A hybrid ensemble pruning approach based on consensus clustering and multi-objective evolutionary algorithm for sentiment classification

Sentiment analysis is a critical task of extracting subjective information from online text documents. Ensemble learning can be employed to obtain more robust classification schemes. However, most approaches in the field incorporated feature engineering to build efficient sentiment classifiers. The...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information processing & management Ročník 53; číslo 4; s. 814 - 833
Hlavní autoři: Onan, Aytuğ, Korukoğlu, Serdar, Bulut, Hasan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 01.07.2017
Elsevier Science Ltd
Témata:
ISSN:0306-4573, 1873-5371
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Sentiment analysis is a critical task of extracting subjective information from online text documents. Ensemble learning can be employed to obtain more robust classification schemes. However, most approaches in the field incorporated feature engineering to build efficient sentiment classifiers. The purpose of our research is to establish an effective sentiment classification scheme by pursuing the paradigm of ensemble pruning. Ensemble pruning is a crucial method to build classifier ensembles with high predictive accuracy and efficiency. Previous studies employed exponential search, randomized search, sequential search, ranking based pruning and clustering based pruning. However, there are tradeoffs in selecting the ensemble pruning methods. In this regard, hybrid ensemble pruning schemes can be more promising. In this study, we propose a hybrid ensemble pruning scheme based on clustering and randomized search for text sentiment classification. Furthermore, a consensus clustering scheme is presented to deal with the instability of clustering results. The classifiers of the ensemble are initially clustered into groups according to their predictive characteristics. Then, two classifiers from each cluster are selected as candidate classifiers based on their pairwise diversity. The search space of candidate classifiers is explored by the elitist Pareto-based multi-objective evolutionary algorithm. For the evaluation task, the proposed scheme is tested on twelve balanced and unbalanced benchmark text classification tasks. In addition, the proposed approach is experimentally compared with three ensemble methods (AdaBoost, Bagging and Random Subspace) and three ensemble pruning algorithms (ensemble selection from libraries of models, Bagging ensemble selection and LibD3C algorithm). Results demonstrate that the consensus clustering and the elitist pareto-based multi-objective evolutionary algorithm can be effectively used in ensemble pruning. The experimental analysis with conventional ensemble methods and pruning algorithms indicates the validity and effectiveness of the proposed scheme.
AbstractList Sentiment analysis is a critical task of extracting subjective information from online text documents. Ensemble learning can be employed to obtain more robust classification schemes. However, most approaches in the field incorporated feature engineering to build efficient sentiment classifiers. The purpose of our research is to establish an effective sentiment classification scheme by pursuing the paradigm of ensemble pruning. Ensemble pruning is a crucial method to build classifier ensembles with high predictive accuracy and efficiency. Previous studies employed exponential search, randomized search, sequential search, ranking based pruning and clustering based pruning. However, there are tradeoffs in selecting the ensemble pruning methods. In this regard, hybrid ensemble pruning schemes can be more promising. In this study, we propose a hybrid ensemble pruning scheme based on clustering and randomized search for text sentiment classification. Furthermore, a consensus clustering scheme is presented to deal with the instability of clustering results. The classifiers of the ensemble are initially clustered into groups according to their predictive characteristics. Then, two classifiers from each cluster are selected as candidate classifiers based on their pairwise diversity. The search space of candidate classifiers is explored by the elitist Pareto-based multi-objective evolutionary algorithm. For the evaluation task, the proposed scheme is tested on twelve balanced and un- balanced benchmark text classification tasks. In addition, the proposed approach is experimentally compared with three ensemble methods (AdaBoost, Bagging and Random Subspace) and three ensemble pruning algorithms (ensemble selection from libraries of models. Bagging ensemble selection and LibD3C algorithm). Results demonstrate that the consensus clustering and the elitist pareto-based multi-objective evolutionary algorithm can be effectively used in ensemble pruning. The experimental analysis with conventional ensemble methods and pruning algorithms indicates the validity and effectiveness of the proposed scheme.
Sentiment analysis is a critical task of extracting subjective information from online text documents. Ensemble learning can be employed to obtain more robust classification schemes. However, most approaches in the field incorporated feature engineering to build efficient sentiment classifiers. The purpose of our research is to establish an effective sentiment classification scheme by pursuing the paradigm of ensemble pruning. Ensemble pruning is a crucial method to build classifier ensembles with high predictive accuracy and efficiency. Previous studies employed exponential search, randomized search, sequential search, ranking based pruning and clustering based pruning. However, there are tradeoffs in selecting the ensemble pruning methods. In this regard, hybrid ensemble pruning schemes can be more promising. In this study, we propose a hybrid ensemble pruning scheme based on clustering and randomized search for text sentiment classification. Furthermore, a consensus clustering scheme is presented to deal with the instability of clustering results. The classifiers of the ensemble are initially clustered into groups according to their predictive characteristics. Then, two classifiers from each cluster are selected as candidate classifiers based on their pairwise diversity. The search space of candidate classifiers is explored by the elitist Pareto-based multi-objective evolutionary algorithm. For the evaluation task, the proposed scheme is tested on twelve balanced and unbalanced benchmark text classification tasks. In addition, the proposed approach is experimentally compared with three ensemble methods (AdaBoost, Bagging and Random Subspace) and three ensemble pruning algorithms (ensemble selection from libraries of models, Bagging ensemble selection and LibD3C algorithm). Results demonstrate that the consensus clustering and the elitist pareto-based multi-objective evolutionary algorithm can be effectively used in ensemble pruning. The experimental analysis with conventional ensemble methods and pruning algorithms indicates the validity and effectiveness of the proposed scheme.
Author Bulut, Hasan
Onan, Aytuğ
Korukoğlu, Serdar
Author_xml – sequence: 1
  givenname: Aytuğ
  surname: Onan
  fullname: Onan, Aytuğ
  email: aytug.onan@cbu.edu.tr
  organization: Celal Bayar University, Department of Computer Engineering, 45140, Muradiye, Manisa, Turkey
– sequence: 2
  givenname: Serdar
  surname: Korukoğlu
  fullname: Korukoğlu, Serdar
  email: Serdar.korukoglu@ege.edu.tr
  organization: Ege University, Department of Computer Engineering, 35100, Bornova, Izmir, Turkey
– sequence: 3
  givenname: Hasan
  surname: Bulut
  fullname: Bulut, Hasan
  email: hasan.bulut@ege.edu.tr
  organization: Ege University, Department of Computer Engineering, 35100, Bornova, Izmir, Turkey
BookMark eNp9kMFq3DAURUVJIJM0H5CdoGu771m25aGrEJq2EOimXQtZfs7I2JIryQP5g352NJmuushGQnDuFfdcswvnHTF2h1AiYPt5Ku26lBWgLKEqAboPbIedFEUjJF6wHQhoi7qR4opdxzgBQN1gtWN_7_nhpQ924OQiLf1MfA2bs-6Z63UNXpsD73WkgXvHjc-Mi1vkZt5iovCGuYEv25xs4fuJTLJH4nT085asdzq8cD0_-2DTYeGjDzwXJLvkI3foGO1ojT6RH9nlqOdIt__uG_b78euvh-_F089vPx7unwojpEjFOErT1qJr-la20CJ0cuwQwGA96LonhL6lGisU2A96bDVWnaam3ucXou7FDft07s3j_mwUk5r8Flz-UuEeq33TQNVkCs-UCT7GQKNag13yGoWgTsLVpLJwdRKuoFJZeM7I_zLGprdtKWg7v5v8ck5SHn60FFQ0lpyhwYZsVA3evpN-BRNYoKA
