notes in Computer Science – volume: 31 start-page: 651 year: 2010 end-page: 666 ident: bib0035 article-title: Data clustering: 50 years beyond k-means publication-title: Pattern Recognition Letters – start-page: 382 year: 2010 end-page: 383 ident: bib0037 article-title: Expectation maximization clustering publication-title: Encyclopedia of machine learning – start-page: 301 year: 2006 end-page: 310 ident: bib0092 article-title: Ensemble pruning using reinforcement learning publication-title: Hellenic Conference on Artificial Intelligence – volume: 137 start-page: 239 year: 2002 end-page: 263 ident: bib0091 article-title: Ensembling neural networks: Many could be better than all publication-title: Artificial Intelligence – volume: 78 start-page: 553 year: 1983 end-page: 569 ident: bib0022 article-title: A method for comparing two hiearchical clusterings publication-title: Journal of American Statistical Association – volume: 13 start-page: 4292 year: 2013 end-page: 4302 ident: bib0013 article-title: ModEnPBT: A modified backtracking ensemble pruning algorithm publication-title: Applied Soft Computing – volume: 57 start-page: 245 year: 2014 end-page: 257 ident: bib0039 article-title: TOM: Twitter opinion mining framework using hybrid classification scheme publication-title: Decision Support Systems – volume: 6 start-page: 81 year: 1984 end-page: 87 ident: bib0064 article-title: K-means-type algorithms: A generalized convergence theorem and characterization of local optimality publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 74 start-page: 38 year: 2016 end-page: 45 ident: bib0007 article-title: Combining diversity measures for ensemble pruning publication-title: Pattern Recognition Letters – volume: 43 start-page: 25 year: 2015 end-page: 38 ident: bib0054 article-title: A feature selection model based on genetic rank aggregation for text sentiment classification publication-title: Journal of Information Science – volume: 74 start-page: 2250 year: 2011 end-page: 2264 ident: bib0033 article-title: Empirical analysis and evaluation of approximate techniques for pruning regression bagging ensembles publication-title: Neurocomputing – volume: 3 start-page: 583 year: 2003 end-page: 617 ident: bib0069 article-title: Cluster ensembles–A knowledge reuse framework for combining multiple partitions publication-title: Journal of Machine Learning Research – start-page: 472 year: 2009 end-page: 476 ident: bib0083 article-title: Building a general purpose cross-domain sentiment mining model publication-title: Proceedings of WRI world congress on computer science and information engineering – volume: 34 start-page: 1679 year: 2013 end-page: 1686 ident: bib0065 article-title: Malware detection by pruning of parallel ensembles using harmony search publication-title: Pattern Recognition Letters – start-page: 1 year: 2008 end-page: 6 ident: bib0078 article-title: A taxonomy and short review of ensemble selection publication-title: Proceedings of ECAI 08 workshop on supervised and unsupervised ensemble methods and their applications – volume: 25 start-page: 337 year: 2011 end-page: 372 ident: bib0079 article-title: A survey of clustering ensemble algorithms publication-title: International Journal of Pattern Recognition and Artificial Intelligence – start-page: 1027 year: 2007 end-page: 1035 ident: bib0003 article-title: K-means++: The advantage of careful seeding publication-title: Proceedings of the eighteenth annual symposium on discrete algorithms – year: 2013 ident: bib0057 article-title: Metalearning for dynamic integration in ensemble methods – volume: 1 start-page: 305 year: 2011 end-page: 315 ident: bib0027 article-title: Cluster ensembles publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery – start-page: 609 year: 2006 end-page: 616 ident: bib0047 article-title: Pruning in ordered bagging ensembles publication-title: Proceedings of the 23rd international conference on machine learning – year: 2015 ident: bib0053 article-title: Introduction to genetic