CitedBy_id crossref_primary_10_1016_j_eswa_2021_115828
crossref_primary_10_1080_19942060_2022_2073565
crossref_primary_10_1108_AGJSR_04_2022_0029
crossref_primary_10_1080_1331677X_2022_2086600
crossref_primary_10_1109_ACCESS_2019_2949059
crossref_primary_10_1108_DTA_07_2021_0177
crossref_primary_10_1177_21582440221096445
crossref_primary_10_1016_j_neucom_2024_127729
crossref_primary_10_1080_21681163_2022_2103451
crossref_primary_10_1155_2022_6555501
crossref_primary_10_1155_2022_1519198
crossref_primary_10_1109_ACCESS_2020_2986582
crossref_primary_10_1049_tje2_12184
crossref_primary_10_1007_s13042_020_01271_8
crossref_primary_10_1049_ccs2_12029
crossref_primary_10_1109_TCCN_2023_3327594
crossref_primary_10_1002_cpe_7109
crossref_primary_10_1111_coin_12692
crossref_primary_10_1155_2022_1949061
crossref_primary_10_1017_dap_2024_25
crossref_primary_10_1177_1088467X251320265
crossref_primary_10_1155_2021_7648856
crossref_primary_10_1177_15330338221124372
crossref_primary_10_1080_03610918_2022_2094962
crossref_primary_10_1109_EMR_2022_3208818
crossref_primary_10_1016_j_cie_2018_12_021
crossref_primary_10_1016_j_eswa_2021_115819
crossref_primary_10_1002_cpe_6486
crossref_primary_10_1007_s13042_018_00912_3
crossref_primary_10_1016_j_asoc_2019_02_043
crossref_primary_10_1016_j_cosrev_2021_100413
crossref_primary_10_1177_02841851221119108
crossref_primary_10_1111_coin_12563
crossref_primary_10_1002_cpe_7219
crossref_primary_10_1002_cpe_6800
crossref_primary_10_1109_TCSS_2023_3268548
crossref_primary_10_1002_ail2_86
crossref_primary_10_1016_j_ipm_2019_03_009
crossref_primary_10_1016_j_ins_2020_08_051
crossref_primary_10_1109_TCE_2023_3345390
crossref_primary_10_1016_j_bspc_2022_103995
crossref_primary_10_1109_TAI_2023_3296685
crossref_primary_10_1177_09544062241277739
crossref_primary_10_1007_s12351_024_00864_3
crossref_primary_10_1109_ACCESS_2019_2945911
crossref_primary_10_1016_j_csl_2019_01_005
crossref_primary_10_1080_0954898X_2025_2453032
crossref_primary_10_1016_j_bspc_2021_102709
crossref_primary_10_1109_ACCESS_2021_3130905
crossref_primary_10_1155_2021_9988318
crossref_primary_10_1155_2018_3875082
crossref_primary_10_1007_s10115_023_01998_0
crossref_primary_10_1155_2021_6669468
crossref_primary_10_1155_2022_4830411
crossref_primary_10_1177_01655515211020580
crossref_primary_10_1155_2022_3649406
crossref_primary_10_1007_s11704_024_40669_3
crossref_primary_10_1002_cpe_6943
crossref_primary_10_1155_2021_9241338
crossref_primary_10_3390_app14052210
crossref_primary_10_1007_s12539_021_00464_1
crossref_primary_10_1016_j_eswa_2022_117092
crossref_primary_10_1109_TII_2023_3321332
crossref_primary_10_1109_ACCESS_2020_3014362
crossref_primary_10_1002_ima_23025
crossref_primary_10_1109_TNNLS_2023_3242049
crossref_primary_10_1109_TAES_2024_3456748
crossref_primary_10_1016_j_engappai_2024_108231
crossref_primary_10_1080_0144929X_2023_2289057
crossref_primary_10_1016_j_epsr_2019_105961
crossref_primary_10_1109_TEVC_2022_3209544
crossref_primary_10_1007_s00500_021_06691_4
crossref_primary_10_1080_21681163_2023_2243347
crossref_primary_10_1145_3494566
crossref_primary_10_1002_cae_22179
crossref_primary_10_1109_TCSVT_2024_3436029
crossref_primary_10_1049_cit2_12317
crossref_primary_10_1155_2021_6648726
crossref_primary_10_1111_exsy_12895
crossref_primary_10_1007_s00521_024_10203_4
crossref_primary_10_1080_10255842_2022_2129969
crossref_primary_10_1093_bib_bbab440
crossref_primary_10_1002_cae_22737
crossref_primary_10_1093_comjnl_bxac144
crossref_primary_10_1038_s41598_024_76502_x
crossref_primary_10_1109_TAFFC_2022_3216782
crossref_primary_10_1109_TNNLS_2023_3308828
crossref_primary_10_1049_itr2_12493
crossref_primary_10_1089_big_2019_0130
crossref_primary_10_1002_smr_2660
crossref_primary_10_1007_s41365_023_01304_1
crossref_primary_10_1155_2021_1607946
crossref_primary_10_3389_fphys_2023_1105891
crossref_primary_10_1109_ACCESS_2024_3416321
crossref_primary_10_3233_JIFS_221615
crossref_primary_10_1002_cpe_6594
crossref_primary_10_1002_cpe_7683
crossref_primary_10_1109_TNNLS_2022_3185961
crossref_primary_10_1049_cps2_12079
crossref_primary_10_1016_j_jhydrol_2024_130742
crossref_primary_10_1080_03610918_2023_2196384
crossref_primary_10_1080_0144929X_2022_2105258
crossref_primary_10_1109_TDSC_2024_3352604
crossref_primary_10_3390_ijerph19159695
crossref_primary_10_1109_TAI_2025_3538549
crossref_primary_10_1016_j_neucom_2021_11_045
crossref_primary_10_1109_ACCESS_2020_2975584
crossref_primary_10_1109_TAI_2022_3224416
crossref_primary_10_1155_2021_9923491
crossref_primary_10_1080_1206212X_2022_2069643
crossref_primary_10_1016_j_ejor_2025_07_014
crossref_primary_10_1177_20552076231207589
crossref_primary_10_1002_ett_4695
crossref_primary_10_1002_mde_4072
crossref_primary_10_1007_s10044_022_01089_w
crossref_primary_10_1080_08839514_2022_2123094
crossref_primary_10_1016_j_eswa_2020_113232
crossref_primary_10_1145_3604614
crossref_primary_10_1080_0952813X_2023_2165715
crossref_primary_10_32604_cmc_2022_019882
crossref_primary_10_1080_10255842_2023_2181660
crossref_primary_10_1140_epjs_s11734_021_00206_w
crossref_primary_10_1109_TCSS_2022_3209827
crossref_primary_10_1080_07391102_2021_1987328
crossref_primary_10_3390_fi14050126
crossref_primary_10_1007_s13369_021_06313_z
crossref_primary_10_1109_TNNLS_2023_3270559
crossref_primary_10_1002_cpe_6896
crossref_primary_10_1080_21681163_2023_2189487
crossref_primary_10_1080_09349847_2023_2236066
crossref_primary_10_1155_2021_9136206
crossref_primary_10_1155_2020_1329692
crossref_primary_10_32604_cmes_2022_018699
crossref_primary_10_1002_cpe_7613
crossref_primary_10_1016_j_jksuci_2022_02_025
crossref_primary_10_1002_cpe_7291
crossref_primary_10_1016_j_eswa_2018_04_002
crossref_primary_10_1155_2018_2497471
crossref_primary_10_1080_03610926_2023_2268767
crossref_primary_10_1155_2021_6663977
crossref_primary_10_1049_cit2_12128
crossref_primary_10_1080_10255842_2023_2263125
crossref_primary_10_1016_j_eswa_2017_09_005
crossref_primary_10_1155_2022_9547317
crossref_primary_10_1155_2022_8467349
crossref_primary_10_1109_TAFFC_2023_3288407
crossref_primary_10_1080_01969722_2022_2159150
crossref_primary_10_1155_2022_5649994
crossref_primary_10_1177_15501329221084882
crossref_primary_10_1007_s13369_021_06193_3
crossref_primary_10_1002_cpe_5909
crossref_primary_10_3390_electronics10151813
crossref_primary_10_3390_su132111765
crossref_primary_10_1016_j_eswa_2025_128762
crossref_primary_10_1155_2022_9038992
crossref_primary_10_3390_su15031810
crossref_primary_10_1080_02533839_2023_2204880
crossref_primary_10_1111_exsy_13608
crossref_primary_10_1155_2022_4610747
crossref_primary_10_1177_01655515211012329
crossref_primary_10_1155_2021_1161923
crossref_primary_10_1111_exsy_12996
crossref_primary_10_1155_2021_3137666
crossref_primary_10_3390_su13158600
crossref_primary_10_4218_etrij_2022_0281
crossref_primary_10_1155_2021_5549300
crossref_primary_10_1080_21681163_2023_2177821
crossref_primary_10_1109_TBDATA_2023_3324482
crossref_primary_10_1109_MCI_2019_2901083
crossref_primary_10_1016_j_ins_2024_120992
crossref_primary_10_1049_gtd2_12256
crossref_primary_10_1049_cit2_12348
crossref_primary_10_1080_10255842_2022_2072683
crossref_primary_10_1016_j_ipm_2025_104238
crossref_primary_10_1007_s12652_020_01882_7
crossref_primary_10_1049_cit2_12100
crossref_primary_10_1109_TETCI_2022_3210582
crossref_primary_10_1016_j_tele_2018_12_005
crossref_primary_10_1080_10589759_2024_2382332
crossref_primary_10_1155_2022_4417998
crossref_primary_10_1155_2021_4300059
crossref_primary_10_1007_s12539_023_00571_1
crossref_primary_10_1145_3467477
crossref_primary_10_1177_20552076231198643
crossref_primary_10_1080_23270012_2023_2258372
crossref_primary_10_1016_j_patcog_2021_108493
crossref_primary_10_1109_TEM_2023_3271597
crossref_primary_10_1016_j_ipm_2022_102929
crossref_primary_10_1016_j_eswa_2022_117015
crossref_primary_10_1145_3569899
crossref_primary_10_1080_19331681_2022_2097974
crossref_primary_10_1016_j_ipm_2019_102066
crossref_primary_10_1109_TAI_2022_3225124
crossref_primary_10_1007_s00521_023_08411_5
crossref_primary_10_1109_ACCESS_2021_3053357
crossref_primary_10_1111_exsy_12812
crossref_primary_10_1016_j_eswa_2021_116051
crossref_primary_10_1080_21681163_2023_2245927
crossref_primary_10_1007_s10579_023_09669_w
crossref_primary_10_1080_01969722_2023_2166259