algorithms – volume: 3 start-page: 583 year: 2002 end-page: 617 ident: bib0068 article-title: Cluster ensembles: A knowledge reuse framework for combining multiple partitions publication-title: Journal of Machine Learning Research – volume: 46 start-page: 316 year: 2016 end-page: 323 ident: bib0073 article-title: Aggregation of classifiers ensemble using local discriminatory power and quantiles publication-title: Expert Systems with Applications – year: 1999 ident: bib0030 article-title: Correlation-based feature selection for machine learning – volume: 1 start-page: 65 year: 2005 end-page: 74 ident: bib0041 article-title: Selective averaging of regression models publication-title: Annals of Mathematics, Computing & Teleinformatics – volume: 181 start-page: 1138 year: 2011 end-page: 1152 ident: bib0085 article-title: Ensemble of feature sets and classification algorithms for sentiment classification publication-title: Information Sciences – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: bib0005 article-title: Bagging predictors publication-title: Machine Learning – volume: 27 start-page: 835 year: 2005 end-page: 850 ident: bib0094 article-title: Combining multiple clusterings using evidence accumulation publication-title: IEEE transactions on pattern analysis and machine intelligence – year: 2011 ident: bib0028 article-title: Analyzing functional genomics data using novel ensemble, consensus and data fusion techniques – year: 2014 ident: bib0042 article-title: Combining pattern classifiers: Methods and algorithms – volume: 28 start-page: 156 year: 2007 end-page: 165 ident: bib0048 article-title: Using boosting to prune bagging ensembles publication-title: Pattern Recognition Letters – volume: 51 start-page: 458 year: 2015 end-page: 479 ident: bib0081 article-title: POS-RS: A Random subspace method for sentiment classification based on part-of-speech analysis publication-title: Information Processing and Management – volume: 28 start-page: 237 year: 2015 end-page: 249 ident: bib0014 article-title: A new reverse reduce-error ensemble pruning algorithm publication-title: Applied Soft Computing – volume: 51 start-page: 181 year: 2003 end-page: 207 ident: bib0093 article-title: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy publication-title: Machine learning – year: 2016 ident: bib0082 article-title: Data mining software in Java (n.d.) – start-page: 251 year: 2011 end-page: 260 ident: bib0072 article-title: Bagging ensemble selection publication-title: Proceedings of the 24th Australasian joint conference on artificial intelligence – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: bib0016 article-title: Maximum likelihood from incomplete data via the em algorithm publication-title: Journal of the Royal Statistical Society – year: 2005 ident: bib0076 article-title: Introduction to data mining – volume: 139 start-page: 289 year: 2014 end-page: 297 ident: bib0088 article-title: A spectral clustering based ensemble pruning approach publication-title: Neurocomputing – volume: 157 start-page: 46 year: 2015 end-page: 60 ident: bib0050 article-title: Classifier subset selection to construct multi-classifiers by means of estimation of distribution algorithms publication-title: Neurocomputing – volume: 43 start-page: 73 year: 2016 end-page: 86 ident: bib0086 article-title: Ensemble classification based on supervised clustering for credit scoring publication-title: Applied Soft Computing – start-page: 5132 year: 2006 end-page: 5139 ident: bib0010 article-title: The influence of the pool of candidates on the performance of selection and combination techniques in ensembles publication-title: Proceedings of international joint conference on neural networks – volume: 66 start-page: 170 year: 2014 end-page: 179 ident: bib0011 article-title: Tweet sentiment analysis with classifier ensembles publication-title: Decision Support Systems – year: 2006 ident: bib0032 article-title: Data mining: Concepts and techniques – year: 2007 ident: bib0019 article-title: Computational intelligence: An introduction – volume: 45 start-page: 219 year: 2001 end-page: 228 ident: bib0051 article-title: Reinterpreting the category utility function publication-title: Machine Learning – year: 1975 ident: bib0034 article-title: Adaption in natural and artificial systems – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: bib0067 article-title: Differential evolution simple and efficient heuristic for global optimization over continuos spaces publication-title: Journal of Global Optimization – volume: 33 start-page: 1 year: 2010 end-page: 39 ident: bib0060 article-title: Ensemble-based classifiers publication-title: Artificial Intelligence Review – volume: 1810 start-page: 404 year: 2000 end-page: 412 ident: bib0075 publication-title: On the boosting pruning problem – volume: 37 start-page: 652 year: 2015 end-page: 666 ident: bib0052 article-title: A new ensemble learning methodology based on hybridization of classifier ensemble selection approaches publication-title: Applied Soft Computing – start-page: 440 year: 2015 end-page: 445 ident: bib0089 article-title: An ensemble method for unbalanced sentiment classification publication-title: Proceedings of 11th international conference on natural computation – volume: 122 start-page: 258 year: 2013 end-page: 265 ident: bib0012 article-title: A novel ensemble pruning algorithm based on randomized greedy selective strategy and ballot publication-title: Neurocomputing – volume: 5 start-page: 2 year: 2008 end-page: 19 ident: bib0004 article-title: Information retrieval and machine learning: Supporting technologies for web mining research and practice publication-title: Webology – volume: 42 start-page: 280 year: 2015 end-page: 292 ident: bib0045 article-title: Several novel evaluation measures for rank-based ensemble pruning with applications to time series prediction publication-title: Expert Systems with Applications – volume: 50 start-page: 636 year: 2009 end-page: 645 ident: bib0026 article-title: A survey: Clustering ensemble techniques publication-title: World Academy of Science, Engineering and Technology – year: 2001 ident: bib0040 article-title: Self-organizing maps – start-page: 211 year: 1997 end-page: 218 ident: bib0046 article-title: Pruning adaptive boosting publication-title: Proceedings of the fourteenth international conference on machine learning – volume: 57 start-page: 232 year: 2016 end-page: 247 ident: bib0055 article-title: Ensemble of keyword extraction methods and classifiers in text classification publication-title: Expert Systems with Applications – volume: 51 start-page: 433 year: 2015 end-page: 443 ident: bib0023 article-title: Detecting positive and negative deceptive opinions using PU-learning publication-title: Information Processing and Management – volume: 7209 start-page: 13 year: 2012 end-page: 24 ident: bib0066 publication-title: Ensemble pruning using harmony search – volume: 108 start-page: 110 year: 2016 end-page: 124 ident: bib0002 article-title: A hybrid approach to the sentiment analysis problem at the sentence level publication-title: Knowledge-Based Systems – volume: 52 start-page: 20 year: 2016 end-page: 35 ident: bib0021 article-title: Expressive signals in social media languages to improve polarity detection publication-title: Information Processing and Management – volume: 185 start-page: 11 year: 2016 end-page: 20 ident: bib0044 article-title: Sentiment recognition of online course reviews using multi-swarm optimization-based selected features publication-title: Neurocomputing – volume: 52 start-page: 5 year: 2016 end-page: 19 ident: bib0063 article-title: Contextual semantics for sentiment analysis of Twitter publication-title: Information Processing and Management – start-page: 900 year: 2008 end-page: 905 ident: bib0025 article-title: Decision tree ensemble: Small heterogeneous is better than large homogeneous publication-title: Proceedings of ICMLA ’08 – volume: 2639 start-page: 476 year: 2003 end-page: 483 ident: bib0090 