crossref_primary_10_1109_TETCI_2024_3359091
crossref_primary_10_1016_j_eswa_2020_113176
crossref_primary_10_1016_j_eswa_2023_119845
crossref_primary_10_3390_e22091020
crossref_primary_10_1515_geo_2022_0487
crossref_primary_10_1109_TNNLS_2023_3258464
crossref_primary_10_1155_2019_8906034
crossref_primary_10_1109_TNNLS_2023_3349142
crossref_primary_10_1080_23737484_2023_2278112
crossref_primary_10_1155_2022_4874516
crossref_primary_10_1111_exsy_13114
crossref_primary_10_1017_S1351324923000438
crossref_primary_10_1155_2021_9947621
crossref_primary_10_1371_journal_pone_0252293
crossref_primary_10_1016_j_asoc_2023_110412
crossref_primary_10_1155_2021_4471044
crossref_primary_10_1016_j_ipm_2022_102943
crossref_primary_10_1109_ACCESS_2021_3093358
crossref_primary_10_1155_2021_9036550
crossref_primary_10_1049_cit2_12374
crossref_primary_10_1016_j_neucom_2025_130878
crossref_primary_10_4218_etrij_2023_0162
crossref_primary_10_1080_10255842_2023_2270101
crossref_primary_10_1109_TNNLS_2023_3295168
crossref_primary_10_1007_s10845_021_01866_0
crossref_primary_10_1177_20552076221109530
crossref_primary_10_3390_electronics11071051
crossref_primary_10_1002_cem_3515
crossref_primary_10_1155_2022_2612123
crossref_primary_10_1080_08874417_2022_2155267
crossref_primary_10_1080_09540091_2023_2184310
crossref_primary_10_1016_j_iswa_2022_200117
crossref_primary_10_1016_j_ipm_2020_102357
crossref_primary_10_1002_dac_5671
Cites_doi 10.1109/TPAMI.2005.113
10.1016/j.dss.2013.09.004
10.1016/j.neucom.2014.02.030
10.1016/j.ipm.2014.09.004
10.1016/S0004-3702(02)00190-X
10.1016/j.ipm.2014.11.001
10.1007/s10462-009-9124-7
10.1016/j.eswa.2014.07.049
10.1016/j.ipm.2015.01.005
10.1016/j.asoc.2015.09.009
10.1016/j.neucom.2015.12.036
10.1007/BF00058655
10.1016/j.neucom.2013.08.004
10.1016/j.patrec.2016.01.029
10.1016/j.ipm.2015.04.004
10.1145/2379776.2379786
10.1016/j.knosys.2016.05.040
10.1016/j.automatica.2013.02.004
10.1142/S0218001411008683
10.1016/j.dss.2014.10.004
10.1016/j.dss.2014.07.003
10.1177/0165551515613226
10.1016/j.joi.2009.01.003
10.1016/j.ins.2010.11.023
10.1145/1656274.1656278
10.1109/TPAMI.1984.4767478
10.1016/j.eswa.2016.03.041
10.1080/01621459.1983.10478008
10.1111/j.2517-6161.1977.tb01600.x
10.1023/A:1008202821328
10.1016/j.eswa.2016.03.045
10.1016/j.patrec.2013.05.006
10.1016/j.ipm.2014.09.002
10.1016/j.artmed.2013.12.006
10.1016/j.ipm.2015.04.003
10.1016/j.neucom.2013.06.026
10.1177/0165551514547842
10.1016/j.neucom.2015.01.036
10.1016/j.asoc.2013.06.023
10.1016/j.joi.2016.03.006
10.1023/A:1010924920739
10.1016/j.patrec.2006.06.018
10.1016/j.asoc.2016.02.022
10.1016/j.asoc.2014.10.045
10.1023/A:1022859003006
10.1016/j.neucom.2011.03.001
10.1016/j.ins.2016.02.056
10.1016/j.eswa.2015.10.038
10.1007/3-540-48219-9_8
10.1016/j.dss.2013.08.002
10.1016/j.patrec.2009.09.011
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Pergamon Press Inc. Jul 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Pergamon Press Inc. Jul 2017
DBID AAYXX
CITATION
E3H
F2A
DOI 10.1016/j.ipm.2017.02.008
DatabaseName CrossRef
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
DatabaseTitle CrossRef
Library and Information Science Abstracts (LISA)
DatabaseTitleList Library and Information Science Abstracts (LISA)

DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
EISSN 1873-5371
EndPage 833
ExternalDocumentID 10_1016_j_ipm_2017_02_008
S0306457316301480
GroupedDBID --K
--M
-~X
.DC
.~1
0B8
0R~
1B1
1RT
1~.
1~5
29I
4.4
41~
457
4G.
5GY
5VS
7-5
71M
77K
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABPPZ
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHQT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG9
LPU
LY1
M3Y
M41
MO0
MS~
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSO
SSS
SSV
SSZ
T5K
TN5
U5U
UHB
UHS
UNMZH
WUQ
XFK
ZMT
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
E3H
F2A
ID FETCH-LOGICAL-c373t-ff7c64385b676061087f8100c14da4be10b6e412131bdaf6a128ae549bda11ab3
ISICitedReferencesCount 265
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000401400000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-4573
IngestDate Fri Nov 14 22:21:53 EST 2025
Sat Nov 29 01:48:37 EST 2025
Tue Nov 18 22:35:16 EST 2025
Fri Feb 23 02:18:40 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Ensemble pruning
Multi-objective evolutionary algorithm
Consensus clustering
Sentiment classification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c373t-ff7c64385b676061087f8100c14da4be10b6e412131bdaf6a128ae549bda11ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1912955025
PQPubID 46166
PageCount 20
ParticipantIDs proquest_journals_1912955025
crossref_primary_10_1016_j_ipm_2017_02_008
crossref_citationtrail_10_1016_j_ipm_2017_02_008
elsevier_sciencedirect_doi_10_1016_j_ipm_2017_02_008
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Information processing & management
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Partalas, Tsoumakas, Katakis, Vlahavas (bib0092) 2006
Sun, Pfahringer (bib0072) 2011
Engelbrecht (bib0019) 2007
Fusilier, Montes-y-Gomez, Rosso, Cabrera (bib0023) 2015; 51
Sun, Wang, Cheng, Fu (bib0070) 2015; 51
Gashler, Giraud-Carrier, Martinez (bib0025) 2008
Mendialdua, Arruti, Jauregi, Lazkano, Sierra (bib0050) 2015; 157
Onan, Korukoğlu (bib0054) 2015; 43
Selim, Ismail (bib0064) 1984; 6
Khan, Bashir, Qamar (bib0039) 2014; 57
Tan, Steinbach, Kumar (bib0076) 2005
Zhang, Cao (bib0088) 2014; 139
Ghohs, Acharya (bib0027) 2011; 1
Coelho, Von Zuben (bib0010) 2006
Theodoridis, Koutroumbas (bib0077) 1999
Arthur, Vassilvitskii (bib0003) 2007
Gütlein (bib0029) 2006
Strehl, Ghosh (bib0069) 2003; 3
Ruta, Gabrys (bib0062) 2001
Glaab (bib0028) 2011
Han, Kamber (bib0032) 2006
Rokach (bib0060) 2010; 33
Galar, Fernandez, Barrenechea, Bustince, Herrera (bib0024) 2016; 354
Dai (bib0012) 2013; 122
Kotsiantis, Pintelas (bib0041) 2005; 1
Pinto (bib0057) 2013
Breiman (bib0005) 1996; 24
Xia, Xu, Yu, Qi, Cambria (bib0084) 2016; 52
Saif, He, Fernandez, Alani (bib0063) 2016; 52
Swiderski, Osowski, Kruk, Barhoumi (bib0073) 2016; 46
Kohonen (bib0040) 2001
Elghazel, Aussem, Gharroudi, Saadaoui (bib0018) 2016; 57
Margineantu, Dietterich (bib0046) 1997
Whitehead, Yaeger (bib0083) 2009
Ghaemi, Sulaiman, Ibrahim, Mustapha (bib0026) 2009; 50
Jin, Han (bib0037) 2010
Mirkin (bib0051) 2001; 45
Talbi (bib0074) 2009
Mendes-Moreira, Soares, Jorge, De Sousa (bib0049) 2012; 45
Kuncheva (bib0042) 2014
Mousavi, Eftekhari (bib0052) 2015; 37
Sheen, Aishwarya, Anitha, Raghavan, Bhaskar (bib0066) 2012; 7209
Cavalcanti, Oliveira, Moura, Carvalho (bib0007) 2016; 74
Dietterich (bib0017) 2000
Obitko (bib0053) 2015
Roli, Giacinto, Vernazza (bib0061) 2001; 2096
Cheng, Wang, Hou, Tan, Cao (bib0009) 2013; 49
Dempster, Laird, Rubin (bib0016) 1977; 39
Da Silva, Hruschka, Hruschka (bib0011) 2014; 66
Caruana, Niculescu-Mizil, Crew, Ksikes (bib0006) 2004
Fred, Jain (bib0094) 2005; 27
Jain (bib0035) 2010; 31
Vega-Pons, Ruiz-Shulcloper (bib0079) 2011; 25
Bhatia, Khalid (bib0004) 2008; 5
Aksela (bib0001) 2003
Fersini, Messina, Pozzi (bib0020) 2014; 68
Tsoumakas, Partalas, Vlahavas (bib0078) 2008
Kuncheva, Whitaker (bib0093) 2003; 51
Hall (bib0030) 1999
Ma, Dai, Liu (bib0045) 2015; 42
Hernandez-Lobato, Martinez-Munoz, Suarez (bib0033) 2011; 74
Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (bib0031) 2009; 11
Rich, Knight (bib0059) 1991
Zhang, Ma, Yi, Niu, Xu (bib0089) 2015
Appel, Chiclana, Carter, Fujita (bib0002) 2016; 108
Fowlkes, Mallows (bib0022) 1983; 78
(bib0082) 2016
Sheen, Sirisha (bib0065) 2013; 34
Jimenez, Sanchez, Juarez (bib0036) 2014; 60
del Pilar Salas-Zarate, Lopez-Lopez, Valencia-Garcia, Aussenac-Gilles, Almela, Alor-Hernandez (bib0015) 2014; 40
Martinez-Munoz, Suarez (bib0048) 2007; 28
Xiao, Xiao, Wang (bib0086) 2016; 43
Dai, Zhang, Liu (bib0014) 2015; 28
Kennedy, Eberhart (bib0038) 1995
Liu, Liu, Liu, Sun, Peng, Wang (bib0044) 2016; 185
Partalas, Tsoumakas, Vlahavas (bib0056) 2012
Fersini, Messina, Pozzi (bib0021) 2016; 52
Strehl, Ghosh (bib0068) 2002; 3
Holland (bib0034) 1975
Wang, Zhang, Sun, Yang, Larson (bib0081) 2015; 51
Dai, Liu (bib0013) 2013; 13
Xia, Zong, Li (bib0085) 2011; 181
Onan, Korukoğlu, Bulut (bib0055) 2016; 57
Chen, Wang, Nagarajan, Wang, Sheth (bib0008) 2012
Zhou, Wu, Tang (bib0091) 2002; 137
Prabowo, Thelwall (bib0058) 2009; 3
Yoon, Kim, Kim, Song (bib0087) 2016; 10
Tamon, Xiang (bib0075) 2000; 1810