publication-title: Selective ensemble of decision trees – volume: 27 start-page: 835 issue: 6 year: 2005 ident: 10.1016/j.ipm.2017.02.008_bib0094 article-title: Combining multiple clusterings using evidence accumulation publication-title: IEEE transactions on pattern analysis and machine intelligence doi: 10.1109/TPAMI.2005.113 – volume: 57 start-page: 245 year: 2014 ident: 10.1016/j.ipm.2017.02.008_bib0039 article-title: TOM: Twitter opinion mining framework using hybrid classification scheme publication-title: Decision Support Systems doi: 10.1016/j.dss.2013.09.004 – start-page: 1 year: 2008 ident: 10.1016/j.ipm.2017.02.008_bib0078 article-title: A taxonomy and short review of ensemble selection – volume: 139 start-page: 289 year: 2014 ident: 10.1016/j.ipm.2017.02.008_bib0088 article-title: A spectral clustering based ensemble pruning approach publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.02.030 – volume: 51 start-page: 458 year: 2015 ident: 10.1016/j.ipm.2017.02.008_bib0081 article-title: POS-RS: A Random subspace method for sentiment classification based on part-of-speech analysis publication-title: Information Processing and Management doi: 10.1016/j.ipm.2014.09.004 – start-page: 472 year: 2009 ident: 10.1016/j.ipm.2017.02.008_bib0083 article-title: Building a general purpose cross-domain sentiment mining model – volume: 137 start-page: 239 year: 2002 ident: 10.1016/j.ipm.2017.02.008_bib0091 article-title: Ensembling neural networks: Many could be better than all publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(02)00190-X – volume: 51 start-page: 433 year: 2015 ident: 10.1016/j.ipm.2017.02.008_bib0023 article-title: Detecting positive and negative deceptive opinions using PU-learning publication-title: Information Processing and Management doi: 10.1016/j.ipm.2014.11.001 – volume: 33 start-page: 1 year: 2010 ident: 10.1016/j.ipm.2017.02.008_bib0060 article-title: Ensemble-based classifiers publication-title: Artificial Intelligence Review doi: 10.1007/s10462-009-9124-7 – volume: 42 start-page: 280 issue: 1 year: 2015 ident: 10.1016/j.ipm.2017.02.008_bib0045 article-title: Several novel evaluation measures for rank-based ensemble pruning with applications to time series prediction publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.07.049 – volume: 52 start-page: 5 year: 2016 ident: 10.1016/j.ipm.2017.02.008_bib0063 article-title: Contextual semantics for sentiment analysis of Twitter publication-title: Information Processing and Management doi: 10.1016/j.ipm.2015.01.005 – volume: 5 start-page: 2 year: 2008 ident: 10.1016/j.ipm.2017.02.008_bib0004 article-title: Information retrieval and machine learning: Supporting technologies for web mining research and practice publication-title: Webology – start-page: 609 year: 2006 ident: 10.1016/j.ipm.2017.02.008_bib0047 article-title: Pruning in ordered bagging ensembles – volume: 37 start-page: 652 year: 2015 ident: 10.1016/j.ipm.2017.02.008_bib0052 article-title: A new ensemble learning methodology based on hybridization of classifier ensemble selection approaches publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.09.009 – start-page: 5132 year: 2006 ident: 10.1016/j.ipm.2017.02.008_bib0010 article-title: The influence of the pool of candidates on the performance of selection and combination techniques in ensembles – volume: 185 start-page: 11 year: 2016 ident: 10.1016/j.ipm.2017.02.008_bib0044 article-title: Sentiment recognition of online course reviews using multi-swarm optimization-based selected features publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.12.036 – start-page: 440 year: 2015 ident: 10.1016/j.ipm.2017.02.008_bib0089 article-title: An ensemble method for unbalanced sentiment classification – year: 2007 ident: 10.1016/j.ipm.2017.02.008_bib0019 – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 10.1016/j.ipm.2017.02.008_bib0005 article-title: Bagging predictors publication-title: Machine Learning doi: 10.1007/BF00058655 – volume: 123 start-page: 