Storn, Price (bib0067) 1997; 11
Zhou, Tang (bib0090) 2003; 2639
Martinez-Munoz, Suarez (bib0047) 2006
Lin, Chen, Qiu, Wu, Krishnan, Zhou (bib0043) 2014; 123
Wang, Sun, Ma, Xu, Gu (bib0080) 2014; 57
Arthur (10.1016/j.ipm.2017.02.008_bib0003) 2007
Fusilier (10.1016/j.ipm.2017.02.008_bib0023) 2015; 51
Sun (10.1016/j.ipm.2017.02.008_bib0070) 2015; 51
Tan (10.1016/j.ipm.2017.02.008_bib0076) 2005
Jin (10.1016/j.ipm.2017.02.008_bib0037) 2010
Strehl (10.1016/j.ipm.2017.02.008_bib0068) 2002; 3
Kotsiantis (10.1016/j.ipm.2017.02.008_bib0041) 2005; 1
Galar (10.1016/j.ipm.2017.02.008_bib0024) 2016; 354
Roli (10.1016/j.ipm.2017.02.008_bib0061) 2001; 2096
Dai (10.1016/j.ipm.2017.02.008_bib0014) 2015; 28
Kuncheva (10.1016/j.ipm.2017.02.008_bib0042) 2014
Ghaemi (10.1016/j.ipm.2017.02.008_bib0026) 2009; 50
Rich (10.1016/j.ipm.2017.02.008_bib0059) 1991
Vega-Pons (10.1016/j.ipm.2017.02.008_bib0079) 2011; 25
Zhou (10.1016/j.ipm.2017.02.008_bib0091) 2002; 137
Liu (10.1016/j.ipm.2017.02.008_bib0044) 2016; 185
Partalas (10.1016/j.ipm.2017.02.008_bib0056) 2012
Elghazel (10.1016/j.ipm.2017.02.008_bib0018) 2016; 57
Xiao (10.1016/j.ipm.2017.02.008_bib0086) 2016; 43
Kohonen (10.1016/j.ipm.2017.02.008_bib0040) 2001
Ma (10.1016/j.ipm.2017.02.008_bib0045) 2015; 42
Hall (10.1016/j.ipm.2017.02.008_bib0031) 2009; 11
Obitko (10.1016/j.ipm.2017.02.008_bib0053) 2015
Rokach (10.1016/j.ipm.2017.02.008_bib0060) 2010; 33
Chen (10.1016/j.ipm.2017.02.008_bib0008) 2012
Zhang (10.1016/j.ipm.2017.02.008_bib0089) 2015
Da Silva (10.1016/j.ipm.2017.02.008_bib0011) 2014; 66
Engelbrecht (10.1016/j.ipm.2017.02.008_bib0019) 2007
Dai (10.1016/j.ipm.2017.02.008_bib0013) 2013; 13
Caruana (10.1016/j.ipm.2017.02.008_bib0006) 2004
Jain (10.1016/j.ipm.2017.02.008_bib0035) 2010; 31
Holland (10.1016/j.ipm.2017.02.008_bib0034) 1975
Ghohs (10.1016/j.ipm.2017.02.008_bib0027) 2011; 1
Swiderski (10.1016/j.ipm.2017.02.008_bib0073) 2016; 46
Xia (10.1016/j.ipm.2017.02.008_bib0085) 2011; 181
Onan (10.1016/j.ipm.2017.02.008_bib0054) 2015; 43
Theodoridis (10.1016/j.ipm.2017.02.008_bib0077) 1999
Fred (10.1016/j.ipm.2017.02.008_bib0094) 2005; 27
Kennedy (10.1016/j.ipm.2017.02.008_bib0038) 1995
Sheen (10.1016/j.ipm.2017.02.008_bib0065) 2013; 34
Martinez-Munoz (10.1016/j.ipm.2017.02.008_bib0047) 2006
Mirkin (10.1016/j.ipm.2017.02.008_bib0051) 2001; 45
Mendes-Moreira (10.1016/j.ipm.2017.02.008_bib0049) 2012; 45
Lin (10.1016/j.ipm.2017.02.008_bib0043) 2014; 123
Glaab (10.1016/j.ipm.2017.02.008_bib0028) 2011
Coelho (10.1016/j.ipm.2017.02.008_bib0010) 2006
Khan (10.1016/j.ipm.2017.02.008_bib0039) 2014; 57
Dietterich (10.1016/j.ipm.2017.02.008_bib0017) 2000
Han (10.1016/j.ipm.2017.02.008_bib0032) 2006
Fersini (10.1016/j.ipm.2017.02.008_bib0020) 2014; 68
Hernandez-Lobato (10.1016/j.ipm.2017.02.008_bib0033) 2011; 74
Strehl (10.1016/j.ipm.2017.02.008_bib0069) 2003; 3
Yoon (10.1016/j.ipm.2017.02.008_bib0087) 2016; 10
Jimenez (10.1016/j.ipm.2017.02.008_bib0036) 2014; 60
Ruta (10.1016/j.ipm.2017.02.008_bib0062) 2001
Sun (10.1016/j.ipm.2017.02.008_bib0072) 2011
Wang (10.1016/j.ipm.2017.02.008_bib0081) 2015; 51
Martinez-Munoz (10.1016/j.ipm.2017.02.008_bib0048) 2007; 28
Tsoumakas (10.1016/j.ipm.2017.02.008_bib0078) 2008
Mendialdua (10.1016/j.ipm.2017.02.008_bib0050) 2015; 157
Tamon (10.1016/j.ipm.2017.02.008_bib0075) 2000; 1810
Whitehead (10.1016/j.ipm.2017.02.008_bib0083) 2009
Talbi (10.1016/j.ipm.2017.02.008_bib0074) 2009
(10.1016/j.ipm.2017.02.008_bib0082) 2016
Zhang (10.1016/j.ipm.2017.02.008_bib0088) 2014; 139
Storn (10.1016/j.ipm.2017.02.008_bib0067) 1997; 11
Fersini (10.1016/j.ipm.2017.02.008_bib0021) 2016; 52
Pinto (10.1016/j.ipm.2017.02.008_bib0057) 2013
Prabowo (10.1016/j.ipm.2017.02.008_bib0058) 2009; 3
Partalas (10.1016/j.ipm.2017.02.008_bib0092) 2006
Onan (10.1016/j.ipm.2017.02.008_bib0055) 2016; 57
Sheen (10.1016/j.ipm.2017.02.008_bib0066) 2012; 7209
Breiman (10.1016/j.ipm.2017.02.008_bib0005) 1996; 24
Kuncheva (10.1016/j.ipm.2017.02.008_bib0093) 2003; 51
Aksela (10.1016/j.ipm.2017.02.008_bib0001) 2003
del Pilar Salas-Zarate (10.1016/j.ipm.2017.02.008_bib0015) 2014; 40
Dempster (10.1016/j.ipm.2017.02.008_bib0016) 1977; 39
Fowlkes (10.1016/j.ipm.2017.02.008_bib0022) 1983; 78
Zhou (10.1016/j.ipm.2017.02.008_bib0090) 2003; 2639
Bhatia (10.1016/j.ipm.2017.02.008_bib0004) 2008; 5
Hall (10.1016/j.ipm.2017.02.008_bib0030) 1999
Xia (10.1016/j.ipm.2017.02.008_bib0084) 2016; 52
Appel (10.1016/j.ipm.2017.02.008_bib0002) 2016; 108
Cavalcanti (10.1016/j.ipm.2017.02.008_bib0007) 2016; 74
Mousavi (10.1016/j.ipm.2017.02.008_bib0052) 2015; 37
Dai (10.1016/j.ipm.2017.02.008_bib0012) 2013; 122
Gütlein (10.1016/j.ipm.2017.02.008_bib0029) 2006
Margineantu (10.1016/j.ipm.2017.02.008_bib0046) 1997
Gashler (10.1016/j.ipm.2017.02.008_bib0025) 2008
Cheng (10.1016/j.ipm.2017.02.008_bib0009) 2013; 49
Selim (10.1016/j.ipm.2017.02.008_bib0064) 1984; 6
Saif (10.1016/j.ipm.2017.02.008_bib0063) 2016; 52
Wang (10.1016/j.ipm.2017.02.008_bib0080) 2014; 57
References_xml – year: 1999
  ident: bib0077
  article-title: Pattern recognition
– start-page: 50
  year: 2012
  end-page: 57
  ident: bib0008
  article-title: Extracting diverse sentiment expressions with target-dependent polarity from Twitter
  publication-title: Proceedings of the sixth international AAAI conference on weblogs and social media
– start-page: 1
  year: 2000
  end-page: 15
  ident: bib0017
  article-title: Ensemble methods in machine learning
  publication-title: Proceedings of the 1st international workshop in multiple classifier systems
– year: 2006
  ident: bib0029
  article-title: Large scale attribute selection using wrappers
– volume: 3
  start-page: 143
  year: 2009
  end-page: 157
  ident: bib0058
  article-title: Sentiment analysis: A combined approach
  publication-title: Journal of Informetrics
– volume: 49
  start-page: 1458
  year: 2013
  end-page: 1464
  ident: bib0009
  article-title: Sampled-data based average consensus of second-order integral multi-agent systems: Switching topologies and communication noises
  publication-title: Automatica
– start-page: 18
  year: 2004
  end-page: 38
  ident: bib0006
  article-title: Ensemble selection from libraries of models
  publication-title: Proceedings of ICML 04
– volume: 45
  start-page: 10
  year: 2012
  end-page: 39
  ident: bib0049
  article-title: Ensemble approaches for regression: A survey
  publication-title: ACM Computing Surveys
– year: 1991
  ident: bib0059
  article-title: Artificial intelligence
– volume: 354
  start-page: 178
  year: 2016
  end-page: 196
  ident: bib0024
  article-title: Ordering-based pruning for improving the performance of ensembles of classifiers in the framework of imbalanced datasets
  publication-title: Information Sciences
– volume: 60
  start-page: 197
  year: 2014
  end-page: 219
  ident: bib0036
  article-title: Multi-objective evolutionary algorithms for fuzzy classification in survival prediction
  publication-title: Artificial Intelligence in Medicine
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0038
  article-title: Particle swarm optimization
  publication-title: Proceedings of the international conference on neural networks
– volume: 52
  start-page: 36
  year: 2016
  end-page: 45
  ident: bib0084
  article-title: Polarity shift detection, elimination and ensemble: A three-stage model for document-level sentiment analysis
  publication-title: Information Processing and Management
– volume: 51
  start-page: 444
  year: 2015
  end-page: 457
  ident: bib0070
  article-title: Mining affective text to improve social media item recommendation
  publication-title: Information Processing and Management
– year: 2009
  ident: bib0074
  article-title: Metaheuristics from design to implementation
– volume: 40
  start-page: 749
  year: 2014
  end-page: 760
  ident: bib0015
  article-title: A study on LIWC categories for opinion mining in Spanish reviews
  publication-title: Journal of Information Science
– volume: 10
  start-page: 634
  year: 2016
  end-page: 644
  ident: bib0087
  article-title: Opinion polarity detection in Twitter data combining shrinkage regression and topic modelling
  publication-title: Journal of Informetrics
– volume: 11
  start-page: 10
  year: 2009
  end-page: 18
  ident: bib0031
  article-title: The weka data mining software: An update
  publication-title: SIGKDD Explorations
– volume: 123
  start-page: 424