424 year: 2014 ident: 10.1016/j.ipm.2017.02.008_bib0043 article-title: LibD3C: Ensemble classifiers with a clustering and dynamic selection strategy publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.08.004 – year: 1975 ident: 10.1016/j.ipm.2017.02.008_bib0034 – volume: 2639 start-page: 476 year: 2003 ident: 10.1016/j.ipm.2017.02.008_bib0090 – volume: 74 start-page: 38 year: 2016 ident: 10.1016/j.ipm.2017.02.008_bib0007 article-title: Combining diversity measures for ensemble pruning publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2016.01.029 – volume: 52 start-page: 20 year: 2016 ident: 10.1016/j.ipm.2017.02.008_bib0021 article-title: Expressive signals in social media languages to improve polarity detection publication-title: Information Processing and Management doi: 10.1016/j.ipm.2015.04.004 – volume: 45 start-page: 10 issue: 1 year: 2012 ident: 10.1016/j.ipm.2017.02.008_bib0049 article-title: Ensemble approaches for regression: A survey publication-title: ACM Computing Surveys doi: 10.1145/2379776.2379786 – volume: 108 start-page: 110 year: 2016 ident: 10.1016/j.ipm.2017.02.008_bib0002 article-title: A hybrid approach to the sentiment analysis problem at the sentence level publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2016.05.040 – year: 2011 ident: 10.1016/j.ipm.2017.02.008_bib0028 – volume: 49 start-page: 1458 issue: 5 year: 2013 ident: 10.1016/j.ipm.2017.02.008_bib0009 article-title: Sampled-data based average consensus of second-order integral multi-agent systems: Switching topologies and communication noises publication-title: Automatica doi: 10.1016/j.automatica.2013.02.004 – volume: 25 start-page: 337 issue: 3 year: 2011 ident: 10.1016/j.ipm.2017.02.008_bib0079 article-title: A survey of clustering ensemble algorithms publication-title: International Journal of Pattern Recognition and Artificial Intelligence doi: 10.1142/S0218001411008683 – volume: 68 start-page: 26 year: 2014 ident: 10.1016/j.ipm.2017.02.008_bib0020 article-title: Sentiment analysis: Bayesian ensemble learning publication-title: Decision Support Systems doi: 10.1016/j.dss.2014.10.004 – year: 2015 ident: 10.1016/j.ipm.2017.02.008_bib0053 – year: 2012 ident: 10.1016/j.ipm.2017.02.008_bib0056 – volume: 66 start-page: 170 year: 2014 ident: 10.1016/j.ipm.2017.02.008_bib0011 article-title: Tweet sentiment analysis with classifier ensembles publication-title: Decision Support Systems doi: 10.1016/j.dss.2014.07.003 – volume: 43 start-page: 25 issue: 1 year: 2015 ident: 10.1016/j.ipm.2017.02.008_bib0054 article-title: A feature selection model based on genetic rank aggregation for text sentiment classification publication-title: Journal of Information Science doi: 10.1177/0165551515613226 – year: 2005 ident: 10.1016/j.ipm.2017.02.008_bib0076 – volume: 3 start-page: 143 year: 2009 ident: 10.1016/j.ipm.2017.02.008_bib0058 article-title: Sentiment analysis: A combined approach publication-title: Journal of Informetrics doi: 10.1016/j.joi.2009.01.003 – volume: 181 start-page: 1138 year: 2011 ident: 10.1016/j.ipm.2017.02.008_bib0085 article-title: Ensemble of feature sets and classification algorithms for sentiment classification publication-title: Information Sciences doi: 10.1016/j.ins.2010.11.023 – start-page: 900 year: 2008 ident: 10.1016/j.ipm.2017.02.008_bib0025 article-title: Decision tree ensemble: Small heterogeneous is better than large homogeneous – volume: 11 start-page: 10 issue: 1 year: 2009 ident: 10.1016/j.ipm.2017.02.008_bib0031 article-title: The weka data mining software: An update publication-title: SIGKDD Explorations doi: 10.1145/1656274.1656278 – start-page: 50 year: 2012 ident: 10.1016/j.ipm.2017.02.008_bib0008 article-title: Extracting diverse sentiment expressions with target-dependent polarity from Twitter – volume: 6 start-page: 81 issue: 1 year: 1984 ident: 10.1016/j.ipm.2017.02.008_bib0064 article-title: K-means-type algorithms: A generalized convergence theorem and characterization of local optimality publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.1984.4767478 – volume: 57 start-page: 1 year: 2016 ident: 10.1016/j.ipm.2017.02.008_bib0018 article-title: Ensemble multi-label text categorization based on rotation forest and latent semantic indexing publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.03.041 – volume: 78 start-page: 553 year: 1983 ident: 10.1016/j.ipm.2017.02.008_bib0022 article-title: A method for comparing two hiearchical clusterings publication-title: Journal of American Statistical Association doi: 10.1080/01621459.1983.10478008 – volume: 39 start-page: 1 year: 1977 ident: 10.1016/j.ipm.2017.02.008_bib0016 article-title: Maximum likelihood from incomplete data via the em algorithm publication-title: Journal of the Royal Statistical Society doi: 10.1111/j.2517-6161.1977.tb01600.x – year: 2009 ident: 10.1016/j.ipm.2017.02.008_bib0074 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.ipm.2017.02.008_bib0067 article-title: Differential evolution simple and efficient heuristic for global optimization over continuos spaces publication-title: Journal of Global Optimization doi: 10.1023/A:1008202821328 – volume: 57 start-page: 232 year: 2016 ident: 10.1016/j.ipm.2017.02.008_bib0055 article-title: Ensemble of keyword extraction methods and classifiers in text classification publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.03.045 – volume: 34 start-page: 1679 year: 2013 ident: 10.1016/j.ipm.2017.02.008_bib0065 article-title: Malware detection by pruning of parallel ensembles using harmony search publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2013.05.006 – start-page: 1027 year: 2007 ident: 10.1016/j.ipm.2017.02.008_bib0003 article-title: K-means++: The advantage of careful seeding – volume: 1 start-page: 305 issue: 4 year: 2011 ident: 10.1016/j.ipm.2017.02.008_bib0027 article-title: Cluster ensembles publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery – volume: 51 start-page: 444 year: 2015 ident: 10.1016/j.ipm.2017.02.008_bib0070 article-title: Mining affective text to improve social media item recommendation publication-title: Information Processing and Management doi: 10.1016/j.ipm.2014.09.002 – volume: 60 start-page: 197 year: 2014 ident: 10.1016/j.ipm.2017.02.008_bib0036 article-title: Multi-objective evolutionary algorithms for fuzzy classification in survival prediction publication-title: Artificial Intelligence in Medicine doi: 10.1016/j.artmed.2013.12.006 – volume: 52 start-page: 36 year: 2016 ident: 10.1016/j.ipm.2017.02.008_bib0084 article-title: Polarity shift detection, elimination and ensemble: A three-stage model for document-level sentiment analysis publication-title: Information Processing and Management doi: 10.1016/j.ipm.2015.04.003 – start-page: 18 year: 2004 ident: 10.1016/j.ipm.2017.02.008_bib0006 article-title: Ensemble selection from libraries of models – volume: 1 start-page: 65 issue: 3 year: 2005 ident: 10.1016/j.ipm.2017.02.008_bib0041 article-title: Selective averaging of regression models publication-title: Annals of Mathematics, Computing & Teleinformatics – volume: 122 start-page: 258 year: 2013 ident: 10.1016/j.ipm.2017.02.008_bib0012 article-title: A novel ensemble pruning algorithm based on randomized greedy selective strategy and ballot publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.06.026 – volume: 40 start-page: 749 issue: 6 year: 2014 ident: 10.1016/j.ipm.2017.02.008_bib0015 article-title: A study on LIWC categories for opinion mining in Spanish reviews publication-title: Journal of Information Science doi: 10.1177/0165551514547842 – volume: 157 start-page: 46 year: 2015 ident: 10.1016/j.ipm.2017.02.008_bib0050 article-title: Classifier subset selection to construct multi-classifiers by means of estimation of distribution algorithms publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.01.036 – year: 2016 ident: 10.1016/j.ipm.2017.02.008_bib0082 – volume: 13 start-page: 4292 issue: 11 year: 2013 ident: 10.1016/j.ipm.2017.02.008_bib0013 article-title: ModEnPBT: A modified