  year: 2014
  end-page: 435
  ident: bib0043
  article-title: LibD3C: Ensemble classifiers with a clustering and dynamic selection strategy
  publication-title: Neurocomputing
– volume: 57
  start-page: 77
  year: 2014
  end-page: 93
  ident: bib0080
  article-title: Sentiment classification: The contribution of ensemble learning
  publication-title: Decision Support Systems
– start-page: 84
  year: 2003
  end-page: 93
  ident: bib0001
  article-title: Comparison of classifier selection methods for improving committee performance
  publication-title: Multiple classifier systems
– volume: 57
  start-page: 1
  year: 2016
  end-page: 11
  ident: bib0018
  article-title: Ensemble multi-label text categorization based on rotation forest and latent semantic indexing
  publication-title: Expert Systems with Applications
– volume: 68
  start-page: 26
  year: 2014
  end-page: 38
  ident: bib0020
  article-title: Sentiment analysis: Bayesian ensemble learning
  publication-title: Decision Support Systems
– year: 2012
  ident: bib0056
  article-title: A study on greedy algorithms for ensemble pruning
– start-page: 399
  year: 2001
  end-page: 408
  ident: bib0062
  article-title: Application of the evolutionary algorithms for classifier selection in multiple classifier systems with majority voting
  publication-title: Proceedings of the second international workshop on multiple classifier systems
– volume: 2096
  start-page: 78
  year: 2001
  end-page: 87
  ident: bib0061
  article-title: Methods for designing multiple classifier systems
  publication-title: Lecture Notes in Computer Science
– volume: 31
  start-page: 651
  year: 2010
  end-page: 666
  ident: bib0035
  article-title: Data clustering: 50 years beyond k-means
  publication-title: Pattern Recognition Letters
– start-page: 382
  year: 2010
  end-page: 383
  ident: bib0037
  article-title: Expectation maximization clustering
  publication-title: Encyclopedia of machine learning
– start-page: 301
  year: 2006
  end-page: 310
  ident: bib0092
  article-title: Ensemble pruning using reinforcement learning
  publication-title: Hellenic Conference on Artificial Intelligence
– volume: 137
  start-page: 239
  year: 2002
  end-page: 263
  ident: bib0091
  article-title: Ensembling neural networks: Many could be better than all
  publication-title: Artificial Intelligence
– volume: 78
  start-page: 553
  year: 1983
  end-page: 569
  ident: bib0022
  article-title: A method for comparing two hiearchical clusterings
  publication-title: Journal of American Statistical Association
– volume: 13
  start-page: 4292
  year: 2013
  end-page: 4302
  ident: bib0013
  article-title: ModEnPBT: A modified backtracking ensemble pruning algorithm
  publication-title: Applied Soft Computing
– volume: 57
  start-page: 245
  year: 2014
  end-page: 257
  ident: bib0039
  article-title: TOM: Twitter opinion mining framework using hybrid classification scheme
  publication-title: Decision Support Systems
– volume: 6
  start-page: 81
  year: 1984
  end-page: 87
  ident: bib0064
  article-title: K-means-type algorithms: A generalized convergence theorem and characterization of local optimality
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 74
  start-page: 38
  year: 2016
  end-page: 45
  ident: bib0007
  article-title: Combining diversity measures for ensemble pruning
  publication-title: Pattern Recognition Letters
– volume: 43
  start-page: 25
  year: 2015
  end-page: 38
  ident: bib0054
  article-title: A feature selection model based on genetic rank aggregation for text sentiment classification
  publication-title: Journal of Information Science
– volume: 74
  start-page: 2250
  year: 2011
  end-page: 2264
  ident: bib0033
  article-title: Empirical analysis and evaluation of approximate techniques for pruning regression bagging ensembles
  publication-title: Neurocomputing
– volume: 3
  start-page: 583
  year: 2003
  end-page: 617
  ident: bib0069
  article-title: Cluster ensembles–A knowledge reuse framework for combining multiple partitions
  publication-title: Journal of Machine Learning Research
– start-page: 472
  year: 2009
  end-page: 476
  ident: bib0083
  article-title: Building a general purpose cross-domain sentiment mining model
  publication-title: Proceedings of WRI world congress on computer science and information engineering
– volume: 34
  start-page: 1679
  year: 2013
  end-page: 1686
  ident: bib0065
  article-title: Malware detection by pruning of parallel ensembles using harmony search
  publication-title: Pattern Recognition Letters
– start-page: 1
  year: 2008
  end-page: 6
  ident: bib0078
  article-title: A taxonomy and short review of ensemble selection
  publication-title: Proceedings of ECAI 08 workshop on supervised and unsupervised ensemble methods and their applications
– volume: 25
  start-page: 337
  year: 2011
  end-page: 372
  ident: bib0079
  article-title: A survey of clustering ensemble algorithms
  publication-title: International Journal of Pattern Recognition and Artificial Intelligence
– start-page: 1027
  year: 2007
  end-page: 1035
  ident: bib0003
  article-title: K-means++: The advantage of careful seeding
  publication-title: Proceedings of the eighteenth annual symposium on discrete algorithms
– year: 2013
  ident: bib0057
  article-title: Metalearning for dynamic integration in ensemble methods
– volume: 1
  start-page: 305
  year: 2011
  end-page: 315
  ident: bib0027
  article-title: Cluster ensembles
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– start-page: 609
  year: 2006
  end-page: 616
  ident: bib0047
  article-title: Pruning in ordered bagging ensembles
  publication-title: Proceedings of the 23rd international conference on machine learning
– year: 2015
  ident: bib0053
  article-title: Introduction to genetic algorithms
– volume: 3
  start-page: 583
  year: 2002
  end-page: 617
  ident: bib0068
  article-title: Cluster ensembles: A knowledge reuse framework for combining multiple partitions
  publication-title: Journal of Machine Learning Research
– volume: 46
  start-page: 316
  year: 2016
  end-page: 323
  ident: bib0073
  article-title: Aggregation of classifiers ensemble using local discriminatory power and quantiles
  publication-title: Expert Systems with Applications
– year: 1999
  ident: bib0030
  article-title: Correlation-based feature selection for machine learning
– volume: 1
  start-page: 65
  year: 2005
  end-page: 74
  ident: bib0041
  article-title: Selective averaging of regression models
  publication-title: Annals of Mathematics, Computing & Teleinformatics
– volume: 181
  start-page: 1138
  year: 2011
  end-page: 1152
  ident: bib0085
  article-title: Ensemble of feature sets and classification algorithms for sentiment classification
  publication-title: Information Sciences
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: bib0005
  article-title: Bagging predictors
  publication-title: Machine Learning
– volume: 27
  start-page: 835
  year: 2005
  end-page: 850
  ident: bib0094
  article-title: Combining multiple clusterings using evidence accumulation
  publication-title: IEEE transactions on pattern analysis and machine intelligence
– year: 2011
  ident: bib0028
  article-title: Analyzing functional genomics data using novel ensemble, consensus and data fusion techniques
– year: 2014
  ident: bib0042
  article-title: Combining pattern classifiers: Methods and algorithms
– volume: 28
  start-page: 156
  year: 2007
  end-page: 165
  ident: bib0048
  article-title: Using boosting to prune bagging ensembles
  publication-title: Pattern Recognition Letters
– volume: 51
  start-page: 458
  year: 2015
  end-page: 479
  ident: bib0081
  article-title: POS-RS: A Random subspace method for sentiment classification based on part-of-speech analysis
  publication-title: Information Processing and Management
– volume: 28
  start-page: 237
  year: 2015
  end-page: 249
  ident: bib0014
  article-title: A new reverse reduce-error ensemble pruning algorithm
  publication-title: Applied Soft Computing
– volume: 51
  start-page: 181
  year: 2003
  end-page: 207
  ident: bib0093
  article-title: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
  publication-title: Machine learning
– year: 2016
  ident: bib0082
  article-title: Data mining software in Java (n.d.)
– start-page: 251
  year: 2011
  end-page: 260
  ident: bib0072
  article-title: Bagging ensemble selection
  publication-title: Proceedings of the 24th Australasian joint conference on artificial intelligence
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: bib0016
  article-title: Maximum likelihood from incomplete data via the em algorithm
  publication-title: Journal of the Royal Statistical Society
– year: 2005
  ident: bib0076
  article-title: Introduction to data mining
– volume: 139
  start-page: 289
  year: 2014
  end-page: 297
  ident: bib0088
  article-title: A spectral clustering based ensemble pruning approach
  publication-title: Neurocomputing
– volume: 157
  start-page: 46
  year: 2015
  end-page: 60
  ident: bib0050
  article-title: Classifier subset selection to construct multi-classifiers by means of estimation of distribution algorithms
  publication-title: Neurocomputing
– volume: 43
  start-page: 73
  year: 2016
  end-page: 86
  ident: bib0086
  article-title: Ensemble classification based on supervised clustering for credit scoring
  publication-title: Applied Soft Computing
– start-page: 5132
  year: 2006
  end-page: 5139
  ident: bib0010
  article-title: The influence of the pool of candidates on the performance of selection and combination techniques in ensembles
  publication-title: Proceedings of international joint conference on neural networks
– volume: 66
  start-page: 170
  year: 2014
  end-page: 179
  ident: bib0011
  article-title: Tweet sentiment analysis with classifier ensembles
  publication-title: Decision Support Systems
– year: 2006
  ident: bib0032
  article-title: Data mining: Concepts and techniques
– year: 2007
  ident: bib0019
  article-title: Computational intelligence: An introduction
– volume: 45
  start-page: 219
  year: 2001
  end-page: 228
  ident: bib0051
  article-title: Reinterpreting the category utility function
  publication-title: Machine Learning
– year: 1975
  ident: bib0034
  article-title: Adaption in natural and artificial systems
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: bib0067
  article-title: Differential evolution simple and efficient heuristic for global optimization over continuos spaces
  publication-title: Journal of Global Optimization
– volume: 33
  start-page: 1
  year: 2010
  end-page: 39
  ident: bib0060
  article-title: Ensemble-based classifiers
  publication-title: Artificial Intelligence Review
– volume: 1810
  start-page: 404
  year: 2000
  end-page: 412
  ident: bib0075
  publication-title: On the boosting pruning problem
– volume: 37
  start-page: 652
  year: 2015
  end-page: 666
  ident: bib0052
  article-title: A new ensemble learning methodology based on hybridization of classifier ensemble selection approaches
  publication-title: Applied Soft Computing
– start-page: 440
  year: 2015
  end-page: 445
  ident: bib0089
  article-title: An ensemble method for unbalanced sentiment classification
  publication-title: Proceedings of 11th international conference on natural computation
– volume: 122
  start-page: 258
  year: 2013
  end-page: 265
  ident: bib0012
  article-title: A novel ensemble pruning algorithm based on randomized greedy selective strategy and ballot
  publication-title: Neurocomputing
– volume: 5
  start-page: 2
  year: 2008
  end-page: 19
  ident: bib0004
  article-title: Information retrieval and machine learning: Supporting technologies for web mining research and practice
  publication-title: Webology
– volume: 42
  start-page: 280
  year: 2015
  end-page: 292
  ident: bib0045
  article-title: Several novel evaluation measures for rank-based ensemble pruning with applications to time series prediction
  publication-title: Expert Systems with Applications
– volume: 50
  start-page: 636
  year: 2009
  end-page: 645
  ident: bib0026
  article-title: A survey: Clustering ensemble techniques
  publication-title: World Academy of Science, Engineering and Technology
– year: 2001
  ident: bib0040
  article-title: Self-organizing maps
– start-page: 211
  year: 1997
  end-page: 218
  ident: bib0046
  article-title: Pruning adaptive boosting
  publication-title: Proceedings of the fourteenth international conference on machine learning
– volume: 57
  start-page: 232
  year: 2016
  end-page: 247
  ident: bib0055
  article-title: Ensemble of keyword extraction methods and classifiers in text classification
  publication-title: Expert Systems with Applications
– volume: 51
  start-page: 433
  year: 2015
  end-page: 443
  ident: bib0023
  article-title: Detecting positive and negative deceptive opinions using PU-learning
  publication-title: Information Processing and Management
– volume: 7209
  start-page: 13
  year: 2012
  end-page: 24
  ident: bib0066
  publication-title: Ensemble pruning using harmony search
– volume: 108
  start-page: 110
  year: 2016
  end-page: 124
  ident: bib0002
  article-title: A hybrid approach to the sentiment analysis problem at the sentence level
  publication-title: Knowledge-Based Systems
– volume: 52
  start-page: 20
  year: 2016
  end-page: 35
  ident: bib0021
  article-title: Expressive signals in social media languages to improve polarity detection
  publication-title: Information Processing and Management
– volume: 185
  start-page: 11
  year: 2016
  end-page: 20
  ident: bib0044
  article-title: Sentiment recognition of online course reviews using multi-swarm optimization-based selected features
  publication-title: Neurocomputing
– volume: 52
  start-page: 5
  year: 2016
  end-page: 19
  ident: bib0063
  article-title: Contextual semantics for sentiment analysis of Twitter
  publication-title: Information Processing and Management
– start-page: 900
  year: 2008
  end-page: 905
  ident: bib0025
  article-title: Decision tree ensemble: Small heterogeneous is better than large homogeneous
  publication-title: Proceedings of ICMLA ’08
– volume: 2639
  start-page: 476
  year: 2003
  end-page: 483
  ident: bib0090
  publication-title: Selective ensemble of decision trees
– volume: 27
  start-page: 835
  issue: 6
  year: 2005
  ident: 10.1016/j.ipm.2017.02.008_bib0094
  article-title: Combining multiple clusterings using evidence accumulation
  publication-title: IEEE transactions on pattern analysis and machine intelligence
  doi: 10.1109/TPAMI.2005.113
– volume: 57
  start-page: 245
  year: 2014
  ident: 10.1016/j.ipm.2017.02.008_bib0039
  article-title: TOM: Twitter opinion mining framework using hybrid classification scheme
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2013.09.004
– start-page: 1
  year: 2008
  ident: 10.1016/j.ipm.2017.02.008_bib0078
  article-title: A taxonomy and short review of ensemble selection
– volume: 139
  start-page: 289
  year: 2014
  ident: 10.1016/j.ipm.2017.02.008_bib0088
  article-title: A spectral clustering based ensemble pruning approach
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.02.030
– volume: 51
  start-page: 458
  year: 2015
  ident: 10.1016/j.ipm.2017.02.008_bib0081
  article-title: POS-RS: A Random subspace method for sentiment classification based on part-of-speech analysis
  publication-title: Information Processing and Management
  doi: 10.1016/j.ipm.2014.09.004
– start-page: 472
  year: 2009
  ident: 10.1016/j.ipm.2017.02.008_bib0083
  article-title: Building a general purpose cross-domain sentiment mining model
– volume: 137
  start-page: 239
  year: 2002
  ident: 10.1016/j.ipm.2017.02.008_bib0091
  article-title: Ensembling neural networks: Many could be better than all
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(02)00190-X
– volume: 51
  start-page: 433
  year: 2015
  ident: 10.1016/j.ipm.2017.02.008_bib0023
  article-title: Detecting positive and negative deceptive opinions using PU-learning
  publication-title: Information Processing and Management
  doi: 10.1016/j.ipm.2014.11.001
– volume: 33
  start-page: 1
  year: 2010
  ident: 10.1016/j.ipm.2017.02.008_bib0060
  article-title: Ensemble-based classifiers
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-009-9124-7
– volume: 42
  start-page: 280
  issue: 1
  year: 2015
  ident: 10.1016/j.ipm.2017.02.008_bib0045
  article-title: Several novel evaluation measures for rank-based ensemble pruning with applications to time series prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.07.049
– volume: 52
  start-page: 5
  year: 2016
  ident: 10.1016/j.ipm.2017.02.008_bib0063
  article-title: Contextual semantics for sentiment analysis of Twitter
  publication-title: Information Processing and Management
  doi: 10.1016/j.ipm.2015.01.005
– volume: 5
  start-page: 2
  year: 2008
  ident: 10.1016/j.ipm.2017.02.008_bib0004
  article-title: Information retrieval and machine learning: Supporting technologies for web mining research and practice
  publication-title: Webology
– start-page: 609