backtracking ensemble pruning algorithm publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2013.06.023 – volume: 3 start-page: 583 year: 2002 ident: 10.1016/j.ipm.2017.02.008_bib0068 article-title: Cluster ensembles: A knowledge reuse framework for combining multiple partitions publication-title: Journal of Machine Learning Research – year: 1999 ident: 10.1016/j.ipm.2017.02.008_bib0077 – year: 1991 ident: 10.1016/j.ipm.2017.02.008_bib0059 – year: 2014 ident: 10.1016/j.ipm.2017.02.008_bib0042 – start-page: 1 year: 2000 ident: 10.1016/j.ipm.2017.02.008_bib0017 article-title: Ensemble methods in machine learning – volume: 10 start-page: 634 year: 2016 ident: 10.1016/j.ipm.2017.02.008_bib0087 article-title: Opinion polarity detection in Twitter data combining shrinkage regression and topic modelling publication-title: Journal of Informetrics doi: 10.1016/j.joi.2016.03.006 – volume: 45 start-page: 219 issue: 2 year: 2001 ident: 10.1016/j.ipm.2017.02.008_bib0051 article-title: Reinterpreting the category utility function publication-title: Machine Learning doi: 10.1023/A:1010924920739 – year: 2001 ident: 10.1016/j.ipm.2017.02.008_bib0040 – start-page: 211 year: 1997 ident: 10.1016/j.ipm.2017.02.008_bib0046 article-title: Pruning adaptive boosting – volume: 28 start-page: 156 year: 2007 ident: 10.1016/j.ipm.2017.02.008_bib0048 article-title: Using boosting to prune bagging ensembles publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2006.06.018 – start-page: 1942 year: 1995 ident: 10.1016/j.ipm.2017.02.008_bib0038 article-title: Particle swarm optimization – volume: 7209 start-page: 13 year: 2012 ident: 10.1016/j.ipm.2017.02.008_bib0066 – start-page: 251 year: 2011 ident: 10.1016/j.ipm.2017.02.008_bib0072 article-title: Bagging ensemble selection – volume: 43 start-page: 73 year: 2016 ident: 10.1016/j.ipm.2017.02.008_bib0086 article-title: Ensemble classification based on supervised clustering for credit scoring publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2016.02.022 – volume: 28 start-page: 237 year: 2015 ident: 10.1016/j.ipm.2017.02.008_bib0014 article-title: A new reverse reduce-error ensemble pruning algorithm publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2014.10.045 – volume: 51 start-page: 181 issue: 2 year: 2003 ident: 10.1016/j.ipm.2017.02.008_bib0093 article-title: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy publication-title: Machine learning doi: 10.1023/A:1022859003006 – year: 2006 ident: 10.1016/j.ipm.2017.02.008_bib0029 – volume: 74 start-page: 2250 year: 2011 ident: 10.1016/j.ipm.2017.02.008_bib0033 article-title: Empirical analysis and evaluation of approximate techniques for pruning regression bagging ensembles publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.03.001 – volume: 354 start-page: 178 year: 2016 ident: 10.1016/j.ipm.2017.02.008_bib0024 article-title: Ordering-based pruning for improving the performance of ensembles of classifiers in the framework of imbalanced datasets publication-title: Information Sciences doi: 10.1016/j.ins.2016.02.056 – volume: 46 start-page: 316 year: 2016 ident: 10.1016/j.ipm.2017.02.008_bib0073 article-title: Aggregation of classifiers ensemble using local discriminatory power and quantiles publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.10.038 – volume: 50 start-page: 636 year: 2009 ident: 10.1016/j.ipm.2017.02.008_bib0026 article-title: A survey: Clustering ensemble techniques publication-title: World Academy of Science, Engineering and Technology – year: 1999 ident: 10.1016/j.ipm.2017.02.008_bib0030 – year: 2013 ident: 10.1016/j.ipm.2017.02.008_bib0057 – volume: 1810 start-page: 404 year: 2000 ident: 10.1016/j.ipm.2017.02.008_bib0075 – start-page: 399 year: 2001 ident: 10.1016/j.ipm.2017.02.008_bib0062 article-title: Application of the evolutionary algorithms for classifier selection in multiple classifier systems with majority voting – start-page: 301 year: 2006 ident: 10.1016/j.ipm.2017.02.008_bib0092 article-title: Ensemble pruning