  year: 2006
  ident: 10.1016/j.ipm.2017.02.008_bib0047
  article-title: Pruning in ordered bagging ensembles
– volume: 37
  start-page: 652
  year: 2015
  ident: 10.1016/j.ipm.2017.02.008_bib0052
  article-title: A new ensemble learning methodology based on hybridization of classifier ensemble selection approaches
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.09.009
– start-page: 5132
  year: 2006
  ident: 10.1016/j.ipm.2017.02.008_bib0010
  article-title: The influence of the pool of candidates on the performance of selection and combination techniques in ensembles
– volume: 185
  start-page: 11
  year: 2016
  ident: 10.1016/j.ipm.2017.02.008_bib0044
  article-title: Sentiment recognition of online course reviews using multi-swarm optimization-based selected features
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.12.036
– start-page: 440
  year: 2015
  ident: 10.1016/j.ipm.2017.02.008_bib0089
  article-title: An ensemble method for unbalanced sentiment classification
– year: 2007
  ident: 10.1016/j.ipm.2017.02.008_bib0019
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.ipm.2017.02.008_bib0005
  article-title: Bagging predictors
  publication-title: Machine Learning
  doi: 10.1007/BF00058655
– volume: 123
  start-page: 424
  year: 2014
  ident: 10.1016/j.ipm.2017.02.008_bib0043
  article-title: LibD3C: Ensemble classifiers with a clustering and dynamic selection strategy
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.08.004
– year: 1975
  ident: 10.1016/j.ipm.2017.02.008_bib0034
– volume: 2639
  start-page: 476
  year: 2003
  ident: 10.1016/j.ipm.2017.02.008_bib0090
– volume: 74
  start-page: 38
  year: 2016
  ident: 10.1016/j.ipm.2017.02.008_bib0007
  article-title: Combining diversity measures for ensemble pruning
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2016.01.029
– volume: 52
  start-page: 20
  year: 2016
  ident: 10.1016/j.ipm.2017.02.008_bib0021
  article-title: Expressive signals in social media languages to improve polarity detection
  publication-title: Information Processing and Management
  doi: 10.1016/j.ipm.2015.04.004
– volume: 45
  start-page: 10
  issue: 1
  year: 2012
  ident: 10.1016/j.ipm.2017.02.008_bib0049
  article-title: Ensemble approaches for regression: A survey
  publication-title: ACM Computing Surveys
  doi: 10.1145/2379776.2379786
– volume: 108
  start-page: 110
  year: 2016
  ident: 10.1016/j.ipm.2017.02.008_bib0002
  article-title: A hybrid approach to the sentiment analysis problem at the sentence level
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2016.05.040
– year: 2011
  ident: 10.1016/j.ipm.2017.02.008_bib0028
– volume: 49
  start-page: 1458
  issue: 5
  year: 2013
  ident: 10.1016/j.ipm.2017.02.008_bib0009
  article-title: Sampled-data based average consensus of second-order integral multi-agent systems: Switching topologies and communication noises
  publication-title: Automatica
  doi: 10.1016/j.automatica.2013.02.004
– volume: 25
  start-page: 337
  issue: 3
  year: 2011
  ident: 10.1016/j.ipm.2017.02.008_bib0079
  article-title: A survey of clustering ensemble algorithms
  publication-title: International Journal of Pattern Recognition and Artificial Intelligence
  doi: 10.1142/S0218001411008683
– volume: 68
  start-page: 26
  year: 2014
  ident: 10.1016/j.ipm.2017.02.008_bib0020
  article-title: Sentiment analysis: Bayesian ensemble learning
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2014.10.004
– year: 2015
  ident: 10.1016/j.ipm.2017.02.008_bib0053
– year: 2012
  ident: 10.1016/j.ipm.2017.02.008_bib0056
– volume: 66
  start-page: 170
  year: 2014
  ident: 10.1016/j.ipm.2017.02.008_bib0011
  article-title: Tweet sentiment analysis with classifier ensembles
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2014.07.003
– volume: 43
  start-page: 25
  issue: 1
  year: 2015
  ident: 10.1016/j.ipm.2017.02.008_bib0054
  article-title: A feature selection model based on genetic rank aggregation for text sentiment classification
  publication-title: Journal of Information Science
  doi: 10.1177/0165551515613226
– year: 2005
  ident: 10.1016/j.ipm.2017.02.008_bib0076
– volume: 3
  start-page: 143
  year: 2009
  ident: 10.1016/j.ipm.2017.02.008_bib0058
  article-title: Sentiment analysis: A combined approach
  publication-title: Journal of Informetrics
  doi: 10.1016/j.joi.2009.01.003
– volume: 181
  start-page: 1138
  year: 2011
  ident: 10.1016/j.ipm.2017.02.008_bib0085
  article-title: Ensemble of feature sets and classification algorithms for sentiment classification
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2010.11.023
– start-page: 900
  year: 2008
  ident: 10.1016/j.ipm.2017.02.008_bib0025
  article-title: Decision tree ensemble: Small heterogeneous is better than large homogeneous
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  ident: 10.1016/j.ipm.2017.02.008_bib0031
  article-title: The weka data mining software: An update
  publication-title: SIGKDD Explorations
  doi: 10.1145/1656274.1656278
– start-page: 50
  year: 2012
  ident: 10.1016/j.ipm.2017.02.008_bib0008
  article-title: Extracting diverse sentiment expressions with target-dependent polarity from Twitter
– volume: 6
  start-page: 81
  issue: 1
  year: 1984
  ident: 10.1016/j.ipm.2017.02.008_bib0064
  article-title: K-means-type algorithms: A generalized convergence theorem and characterization of local optimality
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.1984.4767478
– volume: 57
  start-page: 1
  year: 2016
  ident: 10.1016/j.ipm.2017.02.008_bib0018
  article-title: Ensemble multi-label text categorization based on rotation forest and latent semantic indexing
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.03.041
– volume: 78
  start-page: 553
  year: 1983
  ident: 10.1016/j.ipm.2017.02.008_bib0022
  article-title: A method for comparing two hiearchical clusterings
  publication-title: Journal of American Statistical Association
  doi: 10.1080/01621459.1983.10478008
– volume: 39
  start-page: 1
  year: 1977
  ident: 10.1016/j.ipm.2017.02.008_bib0016
  article-title: Maximum likelihood from incomplete data via the em algorithm
  publication-title: Journal of the Royal Statistical Society
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– year: 2009
  ident: 10.1016/j.ipm.2017.02.008_bib0074
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.ipm.2017.02.008_bib0067
  article-title: Differential evolution simple and efficient heuristic for global optimization over continuos spaces
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008202821328
– volume: 57
  start-page: 232
  year: 2016
  ident: 10.1016/j.ipm.2017.02.008_bib0055
  article-title: Ensemble of keyword extraction methods and classifiers in text classification
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.03.045
– volume: 34
  start-page: 1679
  year: 2013
  ident: 10.1016/j.ipm.2017.02.008_bib0065
  article-title: Malware detection by pruning of parallel ensembles using harmony search
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2013.05.006
– start-page: 1027
  year: 2007
  ident: 10.1016/j.ipm.2017.02.008_bib0003
  article-title: K-means++: The advantage of careful seeding
– volume: 1
  start-page: 305
  issue: 4
  year: 2011
  ident: 10.1016/j.ipm.2017.02.008_bib0027
  article-title: Cluster ensembles
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– volume: 51
  start-page: 444
  year: 2015
  ident: 10.1016/j.ipm.2017.02.008_bib0070
  article-title: Mining affective text to improve social media item recommendation
  publication-title: Information Processing and Management
  doi: 10.1016/j.ipm.2014.09.002
– volume: 60
  start-page: 197
  year: 2014
  ident: 10.1016/j.ipm.2017.02.008_bib0036
  article-title: Multi-objective evolutionary algorithms for fuzzy classification in survival prediction
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2013.12.006
– volume: 52
  start-page: 36
  year: 2016
  ident: 10.1016/j.ipm.2017.02.008_bib0084
  article-title: Polarity shift detection, elimination and ensemble: A three-stage model for document-level sentiment analysis
  publication-title: Information Processing and Management
  doi: 10.1016/j.ipm.2015.04.003
– start-page: 18
  year: 2004
  ident: 10.1016/j.ipm.2017.02.008_bib0006
  article-title: Ensemble selection from libraries of models
– volume: 1
  start-page: 65
  issue: 3
  year: 2005
  ident: 10.1016/j.ipm.2017.02.008_bib0041
  article-title: Selective averaging of regression models
  publication-title: Annals of Mathematics, Computing & Teleinformatics
– volume: 122
  start-page: 258
  year: 2013
  ident: 10.1016/j.ipm.2017.02.008_bib0012
  article-title: A novel ensemble pruning algorithm based on randomized greedy selective strategy and ballot
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.06.026
– volume: 40