using reinforcement learning – volume: 2096 start-page: 78 year: 2001 ident: 10.1016/j.ipm.2017.02.008_bib0061 article-title: Methods for designing multiple classifier systems publication-title: Lecture Notes in Computer Science doi: 10.1007/3-540-48219-9_8 – volume: 3 start-page: 583 year: 2003 ident: 10.1016/j.ipm.2017.02.008_bib0069 article-title: Cluster ensembles–A knowledge reuse framework for combining multiple partitions publication-title: Journal of Machine Learning Research – volume: 57 start-page: 77 year: 2014 ident: 10.1016/j.ipm.2017.02.008_bib0080 article-title: Sentiment classification: The contribution of ensemble learning publication-title: Decision Support Systems doi: 10.1016/j.dss.2013.08.002 – year: 2006 ident: 10.1016/j.ipm.2017.02.008_bib0032 – start-page: 382 year: 2010 ident: 10.1016/j.ipm.2017.02.008_bib0037 article-title: Expectation maximization clustering – volume: 31 start-page: 651 year: 2010 ident: 10.1016/j.ipm.2017.02.008_bib0035 article-title: Data clustering: 50 years beyond k-means publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2009.09.011 – start-page: 84 year: 2003 ident: 10.1016/j.ipm.2017.02.008_bib0001 article-title: Comparison of classifier selection methods for improving committee performance |
| SSID | ssj0004512 |
| Score | 2.612317 |
| Snippet | Sentiment analysis is a critical task of extracting subjective information from online text documents. Ensemble learning can be employed to obtain more robust... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 814 |
| SubjectTerms | Algorithms Candidates Classification Classification schemes Classifiers Clustering Consensus clustering Data mining Elitism Ensemble pruning Evolutionary algorithms Genetic algorithms Libraries Machine learning Multi-objective evolutionary algorithm Multiple objective analysis Objectives Pareto optimum Pruning Ranking Sentiment analysis Sentiment classification Subjectivity |
| Title | A hybrid ensemble pruning approach based on consensus clustering and multi-objective evolutionary algorithm for sentiment classification |
| URI | https://dx.doi.org/10.1016/j.ipm.2017.02.008 https://www.proquest.com/docview/1912955025 |
| Volume | 53 |
| WOSCitedRecordID | wos000401400000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1873-5371 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004512 issn: 0306-4573 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMXxFMUWrQHxAHLlddee3ePARXxkCokipSbtbbXNMF1IieO2n_A_-KPMfty0iAqQOJiJavY3uT7sjM7_mYGoRdg8-tacBWqmFDYoDAairIUIbj2rKZCqjqrTLMJdnrKJxPxaTT64XNh1g1rW355KRb_FWoYA7B16uxfwD1cFAbgNYAOR4Adjn8E_Dg4v9JpWAFsUNWFToxadL2Jfvj64YE2XZV-TFBqLXW77JdB2fS6ZIJPWTQ6w3BezOx6GKi1m7MW2cnm67ybrs4vjEZRZy-ZFgFwDfDEtfRog_bMC-WHJMlgYVMTbIgic_LZa_ob1zJ5fLXqta8rBvHxx3nXf5vbsaY3gVvVVXLQF7_uYZLGmEqvNXIBDcIG8auLsvlMm42syWR3RVlIU9v25FjZxZqzJEwT28LFr-a29LBjLd1amrlNVvVW3pbf-MWA2FjG7Hi60GUKCLMFXfnGWg4axs96SnpG4NHqsGx0C-3HLBWwtO6P359MPmwVrSfuYZb9Cv7hupEZ7tzod-7RjqNgvJ-ze-iu27bgsaXbfTRS7QN05JJe8Eu8BTB25uIh-j7GlorYUxE7KmJPRWyoiOGsgYp4Q0UMVMQ7VMTbVMQDFTHcHw9UxNep-Ah9eXty9uZd6Dp_hGXCklVY16wEV5mnRcZgh00izmpOoqgktJK0UCQqMkV1NUJSVLLOJHhZUqVUwDtCZJE8RnvtvFVPENYbjixKiprXgBaPZByXMq5oWYiaqSI9QJH_wfPSlcXX3Vma3OsfZzlglGuM8ijOAaMD9Go4ZWFrwtz0YepRzJ1Ta53VHCh302mHHvHcLS7LnAjwztMUtilP_-2qz9CdzT_uEO2tul4dodvlejVdds8db38CoizXVQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+ensemble+pruning+approach+based+on+consensus+clustering+and+multi-objective+evolutionary+algorithm+for+sentiment+classification&rft.jtitle=Information+processing+%26+management&rft.au=Onan%2C+Aytu%C4%9F&rft.au=Koruko%C4%9Flu%2C+Serdar&rft.au=Bulut%2C+Hasan&rft.date=2017-07-01&rft.pub=Elsevier+Ltd&rft.issn=0306-4573&rft.eissn=1873-5371&rft.volume=53&rft.issue=4&rft.spage=814&rft.epage=833&rft_id=info:doi/10.1016%2Fj.ipm.2017.02.008&rft.externalDocID=S0306457316301480 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4573&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4573&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4573&client=summon |