  start-page: 749
  issue: 6
  year: 2014
  ident: 10.1016/j.ipm.2017.02.008_bib0015
  article-title: A study on LIWC categories for opinion mining in Spanish reviews
  publication-title: Journal of Information Science
  doi: 10.1177/0165551514547842
– volume: 157
  start-page: 46
  year: 2015
  ident: 10.1016/j.ipm.2017.02.008_bib0050
  article-title: Classifier subset selection to construct multi-classifiers by means of estimation of distribution algorithms
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.01.036
– year: 2016
  ident: 10.1016/j.ipm.2017.02.008_bib0082
– volume: 13
  start-page: 4292
  issue: 11
  year: 2013
  ident: 10.1016/j.ipm.2017.02.008_bib0013
  article-title: ModEnPBT: A modified backtracking ensemble pruning algorithm
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2013.06.023
– volume: 3
  start-page: 583
  year: 2002
  ident: 10.1016/j.ipm.2017.02.008_bib0068
  article-title: Cluster ensembles: A knowledge reuse framework for combining multiple partitions
  publication-title: Journal of Machine Learning Research
– year: 1999
  ident: 10.1016/j.ipm.2017.02.008_bib0077
– year: 1991
  ident: 10.1016/j.ipm.2017.02.008_bib0059
– year: 2014
  ident: 10.1016/j.ipm.2017.02.008_bib0042
– start-page: 1
  year: 2000
  ident: 10.1016/j.ipm.2017.02.008_bib0017
  article-title: Ensemble methods in machine learning
– volume: 10
  start-page: 634
  year: 2016
  ident: 10.1016/j.ipm.2017.02.008_bib0087
  article-title: Opinion polarity detection in Twitter data combining shrinkage regression and topic modelling
  publication-title: Journal of Informetrics
  doi: 10.1016/j.joi.2016.03.006
– volume: 45
  start-page: 219
  issue: 2
  year: 2001
  ident: 10.1016/j.ipm.2017.02.008_bib0051
  article-title: Reinterpreting the category utility function
  publication-title: Machine Learning
  doi: 10.1023/A:1010924920739
– year: 2001
  ident: 10.1016/j.ipm.2017.02.008_bib0040
– start-page: 211
  year: 1997
  ident: 10.1016/j.ipm.2017.02.008_bib0046
  article-title: Pruning adaptive boosting
– volume: 28
  start-page: 156
  year: 2007
  ident: 10.1016/j.ipm.2017.02.008_bib0048
  article-title: Using boosting to prune bagging ensembles
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2006.06.018
– start-page: 1942
  year: 1995
  ident: 10.1016/j.ipm.2017.02.008_bib0038
  article-title: Particle swarm optimization
– volume: 7209
  start-page: 13
  year: 2012
  ident: 10.1016/j.ipm.2017.02.008_bib0066
– start-page: 251
  year: 2011
  ident: 10.1016/j.ipm.2017.02.008_bib0072
  article-title: Bagging ensemble selection
– volume: 43
  start-page: 73
  year: 2016
  ident: 10.1016/j.ipm.2017.02.008_bib0086
  article-title: Ensemble classification based on supervised clustering for credit scoring
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.02.022
– volume: 28
  start-page: 237
  year: 2015
  ident: 10.1016/j.ipm.2017.02.008_bib0014
  article-title: A new reverse reduce-error ensemble pruning algorithm
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2014.10.045
– volume: 51
  start-page: 181
  issue: 2
  year: 2003
  ident: 10.1016/j.ipm.2017.02.008_bib0093
  article-title: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
  publication-title: Machine learning
  doi: 10.1023/A:1022859003006
– year: 2006
  ident: 10.1016/j.ipm.2017.02.008_bib0029
– volume: 74
  start-page: 2250
  year: 2011
  ident: 10.1016/j.ipm.2017.02.008_bib0033
  article-title: Empirical analysis and evaluation of approximate techniques for pruning regression bagging ensembles
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.03.001
– volume: 354
  start-page: 178
  year: 2016
  ident: 10.1016/j.ipm.2017.02.008_bib0024
  article-title: Ordering-based pruning for improving the performance of ensembles of classifiers in the framework of imbalanced datasets
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2016.02.056
– volume: 46
  start-page: 316
  year: 2016
  ident: 10.1016/j.ipm.2017.02.008_bib0073
  article-title: Aggregation of classifiers ensemble using local discriminatory power and quantiles
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.10.038
– volume: 50
  start-page: 636
  year: 2009
  ident: 10.1016/j.ipm.2017.02.008_bib0026
  article-title: A survey: Clustering ensemble techniques
  publication-title: World Academy of Science, Engineering and Technology
– year: 1999
  ident: 10.1016/j.ipm.2017.02.008_bib0030
– year: 2013
  ident: 10.1016/j.ipm.2017.02.008_bib0057
– volume: 1810
  start-page: 404
  year: 2000
  ident: 10.1016/j.ipm.2017.02.008_bib0075
– start-page: 399
  year: 2001
  ident: 10.1016/j.ipm.2017.02.008_bib0062
  article-title: Application of the evolutionary algorithms for classifier selection in multiple classifier systems with majority voting
– start-page: 301
  year: 2006
  ident: 10.1016/j.ipm.2017.02.008_bib0092
  article-title: Ensemble pruning using reinforcement learning
– volume: 2096
  start-page: 78
  year: 2001
  ident: 10.1016/j.ipm.2017.02.008_bib0061
  article-title: Methods for designing multiple classifier systems
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/3-540-48219-9_8
– volume: 3
  start-page: 583
  year: 2003
  ident: 10.1016/j.ipm.2017.02.008_bib0069
  article-title: Cluster ensembles–A knowledge reuse framework for combining multiple partitions
  publication-title: Journal of Machine Learning Research
– volume: 57
  start-page: 77
  year: 2014
  ident: 10.1016/j.ipm.2017.02.008_bib0080
  article-title: Sentiment classification: The contribution of ensemble learning
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2013.08.002
– year: 2006
  ident: 10.1016/j.ipm.2017.02.008_bib0032
– start-page: 382
  year: 2010
  ident: 10.1016/j.ipm.2017.02.008_bib0037
  article-title: Expectation maximization clustering
– volume: 31
  start-page: 651
  year: 2010
  ident: 10.1016/j.ipm.2017.02.008_bib0035
  article-title: Data clustering: 50 years beyond k-means
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2009.09.011
– start-page: 84
  year: 2003
  ident: 10.1016/j.ipm.2017.02.008_bib0001
  article-title: Comparison of classifier selection methods for improving committee performance
SSID ssj0004512
Score 2.612317
Snippet Sentiment analysis is a critical task of extracting subjective information from online text documents. Ensemble learning can be employed to obtain more robust...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 814
SubjectTerms Algorithms
Candidates
Classification
Classification schemes
Classifiers
Clustering
Consensus clustering
Data mining
Elitism
Ensemble pruning
Evolutionary algorithms
Genetic algorithms
Libraries
Machine learning
Multi-objective evolutionary algorithm
Multiple objective analysis
Objectives
Pareto optimum
Pruning
Ranking
Sentiment analysis
Sentiment classification
Subjectivity
Title A hybrid ensemble pruning approach based on consensus clustering and multi-objective evolutionary algorithm for sentiment classification
URI https://dx.doi.org/10.1016/j.ipm.2017.02.008
https://www.proquest.com/docview/1912955025
Volume 53
WOSCitedRecordID wos000401400000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5371
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004512
  issn: 0306-4573
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECWMpIdeiq5o2qTgoeihggrSlkTxqBYpugBBDyngmyBRVGNXkQ1ZMpI_6C_l7zJc7bhI0Bx6EWzComjPM2dIvjeD0FtGeaUSg4dcpgQWKIKEheBlyFnM00khaVzXutgEOzlJp1P-YzS6clqYdcPaNr244Mv_ampoA2Mr6ew9zO07hQZ4DUaHK5gdrv9k-Cw4u1QyrAAWqPJcCaOW3aB3P1z-8EC5rkodEwjFpW5XwyoQzaBSJjjJouYZhotybubDQK7tmBXJrmh-LbpZf3auOYpKvaRLBEAfEIkr6tHG2nNHlPciyWBppAlmiyKx9Nkb_BtbMjm77AcV63JPPv6-6IbfC9PWDHrjVnZV4fnFHwcYpHamheMa2Q0Nyjz51Qu5SBJGsalw4iZpk1HYgjHamnFTo0F1zttk1fjLL5gtivmH2VJlH6DM5GlNN07QHfzv-EbPWHRkuHkOXeSqi5yMcy0z3x8DrmFC3c--Hk-_baWqp_YIy3wbd6SuyYU747gtKNoJD3TMc_oYPbKLFZwZkD1BI9k-RUdW6oLf4S2zYusknqE_GTYAxA6A2AIQOwBiDUAMd3kA4g0AMQAQ7wAQbwMQewBieD72AMQ3Afgc_fx8fPrpS2jrfYRiwiZ9WNdMQICcxmXCYF1NScrqlBIiaFQVUSkpKRMZqRyEtKyKOikgtipkHHF4R2lRTl6gvXbRypcIRyWt5FjUZDImkUhLDnG_kBX0mVScjckBIu4Hz4VNhq9qsjT5rYY-QO_9LUuTCeauD0fOirkNZU2ImgMi77rt0Fk8t1PKKqccYvI4hsXJq_sM4TV6uPl3HaK9vhvkEXog1v1s1b2xaL0Gru7QZg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+ensemble+pruning+approach+based+on+consensus+clustering+and+multi-objective+evolutionary+algorithm+for+sentiment+classification&rft.jtitle=Information+processing+%26+management&rft.au=Onan%2C+Aytu%C4%9F&rft.au=Koruko%C4%9Flu%2C+Serdar&rft.au=Bulut%2C+Hasan&rft.date=2017-07-01&rft.issn=0306-4573&rft.volume=53&rft.issue=4&rft.spage=814&rft.epage=833&rft_id=info:doi/10.1016%2Fj.ipm.2017.02.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ipm_2017_02_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4573&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4573&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4573&client=summon